1
|
Meng ZK, Rao SM, Hu YK, Zhou X, Yang Q, Tan RX, Wang YS. Discovery of undescribed anthracycline-derived polyketides with cytotoxicity from endophytic Streptomyces chartreusis M7. PHYTOCHEMISTRY 2025; 230:114337. [PMID: 39549943 DOI: 10.1016/j.phytochem.2024.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Endophytic actinomycetes exhibit considerable potential for the production of biologically active metabolites due to their coevolution with plant hosts. In this study, an endophytic Streptomyces chartreusis M7 was isolated from Houttuynia cordata Thunb. Bioactivity-guided investigation of the metabolites produced by this strain led to the identification of thirteen anthracycline-derived polyketides, including five unreported anthraquinones designated streptoquinones A-E (1-5) and two undescribed angular polyketides named chartins A and B (6-7) along with six knowns. Their structures were elucidated through comprehensive spectroscopic analysis and ECD calculations. Notably, chartins A (6) and B (7) feature angular tetracyclic and pentacyclic skeletons, respectively, which have undergone several oxidative rearrangements. Moreover, streptoquinone A (1) exhibited moderate cytotoxicity against A549 cells, with an IC50 value of 4.8 μM.
Collapse
Affiliation(s)
- Zi Kang Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Si Min Rao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Kai Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xuan Zhou
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ren Xiang Tan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yi Shuang Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, 210023, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
2
|
Zhou JL, Nie QY, Hou XF, Zheng K, Hong R, Tang GL. Multienzyme Cascade Catalyzed Skeleton Rearrangement in a Caged Polyketide Biosynthesis. Org Lett 2025; 27:376-380. [PMID: 39741029 DOI: 10.1021/acs.orglett.4c04412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Rearrangement of the skeleton is crucial for improving the structural complexity and diversity of type II polyketide natural products. In this study, we investigated the rearrangement process from a planar aromatic tetracyclic intermediate to the caged lactones, which is managed by five oxidoreductases. We chemically synthesized the proposed linear tetracyclic substrate, validated the transformation process through in vivo and in vitro experiments, and elucidated the enzyme-catalyzed mechanism using isotope labeling. Significantly, a short-chain dehydrogenase TjhD5 was discovered to play a multifunctional role for multistep reactions.
Collapse
Affiliation(s)
- Jia-Liang Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
| | - Qiu-Yue Nie
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
| | - Kuan Zheng
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
| | - Ran Hong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of CAS, Hangzhou 310024, China
| |
Collapse
|
3
|
Zhao M, Zhang W, Yang C, Zhang L, Huang H, Zhu Y, Ratnasekera D, Zhang C. Discovery of Kebanmycins with Antibacterial and Cytotoxic Activities from the Mangrove-Derived Streptomyces sp. SCSIO 40068. JOURNAL OF NATURAL PRODUCTS 2024; 87:1591-1600. [PMID: 38862138 DOI: 10.1021/acs.jnatprod.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Mangrove derived actinomycetes are a rich reservoir of bioactive natural products and play important roles in pharmaceutical chemistry. In a screen of actinomycetes from mangrove rhizosphere sedimental environments, the isolated strain Streptomyces sp. SCSIO 40068 displayed strong antibacterial activity. Further fractionation of the extract yielded four new compounds kebanmycins A-D (1-4) and two known analogues FD-594 (5) and the aglycon (6). The structures of 1-6 were determined based on extensive spectroscopic data and single-crystal X-ray diffraction analysis. 1-3 featured a fused pyranonaphthaxanthene as an integral part of a 6/6/6/6/6/6 polycyclic motif, and showed bioactivity against a series of Gram-positive bacteria and cytotoxicity to several human tumor cells. In addition, the kebanmycins biosynthetic gene cluster (keb) was identified in Streptomyces sp. SCSIO 40068, and KebMT2 was biochemically characterized as a tailoring sugar-O-methyltransferase, leading to a proposed biosynthetic route to 1-6. This study paves the way to further investigate 1 as a potential lead compound.
