1
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025; 7:2818-2886. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
2
|
Tanigaki T, Akashi T, Yoshida T, Harada K, Ishizuka K, Ichimura M, Mitsuishi K, Tomioka Y, Yu X, Shindo D, Tokura Y, Murakami Y, Shinada H. Electron holography observation of individual ferrimagnetic lattice planes. Nature 2024; 631:521-525. [PMID: 38961304 DOI: 10.1038/s41586-024-07673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Atomic-scale observations of a specific local area would be considerably beneficial when exploring new fundamental materials and devices. The development of hardware-type aberration correction1,2 in electron microscopy has enabled local structural observations with atomic resolution3-5 as well as chemical and vibration analysis6-8. In magnetic imaging, however, atomic-level spin configurations are analysed by electron energy-loss spectroscopy by placing samples in strong magnetic fields9-11, which destroy the nature of the magnetic ordering in the samples. Although magnetic-field-free observations can visualize the intrinsic magnetic fields of an antiferromagnet by unit-cell averaging12, directly observing the magnetic field of an individual atomic layer of a non-uniform structure is challenging. Here we report that the magnetic fields of an individual lattice plane inside materials with a non-uniform structure can be observed under magnetic-field-free conditions by electron holography with a hardware-type aberration corrector assisted by post-digital aberration correction. The magnetic phases of the net magnetic moments of (111) lattice planes formed by opposite spin orderings between Fe3+ and Mo5+ in a ferrimagnetic double-perovskite oxide (Ba2FeMoO6) were successfully observed. This result opens the door to direct observations of the magnetic lattice in local areas, such as interfaces and grain boundaries, in many materials and devices.
Collapse
Affiliation(s)
| | - Tetsuya Akashi
- Research & Development Group, Hitachi, Ltd., Hatoyama, Japan
| | - Takaho Yoshida
- Research & Development Group, Hitachi, Ltd., Hatoyama, Japan
| | - Ken Harada
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | | | | | | | - Yasuhide Tomioka
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Xiuzhen Yu
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
| | - Daisuke Shindo
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Yoshinori Tokura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan
- Department of Applied Physics and Tokyo College, The University of Tokyo, Tokyo, Japan
| | - Yasukazu Murakami
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
3
|
Butcher TA, Phillips NW, Chiu CC, Wei CC, Ho SZ, Chen YC, Fröjdh E, Baruffaldi F, Carulla M, Zhang J, Bergamaschi A, Vaz CAF, Kleibert A, Finizio S, Yang JC, Huang SW, Raabe J. Ptychographic Nanoscale Imaging of the Magnetoelectric Coupling in Freestanding BiFeO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311157. [PMID: 38402421 DOI: 10.1002/adma.202311157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/23/2023] [Indexed: 02/26/2024]
Abstract
Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO3 (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L3 edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71° between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays.
Collapse
Affiliation(s)
- Tim A Butcher
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | - Chun-Chien Chiu
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chia-Chun Wei
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Sheng-Zhu Ho
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Chun Chen
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Erik Fröjdh
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | - Maria Carulla
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Jiaguo Zhang
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | | | | | | | | | - Jan-Chi Yang
- Department of Physics, National Cheng Kung University, Tainan, 70101, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
| | | | - Jörg Raabe
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| |
Collapse
|
4
|
Winkler R, Ciria M, Ahmad M, Plank H, Marcuello C. A Review of the Current State of Magnetic Force Microscopy to Unravel the Magnetic Properties of Nanomaterials Applied in Biological Systems and Future Directions for Quantum Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2585. [PMID: 37764614 PMCID: PMC10536909 DOI: 10.3390/nano13182585] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Magnetism plays a pivotal role in many biological systems. However, the intensity of the magnetic forces exerted between magnetic bodies is usually low, which demands the development of ultra-sensitivity tools for proper sensing. In this framework, magnetic force microscopy (MFM) offers excellent lateral resolution and the possibility of conducting single-molecule studies like other single-probe microscopy (SPM) techniques. This comprehensive review attempts to describe the paramount importance of magnetic forces for biological applications by highlighting MFM's main advantages but also intrinsic limitations. While the working principles are described in depth, the article also focuses on novel micro- and nanofabrication procedures for MFM tips, which enhance the magnetic response signal of tested biomaterials compared to commercial nanoprobes. This work also depicts some relevant examples where MFM can quantitatively assess the magnetic performance of nanomaterials involved in biological systems, including magnetotactic bacteria, cryptochrome flavoproteins, and magnetic nanoparticles that can interact with animal tissues. Additionally, the most promising perspectives in this field are highlighted to make the reader aware of upcoming challenges when aiming toward quantum technologies.
Collapse
Affiliation(s)
- Robert Winkler
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
| | - Miguel Ciria
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Margaret Ahmad
- Photobiology Research Group, IBPS, UMR8256 CNRS, Sorbonne Université, 75005 Paris, France;
| | - Harald Plank
- Christian Doppler Laboratory—DEFINE, Graz University of Technology, 8010 Graz, Austria; (R.W.); (H.P.)
