1
|
Sottatipreedawong M, Kazmi AA, Vercellino I. How Cryo-EM Revolutionized the Field of Bioenergetics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae089. [PMID: 39298136 DOI: 10.1093/mam/ozae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/31/2024] [Indexed: 02/19/2025]
Abstract
Ten years ago, the term "resolution revolution" was used for the first time to describe how cryogenic electron microscopy (cryo-EM) marked the beginning of a new era in the field of structural biology, enabling the investigation of previously unsolvable protein targets. The success of cryo-EM was recognized with the 2017 Chemistry Nobel Prize and has become a widely used method for the structural characterization of biological macromolecules, quickly catching up to x-ray crystallography. Bioenergetics is the division of biochemistry that studies the mechanisms of energy conversion in living organisms, strongly focused on the molecular machines (enzymes) that carry out these processes in cells. As bioenergetic enzymes can be arranged in complexes characterized by conformational heterogeneity/flexibility, they represent challenging targets for structural investigation by crystallography. Over the last decade, cryo-EM has therefore become a powerful tool to investigate the structure and function of bioenergetic complexes; here, we provide an overview of the main achievements enabled by the technique. We first summarize the features of cryo-EM and compare them to x-ray crystallography, and then, we present the exciting discoveries brought about by cryo-EM, particularly but not exclusively focusing on the oxidative phosphorylation system, which is a crucial energy-converting mechanism in humans.
Collapse
Affiliation(s)
- Muratha Sottatipreedawong
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Ahad Ali Kazmi
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| | - Irene Vercellino
- Ernst RuskaCentre 3 for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße 52428 Jülich (DE)
| |
Collapse
|
2
|
Dietrich L, Agip ANA, Kunz C, Schwarz A, Kühlbrandt W. In situ structure and rotary states of mitochondrial ATP synthase in whole Polytomella cells. Science 2024; 385:1086-1090. [PMID: 39236170 DOI: 10.1126/science.adp4640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Cells depend on a continuous supply of adenosine triphosphate (ATP), the universal energy currency. In mitochondria, ATP is produced by a series of redox reactions, whereby an electrochemical gradient is established across the inner mitochondrial membrane. The ATP synthase harnesses the energy of the gradient to generate ATP from adenosine diphosphate (ADP) and inorganic phosphate. We determined the structure of ATP synthase within mitochondria of the unicellular flagellate Polytomella by electron cryo-tomography and subtomogram averaging at up to 4.2-angstrom resolution, revealing six rotary positions of the central stalk, subclassified into 21 substates of the F1 head. The Polytomella ATP synthase forms helical arrays with multiple adjacent rows defining the cristae ridges. The structure of ATP synthase under native operating conditions in the presence of a membrane potential represents a pivotal step toward the analysis of membrane protein complexes in situ.
Collapse
Affiliation(s)
- Lea Dietrich
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Ahmed-Noor A Agip
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Christina Kunz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| | - Andre Schwarz
- Department of Synaptic Plasticity, Max Planck Institute for Brain Research, 60438 Frankfurt, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
He Z, Wu M, Tian H, Wang L, Hu Y, Han F, Zhou J, Wang Y, Zhou L. Euglena's atypical respiratory chain adapts to the discoidal cristae and flexible metabolism. Nat Commun 2024; 15:1628. [PMID: 38388527 PMCID: PMC10884005 DOI: 10.1038/s41467-024-46018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.
Collapse
Affiliation(s)
- Zhaoxiang He
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Mengchen Wu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hongtao Tian
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liangdong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiqi Hu
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fangzhu Han
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, 314400, China.
| | - Long Zhou
- Department of Biophysics and Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Buzzard E, McLaren M, Bragoszewski P, Brancaccio A, Ford H, Daum B, Kuwabara P, Collinson I, Gold V. The consequence of ATP synthase dimer angle on mitochondrial morphology studied by cryo-electron tomography. Biochem J 2024; 481:BCJ20230450. [PMID: 38164968 PMCID: PMC10903453 DOI: 10.1042/bcj20230450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Mitochondrial ATP synthases form rows of dimers, which induce membrane curvature to give cristae their characteristic lamellar or tubular morphology. The angle formed between the central stalks of ATP synthase dimers varies between species. Using cryo-electron tomography and sub-tomogram averaging, we determined the structure of the ATP synthase dimer from the nematode worm C. elegans and show that the dimer angle differs from previously determined structures. The consequences of this species-specific difference at the dimer interface were investigated by comparing C. elegans and S. cerevisiae mitochondrial morphology. We reveal that C. elegans has a larger ATP synthase dimer angle with more lamellar (flatter) cristae when compared to yeast. The underlying cause of this difference was investigated by generating an atomic model of the C. elegans ATP synthase dimer by homology modelling. A comparison of our C. elegans model to an existing S. cerevisiae structure reveals the presence of extensions and rearrangements in C. elegans subunits associated with maintaining the dimer interface. We speculate that increasing dimer angles could provide an advantage for species that inhabit variable-oxygen environments by forming flatter more energetically efficient cristae.
