1
|
Xu Y, Ruijne F, Diez MG, Stada JJ, Kuipers OP. Design and Production of Geranylated Cyclic Peptides by the RiPP Enzymes SyncM and PirF. Biomacromolecules 2025; 26:3186-3199. [PMID: 40189806 PMCID: PMC12076493 DOI: 10.1021/acs.biomac.5c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 05/13/2025]
Abstract
The growing threat of antibiotic resistance highlights the urgent need for new antimicrobial agents. Nonribosomal peptides (NRPs) are potent antibiotics with complex structures, but generating novel NRP analogues is costly and inefficient. An emerging alternative is using ribosomally synthesized and post-translationally modified peptides (RiPPs), which are gene-encoded, allowing for easier mutagenesis and modification. This study aimed to produce peptides with two key structural elements of many NRP antibiotics: a macrocycle and an N-terminal lipid moiety. The RiPP enzymes SyncM and PirF were employed-SyncM introduced lanthionine or methyllanthionine macrocycles, while PirF incorporated isoprenyl chains to emulate the lipid moieties in NRPs. Both enzymes successfully modified the templates, and their combined use generated lipidated macrocyclic peptides, resembling lipopeptide antibiotics. These findings demonstrate the potential of SyncM and PirF as versatile tools for designing novel gene-encoded NRP mimics, enabling high-throughput screening for new bioactive peptides.
Collapse
Affiliation(s)
- Yanli Xu
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Fleur Ruijne
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Manel Garcia Diez
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Jorrit Jilles Stada
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics,
Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
2
|
Glassey E, Zhang Z, King AM, Niquille DL, Voigt CA. De novo design of ribosomally synthesized and post-translationally modified peptides. Nat Chem 2025; 17:233-245. [PMID: 39774303 DOI: 10.1038/s41557-024-01685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
In nature, peptides are enzymatically modified to constrain their structure and introduce functional moieties. De novo peptide structures could be built by combining enzymes from different pathways, but determining the rules of their use is difficult. We present a biophysical model to combine enzymes sourced from bacterial ribosomally synthesized and post-translationally modified peptide (RiPP) gene clusters. Using a pipeline to evaluate more than 1,000 peptides, the model was parameterized under uniform conditions in Escherichia coli for enzymes from different classes (graspetide, spliceotide, pantocin, cyanobactin, glycocin, lasso peptide and lanthipeptide). Synthetic leader peptides with recognition sequences for up to three enzymes were designed to modify core sequences sharing no identity to natural RiPPs. Empirically, RiPPs with the desired modifications constituted 7-67% of the total peptides produced, and 6 of our 8 peptide designs were successfully modified. This work is an example of the design of enzyme-modified peptides and libraries, using a framework that can be expanded to include new enzymes and chemical moieties.
Collapse
Affiliation(s)
- Emerson Glassey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengan Zhang
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew M King
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David L Niquille
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Castelo-Branco R, Pereira JP, Freitas S, Preto M, Vieira AR, Morais J, Leão PN. Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532. JOURNAL OF NATURAL PRODUCTS 2025; 88:86-93. [PMID: 39718459 PMCID: PMC11774001 DOI: 10.1021/acs.jnatprod.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Genome mining has emerged as an important tool for the discovery of natural products and is particularly effective for the swift identification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Among RiPPs, cyanobactins have gained attention due to their diverse structures and bioactive properties. Here, we explored the Microcoleaceae cyanobacterium LEGE 16532 strain and identified the mon biosynthetic gene cluster (BGC), which was predicted to encode cyanobactin-like molecules. This led to the detection of 11 macrocyclic cyanobactins, the monchicamides, some of which feature mono- or diprenylation. One of the compounds was isolated, monchicamides I (9), and its planar structure was established by LC-HRESIMS/MS data as well as 1D and 2D NMR spectroscopy, confirming forward O-prenylation in Tyr. In addition, the absolute configuration of compound 9 was determined by Marfey's method and chiral-phase HPLC. The structures of the additional cyanobactins were proposed from MS/MS data analysis. The bioactivity profile of the isolated compound was also evaluated, but no cytotoxic, antimicrobial, or antiamoebic activity was observed.