- Graz Centre for Electron Microscopy, 8010 Graz, Austria
- Institute of Electron Microscopy, Graz University of Technology, 8010 Graz, Austria
| | - Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
5
|
Vijayakumar J, Yuan H, Mille N, Stanescu S, Swaraj S, Favre-Nicolin V, Najafi E, Hitchcock AP, Belkhou R. Soft X-ray spectro-ptychography of boron nitride nanobamboos, carbon nanotubes and permalloy nanorods. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:746-757. [PMID: 37145139 PMCID: PMC10325009 DOI: 10.1107/s1600577523003399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/13/2023] [Indexed: 05/06/2023]
Abstract
Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes. However, carrying out ptychography at the lower range of soft X-ray energies (e.g. below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. Here, results of soft X-ray spectro-ptychography at energies as low as 180 eV are presented, and its capabilities are illustrated with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s) and boron nitride bamboo nanostructures (B 1s, N 1s). The optimization of low-energy X-ray spectro-ptychography is described and important challenges associated with measurement approaches, reconstruction algorithms and their effects on the reconstructed images are discussed. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.
Collapse
Affiliation(s)
- Jaianth Vijayakumar
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Hao Yuan
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada L8S 4M1
| | - Nicolas Mille
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Stefan Stanescu
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Sufal Swaraj
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Vincent Favre-Nicolin
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
- Université Grenoble Alpes, Grenoble, France
| | | | - Adam P. Hitchcock
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Rachid Belkhou
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48, Saint-Aubin, 91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
6
|
Structure of an amorphous calcium carbonate phase involved in the formation of Pinctada margaritifera shells. Proc Natl Acad Sci U S A 2022; 119:e2212616119. [PMID: 36322756 PMCID: PMC9659418 DOI: 10.1073/pnas.2212616119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Some mollusc shells are formed from an amorphous calcium carbonate (ACC) compound, which further transforms into a crystalline material. The transformation mechanism is not fully understood but is however crucial to develop bioinspired synthetic biomineralization strategies or accurate marine biomineral proxies for geoscience. The difficulty arises from the simultaneous presence of crystalline and amorphous compounds in the shell, which complicates the selective experimental characterization of the amorphous fraction. Here, we use nanobeam X-ray total scattering together with an approach to separate crystalline and amorphous scattering contributions to obtain the spatially resolved atomic pair distribution function (PDF). We resolve three distinct amorphous calcium carbonate compounds, present in the shell of Pinctada margaritifera and attributed to: interprismatic periostracum, young mineralizing units, and mature mineralizing units. From this, we extract accurate bond parameters by reverse Monte Carlo (RMC) modeling of the PDF. This shows that the three amorphous compounds differ mostly in their Ca-O nearest-neighbor atom pair distance. Further characterization with conventional spectroscopic techniques unveils the presence of Mg in the shell and shows Mg-calcite in the final, crystallized shell. In line with recent literature, we propose that the amorphous-to-crystal transition is mediated by the presence of Mg. The transition occurs through the decomposition of the initial Mg-rich precursor into a second Mg-poor ACC compound before forming a crystal.
Collapse
|
7
|
Surface chemical heterogeneous distribution in over-lithiated Li 1+xCoO 2 electrodes. Nat Commun 2022; 13:6464. [PMID: 36309496 PMCID: PMC9617898 DOI: 10.1038/s41467-022-34161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
In commercial Li-ion batteries, the internal short circuits or over-lithiation often cause structural transformation in electrodes and may lead to safety risks. Herein, we investigate the over-discharged mechanism of LiCoO2/graphite pouch cells, especially spatially resolving the morphological, surface phase, and local electronic structure of LiCoO2 electrode. With synchrotron-based X-ray techniques and Raman mapping, together with spectroscopy simulations, we demonstrate that over-lithiation reaction is a surface effect, accompanied by Co reduction and surface structure transformation to Li2CoO2/Co3O4/CoO/Li2O-like phases. This surface chemical distribution variation is relevant to the depth and exposed crystalline planes of LiCoO2 particles, and the distribution of binder/conductive additives. Theoretical calculations confirm that Li2CoO2-phase has lower electronic/ionic conductivity than LiCoO2-phase, further revealing the critical effect of distribution of conductive additives on the surface chemical heterogeneity evolution. Our findings on such surface phenomena are non-trivial and highlight the capability of synchrotron-based X-ray techniques for studying the spatial chemical phase heterogeneity. Over-lithiation often causes structural transformation in electrodes and may lead to safety issues in Li-ion batteries. Here, authors investigate the over-discharged mechanism of LiCoO2/graphite pouch cells, and spatially resolve the morphological, surface phase, and local electronic structure of LiCoO2 electrode.
Collapse
|
8
|
Kimura T, Takeo Y, Sakurai K, Furuya N, Egawa S, Yamaguchi G, Matsuzawa Y, Kume T, Mimura H, Shimura M, Ohashi H, Matsuda I, Harada Y. Soft X-ray ptychography system using a Wolter mirror for achromatic illumination optics. OPTICS EXPRESS 2022; 30:26220-26228. [PMID: 36236817 DOI: 10.1364/oe.462190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 06/16/2023]
Abstract
A soft X-ray ptychography system using a Wolter mirror for the illumination optics has been developed. By taking advantage of the achromaticity of the optics, the system is capable of seamlessly imaging at half-period resolution of 50 nm with a broad photon-energy range from 250 eV to 2 keV while maintaining the focal position. Imaging a mammalian cell at various wavelengths was demonstrated, and high-resolution visualization of organelle was achieved. Stereo imaging was also performed with a long working distance of 20 mm. In combination with in-situ/operando and tomographic measurements, this system will be a powerful tool for observing biological and material targets with complex features.