Collapse
Affiliation(s)
| | | | - Piotr Bragoszewski
- Instytut Biologii Doswiadczalnej im Marcelego Nenckiego Polskiej Akademii Nauk, Warsaw, Poland
| | | | - Holly Ford
- University of Bristol, Bristol, United Kingdom
| | | | | | | | - Vicki Gold
- University of Exeter, Exeter, United Kingdom
| |
Collapse
|
5
|
Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience 2023; 26:106700. [PMID: 37250340 PMCID: PMC10214729 DOI: 10.1016/j.isci.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a ∼1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heteroloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex.
Collapse
Affiliation(s)
- Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
6
|
Abstract
Parasitic diseases caused by protozoans are highly prevalent around the world, disproportionally affecting developing countries, where coinfection with other microorganisms is common. Control and treatment of parasitic infections are constrained by the lack of specific and effective drugs, plus the rapid emergence of resistance. Ion channels are main drug targets for numerous diseases, but their potential against protozoan parasites is still untapped. Ion channels are membrane proteins expressed in all types of cells, allowing for the flow of ions between compartments, and regulating cellular functions such as membrane potential, excitability, volume, signaling, and death. Channels and transporters reside at the interface between parasites and their hosts, controlling nutrient uptake, viability, replication, and infectivity. To understand how ion channels control protozoan parasites fate and to evaluate their suitability for therapeutics, we must deepen our knowledge of their structure, function, and modulation. However, methodological approaches commonly used in mammalian cells have proven difficult to apply in protozoans. This review focuses on ion channels described in protozoan parasites of clinical relevance, mainly apicomplexans and trypanosomatids, highlighting proteins for which molecular and functional evidence has been correlated with their physiological functions.
Collapse
|
7
|
Maclean AE, Hayward JA, Huet D, van Dooren GG, Sheiner L. The mystery of massive mitochondrial complexes: the apicomplexan respiratory chain. Trends Parasitol 2022; 38:1041-1052. [PMID: 36302692 PMCID: PMC10434753 DOI: 10.1016/j.pt.2022.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.
Collapse
Affiliation(s)
- Andrew E Maclean
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Jenni A Hayward
- Research School of Biology, Australian National University, Canberra, Australia
| | - Diego Huet
- Center for Tropical & Emerging Diseases, University of Georgia, Athens, GA, USA; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Giel G van Dooren
- Research School of Biology, Australian National University, Canberra, Australia
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Gahura O, Mühleip A, Hierro-Yap C, Panicucci B, Jain M, Hollaus D, Slapničková M, Zíková A, Amunts A. An ancestral interaction module promotes oligomerization in divergent mitochondrial ATP synthases. Nat Commun 2022; 13:5989. [PMID: 36220811 PMCID: PMC9553925 DOI: 10.1038/s41467-022-33588-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial ATP synthase forms stable dimers arranged into oligomeric assemblies that generate the inner-membrane curvature essential for efficient energy conversion. Here, we report cryo-EM structures of the intact ATP synthase dimer from Trypanosoma brucei in ten different rotational states. The model consists of 25 subunits, including nine lineage-specific, as well as 36 lipids. The rotary mechanism is influenced by the divergent peripheral stalk, conferring a greater conformational flexibility. Proton transfer in the lumenal half-channel occurs via a chain of five ordered water molecules. The dimerization interface is formed by subunit-g that is critical for interactions but not for the catalytic activity. Although overall dimer architecture varies among eukaryotes, we find that subunit-g together with subunit-e form an ancestral oligomerization motif, which is shared between the trypanosomal and mammalian lineages. Therefore, our data defines the subunit-g/e module as a structural component determining ATP synthase oligomeric assemblies.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Minal Jain
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - David Hollaus
- Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, 37005, České Budějovice, Czech Republic.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
| |
Collapse
|
9
|
Miranda-Astudillo H, Ostolga-Chavarría M, Cardol P, González-Halphen D. Beyond being an energy supplier, ATP synthase is a sculptor of mitochondrial cristae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148569. [PMID: 35577152 DOI: 10.1016/j.bbabio.2022.148569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial F1FO-ATP synthase plays a key role in cellular bioenergetics; this enzyme is present in all eukaryotic linages except in amitochondriate organisms. Despite its ancestral origin, traceable to the alpha proteobacterial endosymbiotic event, the actual structural diversity of these complexes, due to large differences in their polypeptide composition, reflects an important evolutionary divergence between eukaryotic lineages. We discuss the effect of these structural differences on the oligomerization of the complex and the shape of mitochondrial cristae.