Collapse
Affiliation(s)
- Raquel Castelo-Branco
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - João P. Pereira
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Sara Freitas
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Marco Preto
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Ana R. Vieira
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - João Morais
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| | - Pedro N. Leão
- Interdisciplinary
Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal
| |
Collapse
|
4
|
Hubrich F, Kandy SK, Chepkirui C, Padhi C, Mordhorst S, Moosmann P, Zhu T, Gugger M, Chekan JR, Piel J. Ribosomal peptides with polycyclic isoprenoid moieties. Chem 2024; 10:3224-3242. [PMID: 39429465 PMCID: PMC11484575 DOI: 10.1016/j.chempr.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Isoprenoid modifications of proteins and peptides serve fundamental biological functions and are of therapeutic interest. While C15 (farnesyl) and C20 (geranylgeranyl) moieties are prevalent among proteins, known ribosomal peptide prenylations involve shorter-chain units not exceeding farnesyl in size. To our knowledge, cyclized terpene moieties have not been reported from either biomolecule class. Here we used targeted genome mining and heterologous pathway reconstitution to identify ribosomally synthesized and post-translationally modified peptides (RiPPs) with elaborate, cyclized geranylgeranyl modifications. The installing maturases commonly feature fused prenyltransferase-terpene cyclase architectures. We characterized two bifunctional maturases with distinct prenyltransferase folds and identified the terminal product of a cyanobacterial proteusin as an exceptionally complex pseudosteroid-annelated polycyclic peptide. Bioassays suggest modest anti-cyanobacterial activity with the modification being crucial for activity. Genome data predict cyclic isoprenoid units for various RiPP families including proteusin, Nif11, and lasso peptides and thus broader natural and biotechnological compatibility of the maturase system.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, Saarland University; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Campus Saarbrücken C2.3, 66123 Saarbrücken, Germany
| | - Sanath K. Kandy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Chandrashekhar Padhi
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Department of Chemistry and Howard Hughes Medical Institute, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Present address: Pharmaceutical Institute, University of Tübingen; Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Philipp Moosmann
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
| | - Tao Zhu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences; Shandong Energy Institute; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Muriel Gugger
- Institut Pasteur, Université Paris Cité, Collection of Cyanobacteria, F-75015 Paris, France
| | - Jonathan R. Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro; Greensboro, NC 27402-6170, United States of America
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog Weg 4, 8093 Zürich, Switzerland
- Lead contact: Jörn Piel
| |
Collapse
|
5
|
Inoue S, Thanh Nguyen D, Hamada K, Okuma R, Okada C, Okada M, Abe I, Sengoku T, Goto Y, Suga H. De Novo Discovery of Pseudo-Natural Prenylated Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 2024; 63:e202409973. [PMID: 38837490 DOI: 10.1002/anie.202409973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Collapse
Affiliation(s)
- Sumika Inoue
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Dinh Thanh Nguyen
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Masahiro Okada
- Department of Material and Life Chemistry, Kanagawa University, Kanagawa-ku, 221-8686, Yokohama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
- Toyota Riken Rising Fellow, Toyota Physical and Chemical Research Institute, Sakyo, 606-8502, Kyoto, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| |
Collapse
|
6
|
Chen XW, Liu Z, Dai S, Zou Y. Discovery, Characterization and Engineering of the Free l-Histidine C4-Prenyltransferase. J Am Chem Soc 2024; 146:23686-23691. [PMID: 39140691 DOI: 10.1021/jacs.4c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.
Collapse
Affiliation(s)
- Xi-Wei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
7
|
Miyata A, Ito S, Fujinami D. Structure Prediction and Genome Mining-Aided Discovery of the Bacterial C-Terminal Tryptophan Prenyltransferase PalQ. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307372. [PMID: 38059776 PMCID: PMC10853753 DOI: 10.1002/advs.202307372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Post-translational prenylations, found in eukaryotic primary metabolites and bacterial secondary metabolites, play crucial roles in biomolecular interactions. Employing genome mining methods combined with AlphaFold2-based predictions of protein interactions, PalQ , a prenyltransferase responsible for the tryptophan prenylation of RiPPs produced by Paenibacillus alvei, is identified. PalQ differs from cyanobactin prenyltransferases because of its evolutionary relationship to isoprene synthases, which enables PalQ to transfer extended prenyl chains to the indole C3 position. This prenylation introduces structural diversity to the tryptophan side chain and also leads to conformational dynamics in the peptide backbone, attributed to the cis/trans isomerization that arises from the formation of a pyrrolidine ring. Additionally, PalQ exhibited pronounced positional selectivity for the C-terminal tryptophan. Such enzymatic characteristics offer a toolkit for peptide therapeutic lipidation.
Collapse
Affiliation(s)
- Azusa Miyata
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| | - Sohei Ito
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| | - Daisuke Fujinami
- Graduate Division of Nutritional and Environmental SciencesUniversity of Shizuoka52‐1 Yada, Suruga‐kuShizuoka422‐8526Japan
| |
Collapse
|
8
|
Miller ET, Tsodikov OV, Garneau-Tsodikova S. Structural insights into the diverse prenylating capabilities of DMATS prenyltransferases. Nat Prod Rep 2024; 41:113-147. [PMID: 37929638 DOI: 10.1039/d3np00036b] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Covering: 2009 up to August 2023Prenyltransferases (PTs) are involved in the primary and the secondary metabolism of plants, bacteria, and fungi, and they are key enzymes in the biosynthesis of many clinically relevant natural products (NPs). The continued biochemical and structural characterization of the soluble dimethylallyl tryptophan synthase (DMATS) PTs over the past two decades have revealed the significant promise that these enzymes hold as biocatalysts for the chemoenzymatic synthesis of novel drug leads. This is a comprehensive review of DMATSs describing the structure-function relationships that have shaped the mechanistic underpinnings of these enzymes, as well as the application of this knowledge to the engineering of DMATSs. We summarize the key findings and lessons learned from these studies over the past 14 years (2009-2023). In addition, we identify current gaps in our understanding of these fascinating enzymes.
Collapse
Affiliation(s)
- Evan T Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY, 40536-0596, USA.