Collapse
|
9
|
Abstract
X-ray spectroptychography is an emerging method for the chemical microanalysis of advanced nanomaterials such as catalysts and batteries. This method builds upon established synchrotron X-ray microscopy and spectromicroscopy techniques with added spatial resolution from ptychography, an algorithmic imaging technique. This minireview will introduce the technique of X-ray spectroptychography, where ptychography is performed with variable photon energy, and discuss recent results and prospects for this method.
Collapse
|
10
|
Xia X, Wang J, Hu Y, Liu J, Darma AI, Jin L, Han H, He C, Yang J. Molecular Insights into Roles of Dissolved Organic Matter in Cr(III) Immobilization by Coprecipitation with Fe(III) Probed by STXM-Ptychography and XANES Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2432-2442. [PMID: 35109654 DOI: 10.1021/acs.est.1c07528] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The coprecipitation of heavy metals (HMs) with Fe(III) in the presence of dissolved organic matter (DOM) is a crucial process to control the mobility of HMs in the environment, but its underlying immobilization mechanisms are unclear. In this study, Cr(III) immobilization by coprecipitation with Fe(III) in the presence of straw-derived DOMs under different Fe/C molar ratios, pHs, and ionic strengths was investigated using scanning transmission X-ray microscopy (STXM) and ptychography and X-ray absorption near-edge structure (XANES) spectroscopy. The results showed that Cr(III) retention was enhanced in the presence of DOM, a maximum of which was achieved at an Fe/C molar ratio of 0.5. The increase of pH and ionic strength could also promote Cr(III) immobilization. Cr K-edge XANES results indicated that Fe (oxy)hydroxide fractions, instead of organics, provided the predominant binding sites for Cr(III), which was directly confirmed by high spatial resolution STXM-ptychography analysis at the sub-micron- and nanoscales. Moreover, organics could indirectly facilitate Cr immobilization by improving the aggregation and deposition of coprecipitate particles through DOM bridging or electrostatic interactions. Additionally, C K-edge XANES analysis further indicated that the carboxylic groups of DOM were complexed with Fe (oxy)hydroxides, which probably contributed to DOM bridging. This study provides a new insight into Cr(III) immobilization mechanisms in its coprecipitation with Fe(III) and DOM, which could have important implications on the management of Cr(III)-enriched soils, particularly with crop straw returning.
Collapse
Affiliation(s)
- Xing Xia
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Yongfeng Hu
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Aminu Inuwa Darma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lin Jin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianjun Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Chevrier DM, Cerdá-Doñate E, Park Y, Cacho-Nerin F, Gomez‐Gonzalez M, Uebe R, Faivre D. Synchrotron‐Based Nano‐X‐Ray Absorption Near‐Edge Structure Revealing Intracellular Heterogeneity of Iron Species in Magnetotactic Bacteria. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Daniel M. Chevrier
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Elisa Cerdá-Doñate
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Yeseul Park
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
| | | | | | - René Uebe
- Department of Microbiology University of Bayreuth 95440 Bayreuth Germany
| | - Damien Faivre
- CNRS CEA BIAM Aix-Marseille Université 13108 Saint-Paul-lez-Durance France
- Department of Biomaterials Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| |
Collapse
|
12
|
A Novel Magnetotactic Alphaproteobacterium Producing Intracellular Magnetite and Calcium-Bearing Minerals. Appl Environ Microbiol 2021; 87:e0155621. [PMID: 34756060 DOI: 10.1128/aem.01556-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that form intracellular magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals with tailored sizes, often in chain configurations. Such magnetic particles are each surrounded by a lipid bilayer membrane, called a magnetosome, and provide a model system for studying the formation and function of specialized internal structures in prokaryotes. Using fluorescence-coupled scanning electron microscopy, we identified a novel magnetotactic spirillum, XQGS-1, from freshwater Xingqinggong Lake, Xi'an City, Shaanxi Province, China. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain XQGS-1 represents a novel genus of the Alphaproteobacteria class in the Proteobacteria phylum. Transmission electron microscopy analyses reveal that strain XQGS-1 forms on average 17 ± 3 magnetite magnetosome particles with an ideal truncated octahedral morphology, with an average length and width of 88.3 ± 11.7 nm and 83.3 ± 11.0 nm, respectively. They are tightly organized into a single chain along the cell long axis close to the concave side of the cell. Intrachain magnetic interactions likely result in these large equidimensional magnetite crystals behaving as magnetically stable single-domain particles that enable bacterial magnetotaxis. Combined structural and chemical analyses demonstrate that XQGS-1 cells also biomineralize intracellular amorphous calcium phosphate (2 to 3 granules per cell; 90.5- ± 19.3-nm average size) and weakly crystalline calcium carbonate (2 to 3 granules per cell; 100.4- ± 21.4-nm average size) in addition to magnetite. Our results expand the taxonomic diversity of MTB and provide evidence for intracellular calcium phosphate biomineralization in MTB. IMPORTANCE Biomineralization is a widespread process in eukaryotes that form shells, teeth, or bones. It also occurs commonly in prokaryotes, resulting in more than 60 known minerals formed by different bacteria under wide-ranging conditions. Among them, magnetotactic bacteria (MTB) are remarkable because they might represent the earliest organisms that biomineralize intracellular magnetic iron minerals (i.e., magnetite [Fe3O4] or greigite [Fe3S4]). Here, we report a novel magnetotactic spirillum (XQGS-1) that is phylogenetically affiliated with the Alphaproteobacteria class. In addition to magnetite crystals, XQGS-1 cells form intracellular submicrometer calcium carbonate and calcium phosphate granules. This finding supports the view that MTB are also an important microbial group for intracellular calcium carbonate and calcium phosphate biomineralization.