Collapse
Affiliation(s)
- Héctor Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcos Ostolga-Chavarría
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pierre Cardol
- InBios/Phytosystems, Institut de Botanique, Université de Liège, Liège, Belgium
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
10
|
Dewar CE, Oeljeklaus S, Wenger C, Warscheid B, Schneider A. Characterization of a highly diverged mitochondrial ATP synthase F o subunit in Trypanosoma brucei. J Biol Chem 2022; 298:101829. [PMID: 35293314 PMCID: PMC9034290 DOI: 10.1016/j.jbc.2022.101829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.
Collapse
Affiliation(s)
- Caroline E Dewar
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Department of Biochemistry, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Vlasov AV, Osipov SD, Bondarev NA, Uversky VN, Borshchevskiy VI, Yanyushin MF, Manukhov IV, Rogachev AV, Vlasova AD, Ilyinsky NS, Kuklin AI, Dencher NA, Gordeliy VI. ATP synthase F OF 1 structure, function, and structure-based drug design. Cell Mol Life Sci 2022; 79:179. [PMID: 35253091 PMCID: PMC11072866 DOI: 10.1007/s00018-022-04153-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/26/2021] [Accepted: 01/14/2022] [Indexed: 11/30/2022]
Abstract
ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.
Collapse
Affiliation(s)
- Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Stepan D Osipov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay A Bondarev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Vladimir N Uversky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Mikhail F Yanyushin
- Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow region, Russia
| | - Ilya V Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Andrey V Rogachev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
| | - Alexandr I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Joint Institute for Nuclear Research, 141980, Dubna, Russia
| | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia
- Physical Biochemistry, Department Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Russia.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428, Jülich, Germany.
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027, Grenoble, France.
| |
Collapse
|
12
|
Kühlbrandt W. Forty years in cryoEM of membrane proteins. Microscopy (Oxf) 2022; 71:i30-i50. [PMID: 35275191 PMCID: PMC8855526 DOI: 10.1093/jmicro/dfab041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/05/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
In a surprisingly short time, electron cryo-microscopy (cryoEM) has developed from a niche technique in structural biology to a mainstream method practiced in a rapidly growing number of laboratories around the world. From its beginnings about 40 years ago, cryoEM has had a major impact on the study of membrane proteins, in particular the energy-converting systems from bacterial, mitochondrial and chloroplast membranes. Early work on two-dimensional crystals attained resolutions ∼3.5 Å, but at present, single-particle cryoEM delivers much more detailed structures without crystals. Electron cryo-tomography of membranes and membrane-associated proteins adds valuable context, usually at lower resolution. The review ends with a brief outlook on future prospects.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, Frankfurt am Main 60438, Germany
| |
Collapse
|
13
|
Nirody JA, Budin I, Rangamani P. ATP synthase: Evolution, energetics, and membrane interactions. J Gen Physiol 2021; 152:152111. [PMID: 32966553 PMCID: PMC7594442 DOI: 10.1085/jgp.201912475] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
The synthesis of ATP, life’s “universal energy currency,” is the most prevalent chemical reaction in biological systems and is responsible for fueling nearly all cellular processes, from nerve impulse propagation to DNA synthesis. ATP synthases, the family of enzymes that carry out this endless task, are nearly as ubiquitous as the energy-laden molecule they are responsible for making. The F-type ATP synthase (F-ATPase) is found in every domain of life and has facilitated the survival of organisms in a wide range of habitats, ranging from the deep-sea thermal vents to the human intestine. Accordingly, there has been a large amount of work dedicated toward understanding the structural and functional details of ATP synthases in a wide range of species. Less attention, however, has been paid toward integrating these advances in ATP synthase molecular biology within the context of its evolutionary history. In this review, we present an overview of several structural and functional features of the F-type ATPases that vary across taxa and are purported to be adaptive or otherwise evolutionarily significant: ion channel selectivity, rotor ring size and stoichiometry, ATPase dimeric structure and localization in the mitochondrial inner membrane, and interactions with membrane lipids. We emphasize the importance of studying these features within the context of the enzyme’s particular lipid environment. Just as the interactions between an organism and its physical environment shape its evolutionary trajectory, ATPases are impacted by the membranes within which they reside. We argue that a comprehensive understanding of the structure, function, and evolution of membrane proteins—including ATP synthase—requires such an integrative approach.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY.,All Souls College, University of Oxford, Oxford, UK
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
14
|
Gahura O, Hierro-Yap C, Zíková A. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 2021; 148:1151-1160. [PMID: 33551002 PMCID: PMC8311965 DOI: 10.1017/s0031182021000202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
Collapse
Affiliation(s)
- Ondřej Gahura
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Carolina Hierro-Yap
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Alena Zíková
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| |
Collapse
|
15
|
Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol 2021; 30:R575-R588. [PMID: 32428499 DOI: 10.1016/j.cub.2020.02.053] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cristae are infoldings of the mitochondrial inner membrane jutting into the organelle's innermost compartment from narrow stems at their base called crista junctions. They are emblematic of aerobic mitochondria, being the fabric for the molecular machinery driving cellular respiration. Electron microscopy revealed that diverse eukaryotes possess cristae of different shapes. Yet, crista diversity has not been systematically examined in light of our current knowledge about eukaryotic evolution. Since crista form and function are intricately linked, we take a holistic view of factors that may underlie both crista diversity and the adherence of cristae to a recognizable form. Based on electron micrographs of 226 species from all major lineages, we propose a rational crista classification system that postulates cristae as variations of two general morphotypes: flat and tubulo-vesicular. The latter is most prevalent and likely ancestral, but both morphotypes are found interspersed throughout the eukaryotic tree. In contrast, crista junctions are remarkably conserved, supporting their proposed role as diffusion barriers that sequester cristae contents. Since cardiolipin, ATP synthase dimers, the MICOS complex, and dynamin-like Opa1/Mgm1 are known to be involved in shaping cristae, we examined their variation in the context of crista diversity. Moreover, we have identified both commonalities and differences that may collectively be manifested as diverse variations of crista form and function.