| |
Collapse
|
9
|
Zhang Y, Hamada K, Satake M, Sengoku T, Goto Y, Suga H. Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases. J Am Chem Soc 2023; 145:23893-23898. [PMID: 37877712 DOI: 10.1021/jacs.3c07373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Prenyltransferases in cyanobactin biosynthesis are of growing interest as peptide alkylation biocatalysts, but their prenylation modes characterized so far have been limited to dimethylallylation (C5) or geranylation (C10). Here we engaged in structure-guided engineering of the prenyl-binding pocket of a His-C2-geranyltransferase LimF to modulate its prenylation mode. Contraction of the pocket by a single mutation led to a His-C2-dimethylallyltransferase. More importantly, pocket expansion by a double mutation successfully repurposed LimF for farnesylation (C15), which is an unprecedented mode in this family. Furthermore, the obtained knowledge of the essential residues to construct the farnesyl-binding pocket has allowed for rational design of a Tyr-O-farnesyltransferase by a triple mutation of a Tyr-O-dimethylallyltransferase PagF. These results provide an approach to manipulate the prenyl specificity of cyanobactin prenyltransferases, broadening the chemical space covered by this class of enzymes and expanding the toolbox of peptide alkylation biocatalysts.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masayuki Satake
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
11
|
Gordon CH, Hendrix E, He Y, Walker MC. AlphaFold Accurately Predicts the Structure of Ribosomally Synthesized and Post-Translationally Modified Peptide Biosynthetic Enzymes. Biomolecules 2023; 13:1243. [PMID: 37627309 PMCID: PMC10452190 DOI: 10.3390/biom13081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing class of natural products biosynthesized from a genetically encoded precursor peptide. The enzymes that install the post-translational modifications on these peptides have the potential to be useful catalysts in the production of natural-product-like compounds and can install non-proteogenic amino acids in peptides and proteins. However, engineering these enzymes has been somewhat limited, due in part to limited structural information on enzymes in the same families that nonetheless exhibit different substrate selectivities. Despite AlphaFold2's superior performance in single-chain protein structure prediction, its multimer version lacks accuracy and requires high-end GPUs, which are not typically available to most research groups. Additionally, the default parameters of AlphaFold2 may not be optimal for predicting complex structures like RiPP biosynthetic enzymes, due to their dynamic binding and substrate-modifying mechanisms. This study assessed the efficacy of the structure prediction program ColabFold (a variant of AlphaFold2) in modeling RiPP biosynthetic enzymes in both monomeric and dimeric forms. After extensive benchmarking, it was found that there were no statistically significant differences in the accuracy of the predicted structures, regardless of the various possible prediction parameters that were examined, and that with the default parameters, ColabFold was able to produce accurate models. We then generated additional structural predictions for select RiPP biosynthetic enzymes from multiple protein families and biosynthetic pathways. Our findings can serve as a reference for future enzyme engineering complemented by AlphaFold-related tools.
Collapse
Affiliation(s)
| | | | | | - Mark C. Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
12
|
Ortiz-López FJ, Oves-Costales D, Carretero-Molina D, Martín J, Díaz C, de la Cruz M, Román-Hurtado F, Álvarez-Arévalo M, Jørgensen TS, Reyes F, Weber T, Genilloud O. Crossiellidines A-F, Unprecedented Pyrazine-Alkylguanidine Metabolites with Broad-Spectrum Antibacterial Activity from Crossiella sp. Org Lett 2023; 25:3502-3507. [PMID: 37162500 DOI: 10.1021/acs.orglett.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Crosiellidines are intriguing pyrazine-alkylguanidine metabolites isolated from the minor actinomycete genus Crossiella. Their structures present an unprecedented 2-methoxy-3,5,6-trialkyl pyrazine scaffold and uncommon guanidine prenylations, including an exotic O-prenylated N-hydroxyguanidine moiety. The novel substitution pattern of the 2-methoxypyrazine core inaugurates a new class of naturally occurring pyrazine compounds, the biosynthetic implications of which are discussed herein. Isotopic feeding and genome analysis allowed us to propose a biosynthetic pathway from arginine. The crossiellidines exhibited remarkable, broad-spectrum antibacterial activity.
Collapse
Affiliation(s)
- Francisco Javier Ortiz-López
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Daniel Carretero-Molina
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Caridad Díaz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Fernando Román-Hurtado
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - María Álvarez-Arévalo
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, Denmark
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnológico Ciencias de la Salud, 18016 Armilla, Granada, Spain
| |
Collapse
|
13
|
Colombano A, Dalponte L, Dall'Angelo S, Clemente C, Idress M, Ghazal A, Houssen WE. Chemoenzymatic Late-Stage Modifications Enable Downstream Click-Mediated Fluorescent Tagging of Peptides. Angew Chem Int Ed Engl 2023; 62:e202215979. [PMID: 36815722 PMCID: PMC10946513 DOI: 10.1002/anie.202215979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 02/24/2023]
Abstract
Aromatic prenyltransferases from cyanobactin biosynthetic pathways catalyse the chemoselective and regioselective intramolecular transfer of prenyl/geranyl groups from isoprene donors to an electron-rich position in these macrocyclic and linear peptides. These enzymes often demonstrate relaxed substrate specificity and are considered useful biocatalysts for structural diversification of peptides. Herein, we assess the isoprene donor specificity of the N1-tryptophan prenyltransferase AcyF from the anacyclamide A8P pathway using a library of 22 synthetic alkyl pyrophosphate analogues, of which many display reactive groups that are amenable to additional functionalization. We further used AcyF to introduce a reactive moiety into a tryptophan-containing cyclic peptide and subsequently used click chemistry to fluorescently label the enzymatically modified peptide. This chemoenzymatic strategy allows late-stage modification of peptides and is useful for many applications.