Collapse
Affiliation(s)
- Mengran Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Disna Ratnasekera
- Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Kamburupitiya 81000, Sri Lanka
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wang R, Nji Wandi B, Schwartz N, Hecht J, Ponomareva L, Paige K, West A, Desanti K, Nguyen J, Niemi J, Thorson JS, Shaaban KA, Metsä-Ketelä M, Nybo SE. Diverse Combinatorial Biosynthesis Strategies for C-H Functionalization of Anthracyclinones. ACS Synth Biol 2024; 13:1523-1536. [PMID: 38662967 PMCID: PMC11101304 DOI: 10.1021/acssynbio.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Streptomyces spp. are "nature's antibiotic factories" that produce valuable bioactive metabolites, such as the cytotoxic anthracycline polyketides. While the anthracyclines have hundreds of natural and chemically synthesized analogues, much of the chemical diversity stems from enzymatic modifications to the saccharide chains and, to a lesser extent, from alterations to the core scaffold. Previous work has resulted in the generation of a BioBricks synthetic biology toolbox in Streptomyces coelicolor M1152ΔmatAB that could produce aklavinone, 9-epi-aklavinone, auramycinone, and nogalamycinone. In this work, we extended the platform to generate oxidatively modified analogues via two crucial strategies. (i) We swapped the ketoreductase and first-ring cyclase enzymes for the aromatase cyclase from the mithramycin biosynthetic pathway in our polyketide synthase (PKS) cassettes to generate 2-hydroxylated analogues. (ii) Next, we engineered several multioxygenase cassettes to catalyze 11-hydroxylation, 1-hydroxylation, 10-hydroxylation, 10-decarboxylation, and 4-hydroxyl regioisomerization. We also developed improved plasmid vectors and S. coelicolor M1152ΔmatAB expression hosts to produce anthracyclinones. This work sets the stage for the combinatorial biosynthesis of bespoke anthracyclines using recombinant Streptomyces spp. hosts.
Collapse
Affiliation(s)
- Rongbin Wang
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Benjamin Nji Wandi
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Nora Schwartz
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jacob Hecht
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Larissa Ponomareva
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Kendall Paige
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Alexis West
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Kathryn Desanti
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jennifer Nguyen
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Jarmo Niemi
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jon S. Thorson
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Khaled A. Shaaban
- Center
for Pharmaceutical Research and Innovation, Department of Pharmaceutical Sciences,
College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Mikko Metsä-Ketelä
- Department
of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - S. Eric Nybo
- Department
of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| |
Collapse
|
5
|
Park EN, Mackens-Kiani T, Berhane R, Esser H, Erdenebat C, Burroughs AM, Berninghausen O, Aravind L, Beckmann R, Green R, Buskirk AR. B. subtilis MutS2 splits stalled ribosomes into subunits without mRNA cleavage. EMBO J 2024; 43:484-506. [PMID: 38177497 PMCID: PMC10897456 DOI: 10.1038/s44318-023-00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/06/2024] Open
Abstract
Stalled ribosomes are rescued by pathways that recycle the ribosome and target the nascent polypeptide for degradation. In E. coli, these pathways are triggered by ribosome collisions through the recruitment of SmrB, a nuclease that cleaves the mRNA. In B. subtilis, the related protein MutS2 was recently implicated in ribosome rescue. Here we show that MutS2 is recruited to collisions by its SMR and KOW domains, and we reveal the interaction of these domains with collided ribosomes by cryo-EM. Using a combination of in vivo and in vitro approaches, we show that MutS2 uses its ABC ATPase activity to split ribosomes, targeting the nascent peptide for degradation through the ribosome quality control pathway. However, unlike SmrB, which cleaves mRNA in E. coli, we see no evidence that MutS2 mediates mRNA cleavage or promotes ribosome rescue by tmRNA. These findings clarify the biochemical and cellular roles of MutS2 in ribosome rescue in B. subtilis and raise questions about how these pathways function differently in diverse bacteria.