Collapse
Affiliation(s)
- Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava 710 00, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
16
|
Cadena LR, Gahura O, Panicucci B, Zíková A, Hashimi H. Mitochondrial Contact Site and Cristae Organization System and F 1F O-ATP Synthase Crosstalk Is a Fundamental Property of Mitochondrial Cristae. mSphere 2021; 6:e0032721. [PMID: 34133204 PMCID: PMC8265648 DOI: 10.1128/msphere.00327-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial cristae are polymorphic invaginations of the inner membrane that are the fabric of cellular respiration. Both the mitochondrial contact site and cristae organization system (MICOS) and the F1FO-ATP synthase are vital for sculpting cristae by opposing membrane-bending forces. While MICOS promotes negative curvature at crista junctions, dimeric F1FO-ATP synthase is crucial for positive curvature at crista rims. Crosstalk between these two complexes has been observed in baker's yeast, the model organism of the Opisthokonta supergroup. Here, we report that this property is conserved in Trypanosoma brucei, a member of the Discoba clade that separated from the Opisthokonta ∼2 billion years ago. Specifically, one of the paralogs of the core MICOS subunit Mic10 interacts with dimeric F1FO-ATP synthase, whereas the other core Mic60 subunit has a counteractive effect on F1FO-ATP synthase oligomerization. This is evocative of the nature of MICOS-F1FO-ATP synthase crosstalk in yeast, which is remarkable given the diversification that these two complexes have undergone during almost 2 eons of independent evolution. Furthermore, we identified a highly diverged, putative homolog of subunit e, which is essential for the stability of F1FO-ATP synthase dimers in yeast. Just like subunit e, it is preferentially associated with dimers and interacts with Mic10, and its silencing results in severe defects to cristae and the disintegration of F1FO-ATP synthase dimers. Our findings indicate that crosstalk between MICOS and dimeric F1FO-ATP synthase is a fundamental property impacting crista shape throughout eukaryotes. IMPORTANCE Mitochondria have undergone profound diversification in separate lineages that have radiated since the last common ancestor of eukaryotes some eons ago. Most eukaryotes are unicellular protists, including etiological agents of infectious diseases, like Trypanosoma brucei. Thus, the study of a broad range of protists can reveal fundamental features shared by all eukaryotes and lineage-specific innovations. Here, we report that two different protein complexes, MICOS and F1FO-ATP synthase, known to affect mitochondrial architecture, undergo crosstalk in T. brucei, just as in baker's yeast. This is remarkable considering that these complexes have otherwise undergone many changes during their almost 2 billion years of independent evolution. Thus, this crosstalk is a fundamental property needed to maintain proper mitochondrial structure even if the constituent players considerably diverged.