Collapse
|
13
|
Johnson AS, Conesa JV, Vidas L, Perez-Salinas D, Günther CM, Pfau B, Hallman KA, Haglund RF, Eisebitt S, Wall S. Quantitative hyperspectral coherent diffractive imaging spectroscopy of a solid-state phase transition in vanadium dioxide. SCIENCE ADVANCES 2021; 7:eabf1386. [PMID: 34380611 PMCID: PMC8357230 DOI: 10.1126/sciadv.abf1386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Solid-state systems can host a variety of thermodynamic phases that can be controlled with magnetic fields, strain, or laser excitation. Many phases that are believed to exhibit exotic properties only exist on the nanoscale, coexisting with other phases that make them challenging to study, as measurements require both nanometer spatial resolution and spectroscopic information, which are not easily accessible with traditional x-ray spectromicroscopy techniques. Here, we use coherent diffractive imaging spectroscopy (CDIS) to acquire quantitative hyperspectral images of the prototypical quantum material vanadium oxide across the vanadium L 2,3 and oxygen K x-ray absorption edges with nanometer-scale resolution. We extract the full complex refractive indices of the monoclinic insulating and rutile conducting phases of VO2 from a single sample and find no evidence for correlation-driven phase transitions. CDIS will enable quantitative full-field x-ray spectromicroscopy for studying phase separation in time-resolved experiments and other extreme sample environments where other methods cannot operate.
Collapse
Affiliation(s)
- Allan S Johnson
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Jordi Valls Conesa
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciana Vidas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Perez-Salinas
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Christian M Günther
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | | | - Kent A Hallman
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Richard F Haglund
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235-1807, USA
| | - Stefan Eisebitt
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Max-Born-Institut, 12489 Berlin, Germany
| | - Simon Wall
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Mirabello G, GoodSmith M, Bomans PHH, Stegbauer L, Joester D, de With G. Iron phosphate mediated magnetite synthesis: a bioinspired approach. Chem Sci 2021; 12:9458-9465. [PMID: 34349920 PMCID: PMC8278901 DOI: 10.1039/d0sc07079c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/10/2021] [Indexed: 11/29/2022] Open
Abstract
The biomineralization of intracellular magnetite in magnetotactic bacteria (MTB) is an area of active investigation. Previous work has provided evidence that magnetite biomineralization begins with the formation of an amorphous phosphate-rich ferric hydroxide precursor phase followed by the eventual formation of magnetite within specialized vesicles (magnetosomes) through redox chemical reactions. Although important progress has been made in elucidating the different steps and possible precursor phases involved in the biomineralization process, many questions still remain. Here, we present a novel in vitro method to form magnetite directly from a mixed valence iron phosphate precursor, without the involvement of other known iron hydroxide precursors such as ferrihydrite. Our results corroborate the idea that phosphate containing phases likely play an iron storage role during magnetite biomineralization. Further, our results help elucidate the influence of phosphate ions on iron chemistry in groundwater and wastewater treatment. Magnetite was synthesized from a mixed valence iron phosphate precursor through a novel mechanism inspired by biomineralization in magnetotactic bacteria.![]()
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Matthew GoodSmith
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Paul H H Bomans
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Linus Stegbauer
- Department of Materials Science and Engineering, Northwestern University Evanston IL USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University Evanston IL USA
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
15
|
Borges DS, Herrmann HJ, Carmona HA, Andrade JS, Araújo AD. Morphological Transition between Patterns Formed by Threads of Magnetic Beads. PHYSICAL REVIEW LETTERS 2021; 126:118001. [PMID: 33798379 DOI: 10.1103/physrevlett.126.118001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Magnetic beads attract each other, forming chains. We push such chains into an inclined Hele-Shaw cell and discover that they spontaneously form self-similar patterns. Depending on the angle of inclination of the cell, two completely different situations emerge; namely, above the static friction angle the patterns resemble the stacking of a rope and below they look similar to a fortress from above. Moreover, locally the first pattern forms a square lattice, while the second pattern exhibits triangular symmetry. For both patterns, the size distributions of enclosed areas follow power laws. We characterize the morphological transition between the two patterns experimentally and numerically and explain the change in polarization as a competition between friction-induced buckling and gravity.