Collapse
Affiliation(s)
- Alessandro Colombano
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Luca Dalponte
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Sergio Dall'Angelo
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Claudia Clemente
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
| | - Mohannad Idress
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
- Abzena, Babraham Research CampusCambridgeUK
| | - Ahmad Ghazal
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| | - Wael E. Houssen
- Institute of Medical SciencesUniversity of Aberdeen Ashgrove Road WestAberdeenAB25 2ZDUK
- Department of ChemistryUniversity of AberdeenAberdeenAB24 3UEUK
| |
Collapse
|
14
|
Zhang Y, Goto Y, Suga H. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends Biochem Sci 2023; 48:360-374. [PMID: 36564250 DOI: 10.1016/j.tibs.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
15
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
16
|
Abstract
A key goal of synthetic biology is to enable designed modification of peptides and proteins, both in vivo and in vitro. N- and C-Terminal modification enzymes are crucial in this regard, but there are a few enzymatic options to protect peptide termini. AgeMTPT protects the N-terminus of short peptides with isoprene and the C-terminus as a methyl ester, but its substrate scope is unknown, limiting its application. Here, we investigate the substrate selectivity of the prenyltransferase domain, revealing a requirement for N-terminal aromatic amino acids, but with tolerance for diverse uncharged amino acids in the remaining positions. To demonstrate the potential of the enzyme, substrate selectivity data were used in the enzymatic modification of leu-enkephalin at the critical N-terminal residue. AgeMTPT active site mutagenesis led to an enzyme with expanded substrate scope, including the reverse geranylation of the N-termini of peptides. These data reveal potential applications of enzymatic peptide protection in synthetic biology.
Collapse
Affiliation(s)
- Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul D. Scesa
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
17
|
LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nat Catal 2022. [DOI: 10.1038/s41929-022-00822-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Abstract
Biologically active peptides are a major growing class of drugs, but their therapeutic potential is constrained by several limitations including bioavailability and poor pharmacokinetics. The attachment of functional groups like lipids has proven to be a robust and effective strategy for improving their therapeutic potential. Biochemical and bioactivity-guided screening efforts have identified the cyanobactins as a large class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that are modified with lipids. These lipids are attached by the F superfamily of peptide prenyltransferase enzymes that utilize 5-carbon (prenylation) or 10-carbon (geranylation) donors. The chemical structures of various cyanobactins initially showed isoprenoid attachments on Ser, Thr, or Tyr. Biochemical characterization of the F prenyltransferases from the corresponding clusters shows that the different enzymes have different acceptor residue specificities but are otherwise remarkably sequence tolerant. Hence, these enzymes are well suited for biotechnological applications. The crystal structure of the Tyr O-prenyltransferase PagF reveals that the F enzyme shares a domain architecture reminiscent of a canonical ABBA prenyltransferase fold but lacks secondary structural elements necessary to form an enclosed active site. Binding of either cyclic or linear peptides is sufficient to close the active site to allow for productive catalysis, explaining why these enzymes cannot use isolated amino acids as substrates.Almost all characterized isoprenylated cyanobactins are modified with 5-carbon isoprenoids. However, chemical characterization demonstrates that the piricyclamides are modified with a 10-carbon geranyl moiety, and in vitro reconstitution of the corresponding PirF shows that the enzyme is a geranyltransferase. Structural analysis of PirF shows an active site nearly identical with that of the PagF prenyltransferase but with a single amino acid substitution. Of note, mutation at this residue in PagF or PirF can completely switch the isoprenoid donor specificity of these enzymes. Recent efforts have resulted in significant expansion of the F family with enzymes identified that can carry out C-prenylations of Trp, N-prenylations of Trp, and bis-N-prenylations of Arg. Additional genome-guided efforts based on the sequence of F enzymes identify linear cyanobactins that are α-N-prenylated and α-C-methylated by a bifunctional prenyltransferase/methyltransferase fusion and a bis-α-N- and α-C-prenylated linear peptide. The discovery of these different classes of prenyltransferases with diverse acceptor residue specificities expands the biosynthetic toolkit for enzymatic prenylation of peptide substrates.In this Account, we review the current knowledge scope of the F family of peptide prenyltransferases, focusing on the biochemical, structure-function, and chemical characterization studies that have been carried out in our laboratories. These enzymes are easily amenable for diversity-oriented synthetic efforts as they can accommodate substrate peptides of diverse sequences and are thus attractive catalysts for use in synthetic biology approaches to generate high-value peptidic therapeutics.
Collapse
Affiliation(s)
- Yiwu Zheng
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ying Cong
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
19
|
Phan CS, Matsuda K, Balloo N, Fujita K, Wakimoto T, Okino T. Argicyclamides A-C Unveil Enzymatic Basis for Guanidine Bis-prenylation. J Am Chem Soc 2021; 143:10083-10087. [PMID: 34181406 DOI: 10.1021/jacs.1c05732] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Guanidine prenylation is an outstanding modification in alkaloid and peptide biosynthesis, but its enzymatic basis has remained elusive. We report the isolation of argicyclamides, a new class of cyanobactins with unique mono- and bis-prenylations on guanidine moieties, from Microcystis aeruginosa NIES-88. The genetic basis of argicyclamide biosynthesis was established by the heterologous expression and in vitro characterization of biosynthetic enzymes including AgcF, a new guanidine prenyltransferase. This study provides important insight into the biosynthesis of prenylated guanidines and offers a new toolkit for peptide modification.
Collapse
Affiliation(s)
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | | | - Kei Fujita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | | |
Collapse
|
20
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
21
|
Purushothaman M, Sarkar S, Morita M, Gugger M, Schmidt EW, Morinaka BI. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase. Angew Chem Int Ed Engl 2021; 60:8460-8465. [PMID: 33586286 PMCID: PMC8011950 DOI: 10.1002/anie.202015975] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Cyanobactins comprise a widespread group of peptide metabolites produced by cyanobacteria that are often diversified by post-translational prenylation. Several enzymes have been identified in cyanobactin biosynthetic pathways that carry out chemically diverse prenylation reactions, representing a resource for the discovery of post-translational alkylating agents. Here, genome mining was used to identify orphan cyanobactin prenyltransferases, leading to the isolation of tolypamide from the freshwater cyanobacterium Tolypothrix sp. The structure of tolypamide was confirmed by spectroscopic methods, degradation, and enzymatic total synthesis. Tolypamide is forward-prenylated on a threonine residue, representing an unprecedented post-translational modification. Biochemical characterization of the cognate enzyme TolF revealed a prenyltransferase with strict selectivity for forward O-prenylation of serine or threonine but with relaxed substrate selectivity for flanking peptide sequences. Since cyanobactin pathways often exhibit exceptionally broad substrate tolerance, these enzymes represent robust tools for synthetic biology.