Collapse
Affiliation(s)
- Lawrence Rudy Cadena
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
17
|
Miranda-Astudillo HV, Yadav KNS, Boekema EJ, Cardol P. Supramolecular associations between atypical oxidative phosphorylation complexes of Euglena gracilis. J Bioenerg Biomembr 2021; 53:351-363. [PMID: 33646522 PMCID: PMC8124061 DOI: 10.1007/s10863-021-09882-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/11/2021] [Indexed: 11/28/2022]
Abstract
In vivo associations of respiratory complexes forming higher supramolecular structures are generally accepted nowadays. Supercomplexes (SC) built by complexes I, III and IV and the so-called respirasome (I/III2/IV) have been described in mitochondria from several model organisms (yeasts, mammals and green plants), but information is scarce in other lineages. Here we studied the supramolecular associations between the complexes I, III, IV and V from the secondary photosynthetic flagellate Euglena gracilis with an approach that involves the extraction with several mild detergents followed by native electrophoresis. Despite the presence of atypical subunit composition and additional structural domains described in Euglena complexes I, IV and V, canonical associations into III2/IV, III2/IV2 SCs and I/III2/IV respirasome were observed together with two oligomeric forms of the ATP synthase (V2 and V4). Among them, III2/IV SC could be observed by electron microscopy. The respirasome was further purified by two-step liquid chromatography and showed in-vitro oxygen consumption independent of the addition of external cytochrome c.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - P Cardol
- InBios/Phytosystems, Institut de Botanique, University of Liège, Liège, Belgium.
| |
Collapse
|
18
|
Bílý T, Sheikh S, Mallet A, Bastin P, Pérez-Morga D, Lukeš J, Hashimi H. Ultrastructural Changes of the Mitochondrion During the Life Cycle of Trypanosoma brucei. J Eukaryot Microbiol 2021; 68:e12846. [PMID: 33624359 DOI: 10.1111/jeu.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
The mitochondrion is crucial for ATP generation by oxidative phosphorylation, among other processes. Cristae are invaginations of the mitochondrial inner membrane that house nearly all the macromolecular complexes that perform oxidative phosphorylation. The unicellular parasite Trypanosoma brucei undergoes during its life cycle extensive remodeling of its single mitochondrion, which reflects major changes in its energy metabolism. While the bloodstream form (BSF) generates ATP exclusively by substrate-level phosphorylation and has a morphologically highly reduced mitochondrion, the insect-dwelling procyclic form (PCF) performs oxidative phosphorylation and has an expanded and reticulated organelle. Here, we have performed high-resolution 3D reconstruction of BSF and PCF mitochondria, with a particular focus on their cristae. By measuring the volumes and surface areas of these structures in complete or nearly complete cells, we have found that mitochondrial cristae are more prominent in BSF than previously thought and their biogenesis seems to be maintained during the cell cycle. Furthermore, PCF cristae exhibit a surprising range of volumes in situ, implying that each crista is acting as an independent bioenergetic unit. Cristae appear to be particularly enriched in the region of the organelle between the nucleus and kinetoplast, the mitochondrial genome, suggesting this part has distinctive properties.
Collapse
Affiliation(s)
- Tomáš Bílý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Shaghayegh Sheikh
- Institute of Parasitology, Biology Center, Czech Academy of Sciences & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Adeline Mallet
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, Paris, France.,Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur & Sorbonne Université école doctorale complexité du vivant, ED 515, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit & INSERM U1201, Institut Pasteur, Paris, France
| | - David Pérez-Morga
- Laboratory of Molecular Parasitology, IBMM & Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, Brussels, Belgium
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences & Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
19
|
Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, Amunts A. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun 2021; 12:120. [PMID: 33402698 PMCID: PMC7785744 DOI: 10.1038/s41467-020-20381-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial ATP synthase plays a key role in inducing membrane curvature to establish cristae. In Apicomplexa causing diseases such as malaria and toxoplasmosis, an unusual cristae morphology has been observed, but its structural basis is unknown. Here, we report that the apicomplexan ATP synthase assembles into cyclic hexamers, essential to shape their distinct cristae. Cryo-EM was used to determine the structure of the hexamer, which is held together by interactions between parasite-specific subunits in the lumenal region. Overall, we identified 17 apicomplexan-specific subunits, and a minimal and nuclear-encoded subunit-a. The hexamer consists of three dimers with an extensive dimer interface that includes bound cardiolipins and the inhibitor IF1. Cryo-ET and subtomogram averaging revealed that hexamers arrange into ~20-megadalton pentagonal pyramids in the curved apical membrane regions. Knockout of the linker protein ATPTG11 resulted in the loss of pentagonal pyramids with concomitant aberrantly shaped cristae. Together, this demonstrates that the unique macromolecular arrangement is critical for the maintenance of cristae morphology in Apicomplexa.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Alice Lacombe
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Paula Fernandes
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK.
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|
20
|
Abstract
Cryo-electron tomography (cryo-ET) is an extremely powerful tool which is used to image cellular features in their close-to-native environment at a resolution where both protein structure and membrane morphology can be revealed. Compared to conventional electron microscopy methods for biology, cryo-ET does not include the use of potentially artifact generating agents for sample fixation or visualization. Despite its obvious advantages, cryo-ET has not been widely adopted by cell biologists. This might originate from the overwhelming and constantly growing number of complex ways to record and process data as well as the numerous methods available for sample preparation. In this chapter, we will take one step back and guide the reader through the essential steps of sample preparation using mammalian cells, as well as the basic steps involved in data recording and processing. The described protocol will allow the reader to obtain data that can be used for morphological analysis and precise measurements of biological structures in their cellular environment. Furthermore, this data can be used for more elaborate structural analysis by applying further image processing steps like subtomogram averaging, which is required to determine the structure of proteins.