Collapse
Affiliation(s)
- Esther N Park
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timur Mackens-Kiani
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rebekah Berhane
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanna Esser
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Chimeg Erdenebat
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - A Maxwell Burroughs
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Otto Berninghausen
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - L Aravind
- Computational Biology Branch, Intramural Research Program, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich, Munich, Germany
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Igarashi Y. Development of a drug discovery approach from microbes with a special focus on isolation sources and taxonomy. J Antibiot (Tokyo) 2023:10.1038/s41429-023-00625-y. [PMID: 37188757 DOI: 10.1038/s41429-023-00625-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/17/2023]
Abstract
After the successful discoveries of numerous antibiotics from microorganisms, frequent reisolation of known compounds becomes an obstacle in further development of new drugs from natural products. Exploration of biological sources that can provide novel scaffolds is thus an urgent matter in drug lead screening. As an alternative source to the conventionally used soil microorganisms, we selected endophytic actinomycetes, marine actinomycetes, and actinomycetes in tropical areas for investigation and found an array of new bioactive compounds. Furthermore, based on the analysis of the distribution pattern of biosynthetic gene clusters in bacteria together with available genomic data, we speculated that biosynthetic gene clusters for secondary metabolites are specific to each genus. Based on this assumption, we investigated actinomycetal and marine bacterial genera from which no compounds have been reported, which led to the discovery of a variety of skeletally novel bioactive compounds. These findings suggest that consideration of environmental factor and taxonomic position is critically effective in the selection of potential strains producing structurally unique compounds.
Collapse
Affiliation(s)
- Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
7
|
Hashimoto M, Watari S, Taguchi T, Ishikawa K, Kumamoto T, Okamoto S, Ichinose K. Actinorhodin Biosynthesis Terminates with an Unprecedented Biaryl Coupling Reaction. Angew Chem Int Ed Engl 2023; 62:e202214400. [PMID: 36460615 PMCID: PMC10108166 DOI: 10.1002/anie.202214400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
A plethora of dimeric natural products exist with diverse chemical structures and biological activities. A major strategy for dimerization is aryl coupling catalyzed by cytochrome P450 or laccase. Actinorhodin (ACT) from Streptomyces coelicolor A3(2) has a dimeric pyranonaphthoquinone structure connected by a C-C bond. In this study, we identified an NmrA-family dimerizing enzyme, ActVA-ORF4, and a cofactor-independent oxidase, ActVA-ORF3, both involved in the last step of ACT biosynthesis. ActVA-ORF4 is a unique NAD(P)H-dependent enzyme that catalyzes the intermolecular C-C bond formation using 8-hydroxydihydrokalafungin (DHK-OH) as the sole substrate. On the other hand, ActVA-ORF3 was found to be a quinone-forming enzyme that produces the coupling substrate, DHK-OH and the final product, ACT. Consequently, the functional assignment of all essential enzymes in the biosynthesis of ACT, one of the best-known model natural products, has been completed.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.,Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Susumu Watari
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Takaaki Taguchi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.,National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kazuki Ishikawa
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.,Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| | - Takuya Kumamoto
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
| | - Susumu Okamoto
- National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan
| | - Koji Ichinose
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan.,Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, 1-1-20, Shinmachi, Nishitokyo-shi, Tokyo, 202-8585, Japan
| |
Collapse
|
8
|
Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 2022; 603:503-508. [PMID: 35264790 DOI: 10.1038/s41586-022-04416-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/07/2022] [Indexed: 01/17/2023]
Abstract
Ribosome rescue pathways recycle stalled ribosomes and target problematic mRNAs and aborted proteins for degradation1,2. In bacteria, it remains unclear how rescue pathways distinguish ribosomes stalled in the middle of a transcript from actively translating ribosomes3-6. Here, using a genetic screen in Escherichia coli, we discovered a new rescue factor that has endonuclease activity. SmrB cleaves mRNAs upstream of stalled ribosomes, allowing the ribosome rescue factor tmRNA (which acts on truncated mRNAs3) to rescue upstream ribosomes. SmrB is recruited to ribosomes and is activated by collisions. Cryo-electron microscopy structures of collided disomes from E. coli and Bacillus subtilis show distinct and conserved arrangements of individual ribosomes and the composite SmrB-binding site. These findings reveal the underlying mechanisms by which ribosome collisions trigger ribosome rescue in bacteria.