Collapse
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy, National University of Singapore, 18 Science Dr 4, Singapore 117543 (Singapore)
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 (USA)
| | - Maho Morita
- Laboratory of Chemical Biology of Natural Products, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601 (Japan)
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Département de Microbiologie, Paris 75015 (France)
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 (USA)
| | - Brandon I. Morinaka
- Department of Pharmacy, National University of Singapore, 18 Science Dr 4, Singapore 117543 (Singapore)
| |
Collapse
|
22
|
Purushothaman M, Sarkar S, Morita M, Gugger M, Schmidt EW, Morinaka BI. Genome‐Mining‐Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward
O
‐Prenyltransferase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy National University of Singapore 18 Science Dr 4 Singapore 117543 Singapore
| | - Snigdha Sarkar
- Department of Medicinal Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Maho Morita
- Laboratory of Chemical Biology of Natural Products Graduate School of Bioagricultural Sciences Nagoya University, Furo-cho, Chikusa Nagoya 464-8601 Japan
| | - Muriel Gugger
- Institut Pasteur Collection des Cyanobactéries Département de Microbiologie 75015 Paris France
| | - Eric W. Schmidt
- Department of Medicinal Chemistry University of Utah Salt Lake City UT 84112 USA
| | - Brandon I. Morinaka
- Department of Pharmacy National University of Singapore 18 Science Dr 4 Singapore 117543 Singapore
| |
Collapse
|
23
|
Chen HP, Abe I. Microbial soluble aromatic prenyltransferases for engineered biosynthesis. Synth Syst Biotechnol 2021; 6:51-62. [PMID: 33778178 PMCID: PMC7973389 DOI: 10.1016/j.synbio.2021.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/22/2021] [Indexed: 11/29/2022] Open
Abstract
Prenyltransferase (PTase) enzymes play crucial roles in natural product biosynthesis by transferring isoprene unit(s) to target substrates, thereby generating prenylated compounds. The prenylation step leads to a diverse group of natural products with improved membrane affinity and enhanced bioactivity, as compared to the non-prenylated forms. The last two decades have witnessed increasing studies on the identification, characterization, enzyme engineering, and synthetic biology of microbial PTase family enzymes. We herein summarize several examples of microbial soluble aromatic PTases for chemoenzymatic syntheses of unnatural novel prenylated compounds.
Collapse
Key Words
- Biosynthesis
- DHN, dihydroxynaphthalene
- DMAPP, dimethylallyl diphosphate
- DMATS, dimethylallyltryptophan synthase
- DMSPP, dimethylallyl S-thiolodiphosphate
- Enzyme engineering
- FPP, farnesyl diphosphate
- GFPP, geranyl farnesyl diphosphate
- GPP, geranyl diphosphate
- GSPP, geranyl S- thiolodiphosphate
- IPP, isopentenyl pyrophosphate
- Microbial prenyltransferase
- PPP, phytyl pyrophosphate
- PTase, prenyltransferase
- Prenylation
- RiPP, ribosomally synthesized and posttranslationally modified peptide
- Synthetic biology
- THN, 1,3,6,8-tetrahydroxynaphthalene
Collapse
Affiliation(s)
- He-Ping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, 430074, PR China
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
24
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
25
|
Sarkar S, Gu W, Schmidt EW. Expanding the chemical space of synthetic cyclic peptides using a promiscuous macrocyclase from prenylagaramide biosynthesis. ACS Catal 2020; 10:7146-7153. [PMID: 33457065 PMCID: PMC7805243 DOI: 10.1021/acscatal.0c00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclic peptides are excellent drug candidates, placing macrocyclization reactions at the apex of drug development. PatG and related dual-action proteases from cyanobactin biosynthesis are responsible for cleaving off the C-terminal recognition sequence and macrocyclizing the substrate to provide cyclic peptides. This reaction has found use in the enzymatic synthesis of diverse macrocycles. However, these enzymes function best on substrates that terminate with the non-proteinogenic thiazole/thiazoline residue, complicating synthetic strategies. Here, we biochemically characterize a new class of PatG-like macrocyclases that natively use proline, obviating the necessity of additional chemical or biochemical steps. We experimentally define the biochemical steps involved in synthesizing the widespread prenylagaramide-like natural products, including macrocyclization and prenylation. Using saturation mutagenesis, we show that macrocyclase PagG and prenyltransferase PagF are highly promiscuous, producing a library of more than 100 cyclic peptides and their prenylated derivatives in vitro. By comparing our results to known cyanobactin macrocyclases, we catalog a series of enzymes from this family that should synthesize most small macrocycles. Collectively, these data reveal that, by selecting the right cyanobactin macrocyclase, a large array of enzymatically synthesized macrocycles are accessible.