Collapse
Affiliation(s)
- Danilo S Borges
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - Hans J Herrmann
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
- PMMH, ESPCI, CNRS UMR 7636, 7 quai St. Bernard, 75005 Paris, France
| | - Humberto A Carmona
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - José S Andrade
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| | - Ascânio D Araújo
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil
| |
Collapse
|
16
|
Sun T, Sun G, Yu F, Mao Y, Tai R, Zhang X, Shao G, Wang Z, Wang J, Zhou J. Soft X-ray Ptychography Chemical Imaging of Degradation in a Composite Surface-Reconstructed Li-Rich Cathode. ACS NANO 2021; 15:1475-1485. [PMID: 33356135 DOI: 10.1021/acsnano.0c08891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capability in spatially resolving the interactions between components in lithium (Li)-ion battery cathodes, especially correlating chemistry and electronic structure, is challenging but critical for a better understanding of complex degradation mechanisms for rational developments. X-ray spectro-ptychography and conventional synchrotron-based scanning transmission X-ray microscopy image stacks are the most powerful probes for studying the distribution and chemical state of cations in degraded Li-rich cathodes. Herein, we propose a chemical approach with a spatial resolution of around 5.6 nm to imaging degradation heterogeneities and interplay among components in degraded Li-rich cathodes. Through the chemical imaging reconstruction of the degraded Li-rich cathodes, fluorine (F) ions incorporated into the lattice during charging/discharging processes are proved and strongly correlate with the manganese (Mn) dissolution and oxygen loss within the secondary particles and impact the electronic structure. Otherwise, the electrode-electrolyte interphase component, scattered LiF particles (100-500 nm) along with the MnF2 layer, is also visualized between the primary particles inside the secondary particles of the degraded cathodes. The results provide direct visual evidence for the Li-rich cathode degradation mechanisms and demonstrate that the low-energy ptychography technique offers a superior approach for high-resolution battery material characterization.
Collapse
Affiliation(s)
- Tianxiao Sun
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Highway, Jiading District, Shanghai 201800, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Gang Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin 150001, China
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Fuda Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin 150001, China
| | - Yongzhi Mao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin 150001, China
| | - Renzhong Tai
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Highway, Jiading District, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xiangzhi Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 2019 Jialuo Highway, Jiading District, Shanghai 201800, China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Guangjie Shao
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhenbo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Lab of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West-Da Zhi Street, Harbin 150001, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Jigang Zhou
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
17
|
Pattammattel A, Tappero R, Ge M, Chu YS, Huang X, Gao Y, Yan H. High-sensitivity nanoscale chemical imaging with hard x-ray nano-XANES. SCIENCE ADVANCES 2020; 6:eabb3615. [PMID: 32917679 PMCID: PMC11206466 DOI: 10.1126/sciadv.abb3615] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
Resolving chemical species at the nanoscale is of paramount importance to many scientific and technological developments across a broad spectrum of disciplines. Hard x-rays with excellent penetration power and high chemical sensitivity are suitable for speciation of heterogeneous (thick) materials. Here, we report nanoscale chemical speciation by combining scanning nanoprobe and fluorescence-yield x-ray absorption near-edge structure (nano-XANES). First, the resolving power of nano-XANES was demonstrated by mapping Fe(0) and Fe(III) states of a reference sample composed of stainless steel and hematite nanoparticles with 50-nm scanning steps. Nano-XANES was then used to study the trace secondary phases in lithium iron phosphate (LFP) particles. We observed individual Fe-phosphide nanoparticles in pristine LFP, whereas partially (de)lithiated particles showed Fe-phosphide nanonetworks. These findings shed light on the contradictory reports on Fe-phosphide morphology in the literature. Nano-XANES bridges the capability gap of spectromicroscopy methods and provides exciting research opportunities across multiple disciplines.
Collapse
Affiliation(s)
- A Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - R Tappero
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - M Ge
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Y S Chu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - X Huang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Y Gao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - H Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
18
|
Kuciakowski J, Kmita A, Lachowicz D, Wytrwal-Sarna M, Pitala K, Lafuerza S, Koziej D, Juhin A, Sikora M. Selective magnetometry of superparamagnetic iron oxide nanoparticles in liquids. NANOSCALE 2020; 12:16420-16426. [PMID: 32744559 DOI: 10.1039/d0nr02866e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We show that the properties of superparamagnetic iron oxide nanoparticles suspended in liquids can be effectively studied using Magnetic Circular Dichroism in Resonant Inelastic X-ray Scattering. Analysis of the spectral shape and magnetic contrast produced by this experiment enables an assessment of the site distribution and magnetic state of metal ions in the spinel phase. The selective magnetization profile of particles as derived from the field dependence of dichroism empowers an estimation of particle size distribution. Furthermore, the new proposed methodology discriminates sizes that are below the detection limits of X-ray and light scattering probes and that are difficult to spot in TEM.