Collapse
|
9
|
Hulst MB, Grocholski T, Neefjes JJC, van Wezel GP, Metsä-Ketelä M. Anthracyclines: biosynthesis, engineering and clinical applications. Nat Prod Rep 2021; 39:814-841. [PMID: 34951423 DOI: 10.1039/d1np00059d] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: January 1995 to June 2021Anthracyclines are glycosylated microbial natural products that harbour potent antiproliferative activities. Doxorubicin has been widely used as an anticancer agent in the clinic for several decades, but its use is restricted due to severe side-effects such as cardiotoxicity. Recent studies into the mode-of-action of anthracyclines have revealed that effective cardiotoxicity-free anthracyclines can be generated by focusing on histone eviction activity, instead of canonical topoisomerase II poisoning leading to double strand breaks in DNA. These developments have coincided with an increased understanding of the biosynthesis of anthracyclines, which has allowed generation of novel compound libraries by metabolic engineering and combinatorial biosynthesis. Coupled to the continued discovery of new congeners from rare Actinobacteria, a better understanding of the biology of Streptomyces and improved production methodologies, the stage is set for the development of novel anthracyclines that can finally surpass doxorubicin at the forefront of cancer chemotherapy.
Collapse
Affiliation(s)
- Mandy B Hulst
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Thadee Grocholski
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| | - Jacques J C Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Mikko Metsä-Ketelä
- Department of Life Technologies, University of Turku, FIN-20014 Turku, Finland
| |
Collapse
|
10
|
Pancrazzi F, Maestri G, Maggi R, Viscardi R. Oxidative Dearomatization of Phenols and Polycyclic Aromatics with Hydrogen Peroxide Triggered by Heterogeneous Sulfonic Acids. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Francesco Pancrazzi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability Università di Parma Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Rosanna Viscardi
- Casaccia Research Center ENEA Santa Maria di Galera 00123 Roma Italy
| |
Collapse
|
11
|
Nie QY, Ji ZY, Hu Y, Tang GL. Characterization of Highly Reductive Modification of Tetracycline D-Ring Reveals Enzymatic Conversion of Enone to Alkane. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yu Hu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, People’s Republic of China
| |
Collapse
|
12
|
Jiang X, Fang Z, Zhang Q, Liu W, Zhang L, Zhang W, Yang C, Zhang H, Zhu Y, Zhang C. Discovery of a new asymmetric dimer nenestatin B and implications of a dimerizing enzyme in a deep sea actinomycete. Org Biomol Chem 2021; 19:4243-4247. [PMID: 33885700 DOI: 10.1039/d1ob00310k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Benzofluorene-containing atypical angucyclines are an important family of natural products with a broad spectrum of antibacterial and cytotoxic properties. Interestingly, symmetric and asymmetric dimers showed better activity than the monomer in this class of compounds. Herein, we reported the isolation of a new asymmetric dimer nenestatin B (2) from the deep sea actinomycete Micromonospora echinospora SCSIO 04089 and a monomer nenestatin C (3) from an NmrA family regulatory protein coding gene nes18 inactivated mutant. The structural elucidation of 3 indicated the essential role of Nes18 in the biosynthetic pathway of 2, specifically in dimerization via C-C bond formation.