Collapse
|
21
|
Flygaard RK, Mühleip A, Tobiasson V, Amunts A. Type III ATP synthase is a symmetry-deviated dimer that induces membrane curvature through tetramerization. Nat Commun 2020; 11:5342. [PMID: 33093501 PMCID: PMC7583250 DOI: 10.1038/s41467-020-18993-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial ATP synthases form functional homodimers to induce cristae curvature that is a universal property of mitochondria. To expand on the understanding of this fundamental phenomenon, we characterized the unique type III mitochondrial ATP synthase in its dimeric and tetrameric form. The cryo-EM structure of a ciliate ATP synthase dimer reveals an unusual U-shaped assembly of 81 proteins, including a substoichiometrically bound ATPTT2, 40 lipids, and co-factors NAD and CoQ. A single copy of subunit ATPTT2 functions as a membrane anchor for the dimeric inhibitor IF1. Type III specific linker proteins stably tie the ATP synthase monomers in parallel to each other. The intricate dimer architecture is scaffolded by an extended subunit-a that provides a template for both intra- and inter-dimer interactions. The latter results in the formation of tetramer assemblies, the membrane part of which we determined to 3.1 Å resolution. The structure of the type III ATP synthase tetramer and its associated lipids suggests that it is the intact unit propagating the membrane curvature.
Collapse
Affiliation(s)
- Rasmus Kock Flygaard
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Victor Tobiasson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177, Stockholm, Sweden.
| |
Collapse
|
22
|
Ravi RT, Leung MR, Zeev-Ben-Mordehai T. Looking back and looking forward: contributions of electron microscopy to the structural cell biology of gametes and fertilization. Open Biol 2020; 10:200186. [PMID: 32931719 PMCID: PMC7536082 DOI: 10.1098/rsob.200186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/25/2020] [Indexed: 01/22/2023] Open
Abstract
Mammalian gametes-the sperm and the egg-represent opposite extremes of cellular organization and scale. Studying the ultrastructure of gametes is crucial to understanding their interactions, and how to manipulate them in order to either encourage or prevent their union. Here, we survey the prominent electron microscopy (EM) techniques, with an emphasis on considerations for applying them to study mammalian gametes. We review how conventional EM has provided significant insight into gamete ultrastructure, but also how the harsh sample preparation methods required preclude understanding at a truly molecular level. We present recent advancements in cryo-electron tomography that provide an opportunity to image cells in a near-native state and at unprecedented levels of detail. New and emerging cellular EM techniques are poised to rekindle exploration of fundamental questions in mammalian reproduction, especially phenomena that involve complex membrane remodelling and protein reorganization. These methods will also allow novel lines of enquiry into problems of practical significance, such as investigating unexplained causes of human infertility and improving assisted reproductive technologies for biodiversity conservation.
Collapse
Affiliation(s)
- Ravi Teja Ravi
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Miguel Ricardo Leung
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| | - Tzviya Zeev-Ben-Mordehai
- Cryo-Electron Microscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands
- Division of Structural Biology, Wellcome Centre for Human Genetics, The University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
23
|
Nesci S, Pagliarani A, Algieri C, Trombetti F. Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded F O structure. Crit Rev Biochem Mol Biol 2020; 55:309-321. [PMID: 32580582 DOI: 10.1080/10409238.2020.1784084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/15/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
Of the two main sectors of the F-type ATP synthase, the membrane-intrinsic FO domain is the one which, during evolution, has undergone the highest structural variations and changes in subunit composition. The FO complexity in mitochondria is apparently related to additional enzyme functions that lack in bacterial and thylakoid complexes. Indeed, the F-type ATP synthase has the main bioenergetic role to synthesize ATP by exploiting the electrochemical gradient built by respiratory complexes. The FO membrane domain, essential in the enzyme machinery, also participates in the bioenergetic cost of synthesizing ATP and in the formation of the cristae, thus contributing to mitochondrial morphology. The recent enzyme involvement in a high-conductance channel, which forms in the inner mitochondrial membrane and promotes the mitochondrial permeability transition, highlights a new F-type ATP synthase role. Point mutations which cause amino acid substitutions in FO subunits produce mitochondrial dysfunctions and lead to severe pathologies. The FO variability in different species, pointed out by cryo-EM analysis, mirrors the multiple enzyme functions and opens a new scenario in mitochondrial biology.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | | | - Cristina Algieri
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
24
|
Kalienkova V, Alvadia C, Clerico Mosina V, Paulino C. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs. Methods Mol Biol 2020; 2127:245-273. [PMID: 32112327 DOI: 10.1007/978-1-0716-0373-4_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-particle cryo-electron microscopy has become an indispensable technique in structural biology. In particular when studying membrane proteins, it allows the use of membrane-mimicking tools, which can be crucial for a comprehensive understanding of the structure-function relationship of the protein in its native environment. In this chapter we focus on the application of nanodiscs and use our recent studies on the TMEM16 family as an example.