Collapse
Affiliation(s)
- Juliusz Kuciakowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland. and AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Angelika Kmita
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Dorota Lachowicz
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Magdalena Wytrwal-Sarna
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Krzysztof Pitala
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland. and AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Sara Lafuerza
- European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9, France
| | - Dorota Koziej
- Institute of Nanostructure- and Solid State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France
| | - Marcin Sikora
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
19
|
Stewart TJ. Across the spectrum: integrating multidimensional metal analytics for in situ metallomic imaging. Metallomics 2020; 11:29-49. [PMID: 30499574 PMCID: PMC6350628 DOI: 10.1039/c8mt00235e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To know how much of a metal species is in a particular location within a biological context at any given time is essential for understanding the intricate roles of metals in biology and is the fundamental question upon which the field of metallomics was born. Simply put, seeing is powerful. With the combination of spectroscopy and microscopy, we can now see metals within complex biological matrices complemented by information about associated molecules and their structures. With the addition of mass spectrometry and particle beam based techniques, the field of view grows to cover greater sensitivities and spatial resolutions, addressing structural, functional and quantitative metallomic questions from the atomic level to whole body processes. In this perspective, I present a paradigm shift in the way we relate to and integrate current and developing metallomic analytics, highlighting both familiar and perhaps less well-known state of the art techniques for in situ metallomic imaging, specific biological applications, and their use in correlative studies. There is a genuine need to abandon scientific silos and, through the establishment of a metallomic scientific platform for further development of multidimensional analytics for in situ metallomic imaging, we have an incredible opportunity to enhance the field of metallomics and demonstrate how discovery research can be done more effectively.
Collapse
Affiliation(s)
- Theodora J Stewart
- King's College London, Mass Spectrometry, London Metallomics Facility, 4th Floor Franklin-Wilkins Building, 150 Stamford St., London SE1 9NH, UK.
| |
Collapse
|
20
|
Maganas D, Kowalska JK, Van Stappen C, DeBeer S, Neese F. Mechanism of L 2,3-edge x-ray magnetic circular dichroism intensity from quantum chemical calculations and experiment-A case study on V (IV)/V (III) complexes. J Chem Phys 2020; 152:114107. [PMID: 32199419 DOI: 10.1063/1.5129029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this work, we present a combined experimental and theoretical study on the V L2,3-edge x-ray absorption (XAS) and x-ray magnetic circular dichroism (XMCD) spectra of VIVO(acac)2 and VIII(acac)3 prototype complexes. The recorded V L2,3-edge XAS and XMCD spectra are richly featured in both V L3 and L2 spectral regions. In an effort to predict and interpret the nature of the experimentally observed spectral features, a first-principles approach for the simultaneous prediction of XAS and XMCD spectra in the framework of wavefunction based ab initio methods is presented. The theory used here has previously been formulated for predicting optical absorption and MCD spectra. In the present context, it is applied to the prediction of the V L2,3-edge XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes. In this approach, the spin-free Hamiltonian is computed on the basis of the complete active space configuration interaction (CASCI) in conjunction with second order N-electron valence state perturbation theory (NEVPT2) as well as the density functional theory (DFT)/restricted open configuration interaction with singles configuration state functions based on a ground state Kohn-Sham determinant (ROCIS/DFT). Quasi-degenerate perturbation theory is then used to treat the spin-orbit coupling (SOC) operator variationally at the many particle level. The XAS and XMCD transitions are computed between the relativistic many particle states, considering their respective Boltzmann populations. These states are obtained from the diagonalization of the SOC operator along with the spin and orbital Zeeman operators. Upon averaging over all possible magnetic field orientations, the XAS and XMCD spectra of randomly oriented samples are obtained. This approach does not rely on the validity of low-order perturbation theory and provides simultaneous access to the calculation of XMCD A, B, and C terms. The ability of the method to predict the XMCD C-term signs and provide access to the XMCD intensity mechanism is demonstrated on the basis of a generalized state coupling mechanism based on the type of the excitations dominating the relativistically corrected states. In the second step, the performance of CASCI, CASCI/NEVPT2, and ROCIS/DFT is evaluated. The very good agreement between theory and experiment has allowed us to unravel the complicated XMCD C-term mechanism on the basis of the SOC interaction between the various multiplets with spin S' = S, S ± 1. In the last step, it is shown that the commonly used spin and orbital sum rules are inadequate in interpreting the intensity mechanism of the XAS and XMCD spectra of the VIVO(acac)2 and VIII(acac)3 complexes as they breakdown when they are employed to predict their magneto-optical properties. This conclusion is expected to hold more generally.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Hirose M, Ishiguro N, Shimomura K, Nguyen DN, Matsui H, Dam HC, Tada M, Takahashi Y. Oxygen-diffusion-driven oxidation behavior and tracking areas visualized by X-ray spectro-ptychography with unsupervised learning. Commun Chem 2019. [DOI: 10.1038/s42004-019-0147-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
Ma L, Zhang X, Xu Z, Späth A, Xing Z, Sun T, Tai R. Three-dimensional focal stack imaging in scanning transmission X-ray microscopy with an improved reconstruction algorithm. OPTICS EXPRESS 2019; 27:7787-7802. [PMID: 30876336 DOI: 10.1364/oe.27.007787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Focal stack (FS) is an effective technique for fast 3D imaging in high-resolution scanning transmission X-ray microscopy. Its crucial issue is to assign each object within the sample to the correct position along the optical axis according to a proper focus measure. There is probably information loss with previous algorithms for FS reconstruction because the old algorithms can only detect one focused object along each optical-axial pixel line (OAPL). In this study, we present an improved FS algorithm, which utilizes an elaborately calculated threshold for normalized local variances to extract multiple focused objects in each OAPL. Simulation and experimental results show its feasibility and high efficiency for 3D imaging of high contrast, sparse samples. It is expected that our advanced approach has potential applications in 3D X-ray microscopy for more complex samples.