Collapse
Affiliation(s)
- Xiaodong Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hu Y, Zhang Z, Yin Y, Tang GL. Directed Biosynthesis of Iso-aclacinomycins with Improved Anticancer Activity. Org Lett 2020; 22:150-154. [PMID: 31829601 DOI: 10.1021/acs.orglett.9b04069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A four-enzyme catalyzed hydroxy regioisomerization of anthracycline was integrated into the biosynthetic pathway of aclacinomycin A (ALM-A), to generate a series of iso-ALMs via directed combinatorial biosynthesis combined with precursor-directed mutasynthesis. Most of the newly acquired iso-ALMs exhibit obviously (1-5-fold) improved antitumor activity. Therefore, we not only developed iso-ALMs with potential as clinical drugs but also demonstrated the utility of this tailoring tool for modification of anthracycline antibiotics in drug discovery and development.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Zhuan Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Yue Yin
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry , University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032 , China
| |
Collapse
|
14
|
Ji Z, Nie Q, Yin Y, Zhang M, Pan H, Hou X, Tang G. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Yu Ji
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiu‐Yue Nie
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hai‐Xue Pan
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xian‐Feng Hou
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Gong‐Li Tang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
15
|
Gui C, Chen J, Xie Q, Mo X, Zhang S, Zhang H, Ma J, Li Q, Gu YC, Ju J. CytA, a reductase in the cytorhodin biosynthesis pathway, inactivates anthracycline drugs in Streptomyces. Commun Biol 2019; 2:454. [PMID: 31840099 PMCID: PMC6897945 DOI: 10.1038/s42003-019-0699-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/08/2019] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-producing microorganism can develop strategies to deal with self-toxicity. Cytorhodins X and Y, cosmomycins A and B, and iremycin, are produced as final products from a marine-derived Streptomyces sp. SCSIO 1666. These C-7 reduced metabolites show reduced antimicrobial and comparable cytotoxic activities relative to their C-7 glycosylated counterparts. However, the biosynthetic mechanisms and relevant enzymes that drive C-7 reduction in cytorhodin biosynthesis have not yet been characterized. Here we report the discovery and characterization of a reductase, CytA, that mediates C-7 reduction of this anthracycline scaffold; CytA endows the producer Streptomyces sp. SCSIO 1666 with a means of protecting itself from the effects of its anthracycline products. Additionally, we identified cosmomycins C and D as two intermediates involved in cytorhodin biosynthesis and we also broadened the substrate specificity of CytA to clinically used anthracycline drugs.
Collapse
Affiliation(s)
- Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qing Xie
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Xuhua Mo
- Shangdong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109 China
| | - Shanwen Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hua Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Laboratory Medicine, Guangdong Medical University, Dongguan, 523808 China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
16
|
Fewer DP, Metsä‐Ketelä M. A pharmaceutical model for the molecular evolution of microbial natural products. FEBS J 2019; 287:1429-1449. [DOI: 10.1111/febs.15129] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022]
Affiliation(s)
- David P. Fewer
- Department of Microbiology University of Helsinki Finland
| | | |
Collapse
|
17
|
Ji ZY, Nie QY, Yin Y, Zhang M, Pan HX, Hou XF, Tang GL. Activation and Characterization of Cryptic Gene Cluster: Two Series of Aromatic Polyketides Biosynthesized by Divergent Pathways. Angew Chem Int Ed Engl 2019; 58:18046-18054. [PMID: 31553109 DOI: 10.1002/anie.201910882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/15/2022]
Abstract
One biosynthetic gene cluster (BGC) usually governs the biosynthesis of a series of compounds exhibiting either the same or similar molecular scaffolds. Reported here is a multiplex activation strategy to awaken a cryptic BGC associated with tetracycline polyketides, resulting in the discovery of compounds having different core structures. By constitutively expressing a positive regulator gene in tandem mode, a single BGC directed the biosynthesis of eight aromatic polyketides with two types of frameworks, two pentacyclic isomers and six glycosylated tetracyclines. The proposed biosynthetic pathway, based on systematic gene inactivation and identification of intermediates, employs two sets of tailoring enzymes with a branching point from the same intermediate. These findings not only provide new insights into the role of tailoring enzymes in the diversification of polyketides, but also highlight a reliable strategy for genome mining of natural products.