Collapse
Affiliation(s)
- Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
Collapse
|
27
|
Mattila A, Andsten RM, Jumppanen M, Assante M, Jokela J, Wahlsten M, Mikula KM, Sigindere C, Kwak DH, Gugger M, Koskela H, Sivonen K, Liu X, Yli-Kauhaluoma J, Iwaï H, Fewer DP. Biosynthesis of the Bis-Prenylated Alkaloids Muscoride A and B. ACS Chem Biol 2019; 14:2683-2690. [PMID: 31674754 DOI: 10.1021/acschembio.9b00620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Prenylation is a common step in the biosynthesis of many natural products and plays an important role in increasing their structural diversity and enhancing biological activity. Muscoride A is a linear peptide alkaloid that contain two contiguous oxazoles and unusual prenyl groups that protect the amino- and carboxy-termini. Here we identified the 12.7 kb muscoride (mus) biosynthetic gene clusters from Nostoc spp. PCC 7906 and UHCC 0398. The mus biosynthetic gene clusters encode enzymes for the heterocyclization, oxidation, and prenylation of the MusE precursor protein. The mus biosynthetic gene clusters encode two copies of the cyanobactin prenyltransferase, MusF1 and MusF2. The predicted tetrapeptide substrate of MusF1 and MusF2 was synthesized through a novel tandem cyclization route in only eight steps. Biochemical assays demonstrated that MusF1 acts on the carboxy-terminus while MusF2 acts on the amino-terminus of the tetrapeptide substrate. We show that the MusF2 enzyme catalyzes the reverse or forward prenylation of amino-termini from Nostoc spp. PCC 7906 and UHCC 0398, respectively. This finding expands the regiospecific chemical functionality of cyanobactin prenyltransferases and the chemical diversity of the cyanobactin family of natural products to include bis-prenylated polyoxazole linear peptides.
Collapse
Affiliation(s)
- Antti Mattila
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Rose-Marie Andsten
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Michele Assante
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Kornelia M. Mikula
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Cihad Sigindere
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Daniel H. Kwak
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Muriel Gugger
- Collection des Cyanobactéries, Département de Microbiologie, Institut Pasteur, 28 Rue du Docteur Roux, 75724 Cedex 15, 75015 Paris, France
| | - Harri Koskela
- VERIFIN, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FI-00014 Helsinki, Finland
| |
Collapse
|
28
|
He J, Hu Z, Dong Z, Li B, Chen K, Shang Z, Zhang M, Qiao X, Ye M. Enzymatic
O
‐Prenylation of Diverse Phenolic Compounds by a Permissive
O
‐Prenyltransferase from the Medicinal Mushroom
Antrodia camphorata. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junbin He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zhimin Hu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zeyuan Dong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Bin Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Zhanpeng Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences Peking University 38 Xueyuan Road Beijing 100191 People's Republic of China
| |
Collapse
|
29
|
Roose BW, Christianson DW. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019; 58:3232-3242. [PMID: 31251043 DOI: 10.1021/acs.biochem.9b00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indole prenyltransferases catalyze the prenylation of l-tryptophan (l-Trp) and other indoles to produce a diverse set of natural products in bacteria, fungi, and plants, many of which possess useful biological properties. Among this family of enzymes, CymD from Salinispora arenicola catalyzes the reverse N1 prenylation of l-Trp, an unusual reaction given the poor nucleophilicity of the indole nitrogen. CymD utilizes dimethylallyl diphosphate (DMAPP) as the prenyl donor, catalyzing the dissociation of the diphosphate leaving group followed by nucleophilic attack of the indole nitrogen at the tertiary carbon of the dimethylallyl cation. To better understand the structural basis of selective indole N-alkylation reactions in biology, we have determined the X-ray crystal structures of CymD, the CymD-l-Trp complex, and the CymD-l-Trp-DMSPP complex (DMSPP is dimethylallyl S-thiolodiphosphate, an unreactive analogue of DMAPP). The orientation of l-Trp with respect to DMSPP reveals how the active site contour of CymD serves as a template to direct the reverse prenylation of the indole nitrogen. Comparison to PriB, a C6 bacterial indole prenyltransferase, offers further insight regarding the structural basis of regioselective indole prenylation. Isothermal titration calorimetry measurements indicate a synergistic relationship between l-Trp and DMSPP binding. Finally, activity assays demonstrate the selectivity of CymD for l-Trp and indole as prenyl acceptors. Collectively, these data establish a foundation for understanding and engineering the regioselectivity of indole prenylation by members of the prenyltransferase protein family.
Collapse
Affiliation(s)
- Benjamin W Roose
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , United States
| |
Collapse
|
30
|
A comprehensive in silico analysis of sortase superfamily. J Microbiol 2019; 57:431-443. [DOI: 10.1007/s12275-019-8545-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
|
31
|
Dalponte L, Parajuli A, Younger E, Mattila A, Jokela J, Wahlsten M, Leikoski N, Sivonen K, Jarmusch SA, Houssen WE, Fewer DP. N-Prenylation of Tryptophan by an Aromatic Prenyltransferase from the Cyanobactin Biosynthetic Pathway. Biochemistry 2018; 57:6860-6867. [DOI: 10.1021/acs.biochem.8b00879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Luca Dalponte
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
| | - Anirudra Parajuli
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Ellen Younger
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
| | - Antti Mattila
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Niina Leikoski
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| | - Scott A. Jarmusch
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
| | - Wael E. Houssen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, U.K
- Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, U.K
- Pharmacognosy Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Viikki Biocenter 1, Viikinkaari 9, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Estrada P, Morita M, Hao Y, Schmidt EW, Nair SK. A Single Amino Acid Switch Alters the Isoprene Donor Specificity in Ribosomally Synthesized and Post-Translationally Modified Peptide Prenyltransferases. J Am Chem Soc 2018; 140:8124-8127. [PMID: 29924593 DOI: 10.1021/jacs.8b05187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutation at a single amino acid alters the isoprene donor specificity of prenyltransferases involved in the modification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Though most characterized RiPP prenyltransferases carry out the regiospecific transfer of C5 dimethylallyl donor to the side chain atoms on macrocyclic acceptor substrates, the elucidation of the cyanobactin natural product piricyclamide 70005E1 identifies an O-geranyl modification on Tyr, a reaction with little prior biochemical precedence. Reconstitution and kinetic studies of the presumptive geranyltransferase PirF shows that the enzyme utilizes a C10 donor, with no C5 transferase activity. The crystal structure of PirF reveals a single amino acid difference in the vicinity of the isoprene-binding pocket, relative to the C5 utilizing enzymes. Remarkably, only a single amino acid mutation is necessary to completely switch the donor specificity from a C5 to a C10 prenyltransferase, and vice versa. Lastly, we demonstrate that these enzymes may be used for the chemospecific attachment of C5 or C10 lipid groups on lanthipeptides, an unrelated class of RiPP natural products. These studies represent a rare example where prenyl donor specificity can be discretely altered, which expands the arsenal of synthetic biology tools for tuning biological activities of peptide natural products.