Collapse
|
23
|
Negi D, Spiegelberg J, Muto S, Thersleff T, Ohtsuka M, Schönström L, Tatsumi K, Rusz J. Proposal for Measuring Magnetism with Patterned Apertures in a Transmission Electron Microscope. PHYSICAL REVIEW LETTERS 2019; 122:037201. [PMID: 30735420 DOI: 10.1103/physrevlett.122.037201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/13/2018] [Indexed: 06/09/2023]
Abstract
We propose a magnetic measurement method utilizing a patterned postsample aperture in a transmission electron microscope. While utilizing electron magnetic circular dichroism, the method circumvents previous needs to shape the electron probe to an electron vortex beam or astigmatic beam. The method can be implemented in standard scanning transmission electron microscopes by replacing the spectrometer entrance aperture with a specially shaped aperture, hereafter called a ventilator aperture. The proposed setup is expected to work across the whole range of beam sizes-from wide parallel beams down to atomic resolution magnetic spectrum imaging.
Collapse
Affiliation(s)
- Devendra Negi
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | - Jakob Spiegelberg
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| | - Shunsuke Muto
- Electron Nanoscopy Section, Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Thomas Thersleff
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Masahiro Ohtsuka
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Linus Schönström
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Kazuyoshi Tatsumi
- Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa, Nagoya 464-8603, Japan
| | - Ján Rusz
- Department of Physics and Astronomy, Uppsala University, P.O. Box 516, 75120 Uppsala, Sweden
| |
Collapse
|
24
|
Le Nagard L, Morillo-López V, Fradin C, Bazylinski DA. Growing Magnetotactic Bacteria of the Genus Magnetospirillum: Strains MSR-1, AMB-1 and MS-1. J Vis Exp 2018. [PMID: 30394392 DOI: 10.3791/58536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Magnetotactic bacteria are Gram-negative, motile, mainly aquatic prokaryotes ubiquitous in freshwater and marine habitats. They are characterized by their ability to biomineralize magnetosomes, which are magnetic nanometer-sized crystals of magnetite (Fe3O4) or greigite (Fe3S4) surrounded by a lipid bilayer membrane, within their cytoplasm. For most known magnetotactic bacteria, magnetosomes are assembled in chains inside the cytoplasm, thereby conferring a permanent magnetic dipole moment to the cells and causing them to align passively with external magnetic fields. Because of these specific features, magnetotactic bacteria have a great potential for commercial and medical applications. However, most species are microaerophilic and have specific O2 concentration requirements, making them more difficult to grow routinely than many other bacteria such as Escherichia coli. Here we present detailed protocols for growing three of the most widely studied strains of magnetotactic bacteria, all belonging to the genus Magnetospirillum. These methods allow for precise control of the O2 concentration made available to the bacteria, in order to ensure that they grow normally and synthesize magnetosomes. Growing magnetotactic bacteria for further studies using these procedures does not require the experimentalist to be an expert in microbiology. The general methods presented in this article may also be used to isolate and culture other magnetotactic bacteria, although it is likely that growth media chemical composition will need to be modified.
Collapse
Affiliation(s)
| | | | - Cecile Fradin
- Department of Physics & Astronomy, McMaster University;
| | | |
Collapse
|
25
|
Tao X, Xu Z, Liu H, Wang C, Xing Z, Wang Y, Tai R. Spatially correlated coherent diffractive imaging method. APPLIED OPTICS 2018; 57:6527-6533. [PMID: 30117891 DOI: 10.1364/ao.57.006527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Coherent diffractive imaging (CDI) is a lensless, high-resolution imaging method that is currently under rapid development by using X-rays, visible light, or electrons. However, its inherent ambiguities and the need of a priori knowledge about objects are limiting applications based on this method. By combining a conventional CDI method with the basic idea of ptychography, the method of spatially correlated CDI, a method fit for multiple sample imaging in single-shot mode, is proposed to enhance the robustness of CDI. In this method, a strong spatial relevancy is built by introducing the same region into each sample, which establishes a strong real-space constraint for image reconstruction. Both simulations and visible-light experiments demonstrated the good imaging quality and robustness of this method, which does not need tight supports.
Collapse
|
26
|
Wang Z, Tavabi AH, Jin L, Rusz J, Tyutyunnikov D, Jiang H, Moritomo Y, Mayer J, Dunin-Borkowski RE, Yu R, Zhu J, Zhong X. Atomic scale imaging of magnetic circular dichroism by achromatic electron microscopy. NATURE MATERIALS 2018; 17:221-225. [PMID: 29403052 DOI: 10.1038/s41563-017-0010-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
In order to obtain a fundamental understanding of the interplay between charge, spin, orbital and lattice degrees of freedom in magnetic materials and to predict and control their physical properties1-3, experimental techniques are required that are capable of accessing local magnetic information with atomic-scale spatial resolution. Here, we show that a combination of electron energy-loss magnetic chiral dichroism 4 and chromatic-aberration-corrected transmission electron microscopy, which reduces the focal spread of inelastically scattered electrons by orders of magnitude when compared with the use of spherical aberration correction alone, can achieve atomic-scale imaging of magnetic circular dichroism and provide element-selective orbital and spin magnetic moments atomic plane by atomic plane. This unique capability, which we demonstrate for Sr2FeMoO6, opens the door to local atomic-level studies of spin configurations in a multitude of materials that exhibit different types of magnetic coupling, thereby contributing to a detailed understanding of the physical origins of magnetic properties of materials at the highest spatial resolution.