Collapse
Affiliation(s)
- Zhen-Yu Ji
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiu-Yue Nie
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yue Yin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
18
|
Vu THN, Nguyen QH, Dinh TML, Quach NT, Khieu TN, Hoang H, Chu-Ky S, Vu TT, Chu HH, Lee J, Kang H, Li WJ, Phi QT. Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J GEN APPL MICROBIOL 2019; 66:24-31. [PMID: 31378748 DOI: 10.2323/jgam.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thi Hanh Nguyen Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Quang Huy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST).,University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)
| | - Thi My Linh Dinh
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Ngoc Tung Quach
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Thi Nhan Khieu
- Department of Science, Technology and Environment, Ministry of Education and Training
| | - Ha Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Son Chu-Ky
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Thu Trang Vu
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| | - Jusung Lee
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80
| | - Heonjoong Kang
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80.,Research Institute of Oceanography, Seoul National University NS-80
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University
| | - Quyet-Tien Phi
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| |
Collapse
|
19
|
Rodríguez-Hernández D, Melo WGP, Menegatti C, Lourenzon VB, do Nascimento FS, Pupo MT. Actinobacteria associated with stingless bees biosynthesize bioactive polyketides against bacterial pathogens. NEW J CHEM 2019. [DOI: 10.1039/c9nj01619h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Strong activity against the bacteria Paenibacillus larvae ATCC9545, the causative agent of the American Foulbrood disease of honey bees.
Collapse
Affiliation(s)
- Diego Rodríguez-Hernández
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Weilan G. P. Melo
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Carla Menegatti
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Vitor B. Lourenzon
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| | - Fábio S. do Nascimento
- Departamento de Biologia
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- 14040-901 Ribeirão Preto
| | - Mônica T. Pupo
- Departamento de Ciências Farmacêuticas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto
- Universidade de São Paulo
- 14040-903 Ribeirão Preto
- Brazil
| |
Collapse
|
20
|
Matsuda Y, Gotfredsen CH, Larsen TO. Genetic Characterization of Neosartorin Biosynthesis Provides Insight into Heterodimeric Natural Product Generation. Org Lett 2018; 20:7197-7200. [DOI: 10.1021/acs.orglett.8b03123] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Matsuda
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts
Plads, 2800 Kongens Lyngby, Denmark
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Charlotte H. Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800 Kongens Lyngby, Denmark
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts
Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Tazawa A, Ye Y, Ozaki T, Liu C, Ogasawara Y, Dairi T, Higuchi Y, Kato N, Gomi K, Minami A, Oikawa H. Total Biosynthesis of Brassicicenes: Identification of a Key Enzyme for Skeletal Diversification. Org Lett 2018; 20:6178-6182. [PMID: 30230338 DOI: 10.1021/acs.orglett.8b02654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The biosynthetic pathway of brassicicenes, derived from the phytopathogen Pseudocercospora fijiensis, was fully reconstituted. Heterologous expression of the eight genes highly expressed in infected leaf tissues generated a new brassicicene derivative as a final product. Together with the characterization of P450 from Alternaria brassicicola, a late stage of the biosynthetic pathway, which generates remarkable structural diversity, has been proposed. Notably, a unique P450 that converts 3 to the structurally distinct 4 and 6 was identified.
Collapse
Affiliation(s)
- Akihiro Tazawa
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Ying Ye
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Tohru Dairi
- Graduate School of Engineering , Hokkaido University , Sapporo 060-8628 , Japan
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Osaka 567-0047 , Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research , Osaka University , Ibaraki , Osaka 567-0047 , Japan
| | - Katsuya Gomi
- Graduate School of Agricultural Science , Tohoku University , Sendai 981-8555 , Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science , Hokkaido University , Sapporo 060-0810 , Japan
| |
Collapse
|
22
|
Miniaturized voltammetric cell for cathodic voltammetry making use of an agar membrane. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|