Collapse
Affiliation(s)
| | - Maho Morita
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Eric W Schmidt
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | | |
Collapse
|
33
|
Awakawa T, Mori T, Nakashima Y, Zhai R, Wong CP, Hillwig ML, Liu X, Abe I. Molecular Insight into the Mg 2+
-Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Chin Piow Wong
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Matthew L. Hillwig
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
34
|
Morita M, Hao Y, Jokela JK, Sardar D, Lin Z, Sivonen K, Nair SK, Schmidt EW. Post-Translational Tyrosine Geranylation in Cyanobactin Biosynthesis. J Am Chem Soc 2018; 140:6044-6048. [PMID: 29701961 PMCID: PMC6242345 DOI: 10.1021/jacs.8b03137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prenylation is a widespread modification that improves the biological activities of secondary metabolites. This reaction also represents a key modification step in biosyntheses of cyanobactins, a family of ribosomally synthesized and post-translationally modified peptides (RiPPs) produced by cyanobacteria. In cyanobactins, amino acids are commonly isoprenylated by ABBA prenyltransferases that use C5 donors. Notably, mass spectral analysis of piricyclamides from a fresh-water cyanobacterium suggested that they may instead have a C10 geranyl group. Here we characterize a novel geranyltransferase involved in piricyclamide biosynthesis. Using the purified enzyme, we show that the enzyme PirF catalyzes Tyr O-geranylation, which is an unprecedented post-translational modification. In addition, the combination of enzymology and analytical chemistry revealed the structure of the final natural product, piricyclamide 7005E1, and the regioselectivity of PirF, which has potential as a synthetic biological tool providing drug-like properties to diverse small molecules.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Yue Hao
- Department of Biochemistry, Institute for Genomic Biology, and Center for Biophysics and Quantitative Biology, Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jouni K Jokela
- Department of Microbiology , University of Helsinki , Helsinki 00014 , Finland
| | - Debosmita Sardar
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Zhenjian Lin
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| | - Kaarina Sivonen
- Department of Microbiology , University of Helsinki , Helsinki 00014 , Finland
| | - Satish K Nair
- Department of Biochemistry, Institute for Genomic Biology, and Center for Biophysics and Quantitative Biology, Department of Biochemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric W Schmidt
- Department of Medicinal Chemistry , University of Utah , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
35
|
Awakawa T, Mori T, Nakashima Y, Zhai R, Wong CP, Hillwig ML, Liu X, Abe I. Molecular Insight into the Mg2+
-Dependent Allosteric Control of Indole Prenylation by Aromatic Prenyltransferase AmbP1. Angew Chem Int Ed Engl 2018; 57:6810-6813. [DOI: 10.1002/anie.201800855] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/29/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Rui Zhai
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Chin Piow Wong
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Matthew L. Hillwig
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Xinyu Liu
- Department of Chemistry; University of Pittsburgh; 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
36
|
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Methods Enzymol 2018; 604:113-163. [PMID: 29779651 DOI: 10.1016/bs.mie.2018.03.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
37
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
38
|
Abstract
Natural products are significant therapeutic agents and valuable drug leads. This is likely owing to their three-dimensional structural complexity, which enables them to form complex interactions with biological targets. Enzymes from natural product biosynthetic pathways show great potential to generate natural product-like compounds and libraries. Many challenges still remain in biosynthesis, such as how to rationally synthesize small molecules with novel structures and how to generate maximum chemical diversity. In this Account, we describe recent advances from our laboratory in the synthesis of natural product-like libraries using natural biosynthetic machinery. Our work has focused on the pat and tru biosynthetic pathways to patellamides, trunkamide, and related compounds from cyanobacterial symbionts in marine tunicates. These belong to the cyanobactin class of natural products, which are part of the larger group of ribosomally synthesized and post-translationally modified peptides (RiPPs). These results have enabled the synthesis of rationally designed small molecules and libraries covering more than 1 million estimated derivatives. Because the RiPPs are translated on the ribosome and then enzymatically modified, they are highly compatible with recombinant technologies. This is important because it means that the resulting natural products, their derivatives, and wholly new compounds can be synthesized using the tools of genetic engineering. The RiPPs also represent possibly the most widespread group of bioactive natural products, although this is in part because of the broad definition of what constitutes a RiPP. In addition, the underlying ideas may form the basis for broad-substrate biosynthetic pathways beyond the RiPPs. For example, some of the ideas about kinetic ordering of broad substrate pathways may apply to polyketide or nonribosomal peptide biosynthesis as well. While making these products, we have sought to understand what makes biosynthetic pathways plastic and whether there are any rules that might generally apply to plastic biosynthetic pathways. We present three principles of diversity-generating biosynthesis: (1) substrate evolution, in which the substrates change while enzymes remain constant; (2) pairing of recognition sequences on substrates with biosynthetic enzymes; (3) an inverse metabolic flux in comparison to canonical pathways. If these principles are general, they may enable the design of unimagined derivatives using biosynthetic engineering. For example, it is possible to discover substrate evolution directly by examining sequencing data. By shuffling appropriate recognition sequences and biosynthetic enzymes, it has already been possible to make new hybrid products of multiple pathways. While cases so far have been limited, if this is more general, designed synthesis will become routine. Finally, biosynthesis of natural products is regulated in elaborate ways that are just beginning to be understood. If the inverse metabolic flux model is widespread, it potentially informs on what the timing and relative production level of each enzyme in a designer pathway should be in order to optimize the synthesis of new compounds in vivo.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| |