Collapse
Affiliation(s)
- Valeria Kalienkova
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Carolina Alvadia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Vanessa Clerico Mosina
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Cristina Paulino
- Department of Structural Biology at the Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Mühleip A, McComas SE, Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8:51179. [PMID: 31738165 PMCID: PMC6930080 DOI: 10.7554/elife.51179] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids. Every living thing uses the energy-rich molecule called adenosine triphosphate, or ATP, as fuel. It is the universal molecular currency for transferring energy. Cells trade it, mitochondria make it, and the energy extracted from it is used to drive chemical reactions, transport molecules across cell membranes, energize nerve impulses and contract muscles. ATP synthase is the enzyme that makes ATP molecules. It is a multi-part complex that straddles the inner membrane of mitochondria, the energy factories in cells. The enzyme complex interacts with fatty molecules in the mitochondrial inner membrane, creating a curvature that is required to produce ATP more efficiently. The mitochondrial ATP synthase has been studied in many different organisms, including yeast, algae, plants, pigs, cows and humans. These studies show that most of these ATP synthases are similar to each other, but obtaining a high resolution structure has been a challenge. Some single-cell organisms have unusual ATP synthases, which provide clues about how the enzyme evolved in pursuit of the most energy efficient arrangement. One such organism is the photosynthetic Euglena gracilis, which is closely related to the human parasites that cause sleeping sickness and Chagas disease. Now, Mü̈hleip et al. have extracted ATP synthase from E. gracilis and reconstructed its structure using electron cryo-microscopy. The high resolution of this reconstruction allowed for the first time to examine the fatty molecules associated with ATP synthase, called cardiolipins. This is important, because cardiolipins are thought to modulate the rotating motor of the enzyme and affect how the complex sits in the membrane. The analysis revealed that the ATP synthase in E. gracilis has 29 different protein subunits, 13 of which are only found in organisms of the same family. Some of the newly discovered subunits are glued together by fatty molecules and extend into the surrounding mitochondrial membrane. This distinctive structure suggests an adaptation which likely evolved independently in E. gracilis for efficiency. These results represent an important advance in the field, and provide direct evidence for the functional roles of cardiolipin. This information will be used to reconstruct the evolution of this mighty molecule and to further study the roles of cardiolipin in energy conversion. Moreover, the analysis identified similarities between the ATP synthase in E. gracilis and human parasites, which could provide new therapeutic targets in disease-causing parasites.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Zhang P. Advances in cryo-electron tomography and subtomogram averaging and classification. Curr Opin Struct Biol 2019; 58:249-258. [PMID: 31280905 PMCID: PMC6863431 DOI: 10.1016/j.sbi.2019.05.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022]
Abstract
Cryo-electron tomography (cryoET) can provide 3D reconstructions, or tomograms, of pleomorphic objects such as organelles or cells in their close-to-native states. Subtomograms that contain repetitive structures can be further extracted and subjected to averaging and classification to improve resolution, and this process has become an emerging structural biology method referred to as cryoET subtomogram averaging and classification (cryoSTAC). Recent technical advances in cryoSTAC have had a profound impact on many fields in biology. Here, I review recent exciting work on several macromolecular assemblies demonstrating the power of cryoSTAC for in situ structure analysis and discuss challenges and future directions.
Collapse
Affiliation(s)
- Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK; Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
27
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
28
|
Abstract
F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Å in the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.