Collapse
Affiliation(s)
- Zechao Wang
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Amir H Tavabi
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lei Jin
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ján Rusz
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | | | - Hanbo Jiang
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yutaka Moritomo
- Graduate School of Pure & Applied Science and Faculty of Pure & Applied Science, University of Tsukuba, Tsukuba, Japan
| | - Joachim Mayer
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
- Central Facility for Electron Microscopy, RWTH Aachen University, Aachen, Germany
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Xiaoyan Zhong
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
27
|
Kowalska JK, Nayyar B, Rees JA, Schiewer CE, Lee SC, Kovacs JA, Meyer F, Weyhermüller T, Otero E, DeBeer S. Iron L 2,3-Edge X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase. Inorg Chem 2017; 56:8147-8158. [PMID: 28653855 PMCID: PMC5516708 DOI: 10.1021/acs.inorgchem.7b00852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Herein, a systematic study of a series
of molecular iron model complexes has been carried out using Fe L2,3-edge X-ray absorption (XAS) and X-ray magnetic circular
dichroism (XMCD) spectroscopies. This series spans iron complexes
of increasing complexity, starting from ferric and ferrous tetrachlorides
([FeCl4]−/2–), to ferric and ferrous
tetrathiolates ([Fe(SR)4]−/2–),
to diferric and mixed-valent iron–sulfur complexes [Fe2S2R4]2–/3–.
This test set of compounds is used to evaluate the sensitivity of
both Fe L2,3-edge XAS and XMCD spectroscopy to oxidation
state and ligation changes. It is demonstrated that the energy shift
and intensity of the L2,3-edge XAS spectra depends on both
the oxidation state and covalency of the system; however, the quantitative
information that can be extracted from these data is limited. On the
other hand, analysis of the Fe XMCD shows distinct changes in the
intensity at both L3 and L2 edges, depending
on the oxidation state of the system. It is also demonstrated that
the XMCD intensity is modulated by the covalency of the system. For
mononuclear systems, the experimental data are correlated with atomic
multiplet calculations in order to provide insights into the experimental
observations. Finally, XMCD is applied to the tetranuclear heterometal–iron–sulfur
clusters [MFe3S4]3+/2+ (M = Mo, V),
which serve as structural analogues of the FeMoco and FeVco active
sites of nitrogenase. It is demonstrated that the XMCD data can be
utilized to obtain information on the oxidation state distribution
in complex clusters that is not readily accessible for the Fe L2,3-edge XAS data alone. The advantages of XMCD relative to
standard K-edge and L2,3-edge XAS are highlighted. This
study provides an important foundation for future XMCD studies on
complex (bio)inorganic systems. A systematic Fe L2,3-edge X-ray absorption (XAS) and X-ray magnetic circular dichroism
(XMCD) study of iron tetrachlorides ([FeCl4]−/2−), iron tetrathiolates ([Fe(SR)4]−/2−), diferric and mixed-valent iron−sulfur dimers [Fe2S2R4]2−/3− and heterometal−iron−sulfur
tetramers [MFe3S4]3+/2+ (M = Mo,
V) is reported. The changes in XAS and XMCD energies and intensities
across this set of complexes are presented together with atomic multiplet
calculations. The advantages of XMCD as an electronic structure probe
of complex clusters are highlighted.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Brahamjot Nayyar
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Julian A Rees
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Christine E Schiewer
- University of Göttingen, Institute of Inorganic Chemistry , Tammannstraβe 4, D-37007 Göttingen, Germany
| | - Sonny C Lee
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Julie A Kovacs
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry , Tammannstraβe 4, D-37007 Göttingen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edwige Otero
- SOLEIL, L'Orme des Merisiers , 91190 Saint-Aubin, France
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Sidorenko P, Lahav O, Cohen O. Ptychographic ultrahigh-speed imaging. OPTICS EXPRESS 2017; 25:10997-11008. [PMID: 28788786 DOI: 10.1364/oe.25.010997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose and demonstrate numerically a simple method for ultrahigh-speed imaging of complex (amplitude and phase) samples. Our method exploits redundancy in single-shot ptychography (SSP) for reconstruction of multiple frames from a single camera snapshot. We term the method Time-resolved Imaging by Multiplexed Ptychography (TIMP). We demonstrate TIMP numerically-reconstructing 15 frames of a complexed-valued dynamic object from a single noisy camera snapshot. Experimentally, we demonstrate SSP with single pulse illumination with pulse duration of 150 psec, where its spectral bandwidth can support 30 fsec pulses.
Collapse
|