Collapse
|
39
|
Gerlt JA. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions. Biochemistry 2017; 56:4293-4308. [PMID: 28826221 PMCID: PMC5569362 DOI: 10.1021/acs.biochem.7b00614] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The exponentially increasing number
of protein and nucleic acid
sequences provides opportunities to discover novel enzymes, metabolic
pathways, and metabolites/natural products, thereby adding to our
knowledge of biochemistry and biology. The challenge has evolved from
generating sequence information to mining the databases to integrating
and leveraging the available information, i.e., the availability of
“genomic enzymology” web tools. Web tools that allow
identification of biosynthetic gene clusters are widely used by the
natural products/synthetic biology community, thereby facilitating
the discovery of novel natural products and the enzymes responsible
for their biosynthesis. However, many novel enzymes with interesting
mechanisms participate in uncharacterized small-molecule metabolic
pathways; their discovery and functional characterization also can
be accomplished by leveraging information in protein and nucleic acid
databases. This Perspective focuses on two genomic enzymology web
tools that assist the discovery novel metabolic pathways: (1) Enzyme
Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating
sequence similarity networks to visualize and analyze sequence–function
space in protein families and (2) Enzyme Function Initiative-Genome
Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks
to visualize and analyze the genome context in microbial and fungal
genomes. Both tools have been adapted to other applications to facilitate
target selection for enzyme discovery and functional characterization.
As the natural products community has demonstrated, the enzymology
community needs to embrace the essential role of web tools that allow
the protein and genome sequence databases to be leveraged for novel
insights into enzymological problems.
Collapse
Affiliation(s)
- John A Gerlt
- Departments of Biochemistry and Chemistry, Institute for Genomic Biology, University of Illinois , Urbana-Champaign Urbana, Illinois 61801, United States
| |
Collapse
|
40
|
Burkhart B, Kakkar N, Hudson GA, van der Donk WA, Mitchell DA. Chimeric Leader Peptides for the Generation of Non-Natural Hybrid RiPP Products. ACS CENTRAL SCIENCE 2017; 3:629-638. [PMID: 28691075 PMCID: PMC5492250 DOI: 10.1021/acscentsci.7b00141] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 05/21/2023]
Abstract
Combining biosynthetic enzymes from multiple pathways is an attractive approach for producing molecules with desired structural features; however, progress has been hampered by the incompatibility of enzymes from unrelated pathways and intolerance toward alternative substrates. Ribosomally synthesized and posttranslationally modified peptides (RiPPs) are a diverse natural product class that employs a biosynthetic logic that is highly amenable to engineering new compounds. RiPP biosynthetic proteins modify their substrates by binding to a motif typically located in the N-terminal leader region of the precursor peptide. Here, we exploit this feature by designing leader peptides that enable recognition and processing by multiple enzymes from unrelated RiPP pathways. Using this broadly applicable strategy, a thiazoline-forming cyclodehydratase was combined with enzymes from the sactipeptide and lanthipeptide families to create new-to-nature hybrid RiPPs. We also provide insight into design features that enable control over the hybrid biosynthesis to optimize enzyme compatibility and establish a general platform for engineering additional hybrid RiPPs.
Collapse
Affiliation(s)
- Brandon
J. Burkhart
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
| | - Nidhi Kakkar
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Graham A. Hudson
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
- (W.A.V.) Phone: 1-217-244-5360. Fax: 1-217-244 8533. E-mail:
| | - Douglas A. Mitchell
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
- Carl
R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States
- (D.A.M.) Phone: 1-217-333-1345. Fax: 1-217-333-0508. E-mail:
| |
Collapse
|
41
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
42
|
Gao SS, Garcia-Borràs M, Barber JS, Hai Y, Duan A, Garg NK, Houk KN, Tang Y. Enzyme-Catalyzed Intramolecular Enantioselective Hydroalkoxylation. J Am Chem Soc 2017; 139:3639-3642. [PMID: 28240554 DOI: 10.1021/jacs.7b01089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hydroalkoxylation is a powerful and efficient method of forming C-O bonds and cyclic ethers in synthetic chemistry. In studying the biosynthesis of the fungal natural product herqueinone, we identified an enzyme that can perform an intramolecular enantioselective hydroalkoxylation reaction. PhnH catalyzes the addition of a phenol to the terminal olefin of a reverse prenyl group to give a dihydrobenzofuran product. The enzyme accelerates the reaction by 3 × 105-fold compared to the uncatalyzed reaction. PhnH belongs to a superfamily of proteins with a domain of unknown function (DUF3237), of which no member has a previously verified function. The discovery of PhnH demonstrates that enzymes can be used to promote the enantioselective hydroalkoxylation reaction and form cyclic ethers.
Collapse
Affiliation(s)
- Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Marc Garcia-Borràs
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Joyann S Barber
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Yang Hai
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Abing Duan
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering and ⊥Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| |
Collapse
|