Collapse
Affiliation(s)
- Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt, Germany;
| |
Collapse
|
29
|
Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc Natl Acad Sci U S A 2019; 116:4250-4255. [PMID: 30760595 PMCID: PMC6410833 DOI: 10.1073/pnas.1816556116] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ATP synthase in the inner membrane of mitochondria generates most of the ATP that enables higher organisms to live. The inner membrane forms deep invaginations called cristae. Mitochondrial ATP synthases are dimeric complexes of two identical monomers. It is known that the ATP synthase dimers form rows along the tightly curved cristae ridges. Computer simulations suggest that the dimer rows bend the membrane locally, but this has not been shown experimentally. In this study, we use electron cryotomography to provide experimental proof that ATP synthase dimers assemble spontaneously into rows upon membrane reconstitution, and that these rows bend the membrane. The assembly of ATP synthase dimers into rows is most likely the first step in the formation of mitochondrial cristae. Mitochondrial ATP synthases form dimers, which assemble into long ribbons at the rims of the inner membrane cristae. We reconstituted detergent-purified mitochondrial ATP synthase dimers from the green algae Polytomella sp. and the yeast Yarrowia lipolytica into liposomes and examined them by electron cryotomography. Tomographic volumes revealed that ATP synthase dimers from both species self-assemble into rows and bend the lipid bilayer locally. The dimer rows and the induced degree of membrane curvature closely resemble those in the inner membrane cristae. Monomers of mitochondrial ATP synthase reconstituted into liposomes do not bend membrane visibly and do not form rows. No specific lipids or proteins other than ATP synthase dimers are required for row formation and membrane remodelling. Long rows of ATP synthase dimers are a conserved feature of mitochondrial inner membranes. They are required for cristae formation and a main factor in mitochondrial morphogenesis.
Collapse
|
30
|
Colina-Tenorio L, Miranda-Astudillo H, Dautant A, Vázquez-Acevedo M, Giraud MF, González-Halphen D. Subunit Asa3 ensures the attachment of the peripheral stalk to the membrane sector of the dimeric ATP synthase of Polytomella sp. Biochem Biophys Res Commun 2018; 509:341-347. [PMID: 30585150 DOI: 10.1016/j.bbrc.2018.12.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 02/04/2023]
Abstract
The mitochondrial ATP synthase of Polytomella exhibits a peripheral stalk and a dimerization domain built by the Asa subunits, unique to chlorophycean algae. The topology of these subunits has been extensively studied. Here we explored the interactions of subunit Asa3 using Far Western blotting and subcomplex reconstitution, and found it associates with Asa1 and Asa8. We also identified the novel interactions Asa1-Asa2 and Asa1-Asa7. In silico analyses of Asa3 revealed that it adopts a HEAT repeat-like structure that points to its location within the enzyme based on the available 3D-map of the algal ATP synthase. We suggest that subunit Asa3 is instrumental in securing the attachment of the peripheral stalk to the membrane sector, thus stabilizing the dimeric mitochondrial ATP synthase.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France; Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Miriam Vázquez-Acevedo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France; Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
31
|
Yamano K, Lazarou M. YoungMito 2018: Report on the 1st International Mitochondria Meeting for Young Scientists. Genes Cells 2018; 23:822-827. [PMID: 30273445 DOI: 10.1111/gtc.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
The 1st International Mitochondria Meeting for Young Scientists (International YoungMito 2018) was held at Hotel Co-op Inn Kyoto in Kyoto, Japan, from 20 to 22 April 2018. The meeting was attended by 130 mitochondrial researchers from 15 countries. International YoungMito 2018 was the first international mitochondria meeting held in Japan organized by and for young mitochondrial researchers. Over the 3-day period, there were 28 oral presentations including two keynote lectures, 20 presentations from invited speakers, and six short talks selected from abstract submissions. Many different topics were covered including quality control pathways acting against mitochondrial stresses, mitochondrial dynamics, protein/lipid transport, cristae organization, respiration/ATP synthesis, mtDNA maintenance, mitochondrial disease models, and pharmacological approaches. In addition, we had 64 posters, a number which represented almost half of all attendees. Thanks to the cutting-edge information and high-quality unpublished data that were presented, there were many lively discussions during oral and poster sessions that continued into the coffee breaks, lunchtime, and nighttime discussions. The 1st international YoungMito meeting was successful in promoting intellectual exchange among all participants, facilitating collaborations beyond national boundaries, and closed with great success. It was a great pleasure that many participants were looking forward to the next YoungMito meeting.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Colina-Tenorio L, Dautant A, Miranda-Astudillo H, Giraud MF, González-Halphen D. The Peripheral Stalk of Rotary ATPases. Front Physiol 2018; 9:1243. [PMID: 30233414 PMCID: PMC6131620 DOI: 10.3389/fphys.2018.01243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Rotary ATPases are a family of enzymes that are thought of as molecular nanomotors and are classified in three types: F, A, and V-type ATPases. Two members (F and A-type) can synthesize and hydrolyze ATP, depending on the energetic needs of the cell, while the V-type enzyme exhibits only a hydrolytic activity. The overall architecture of all these enzymes is conserved and three main sectors are distinguished: a catalytic core, a rotor and a stator or peripheral stalk. The peripheral stalks of the A and V-types are highly conserved in both structure and function, however, the F-type peripheral stalks have divergent structures. Furthermore, the peripheral stalk has other roles beyond its stator function, as evidenced by several biochemical and recent structural studies. This review describes the information regarding the organization of the peripheral stalk components of F, A, and V-ATPases, highlighting the key differences between the studied enzymes, as well as the different processes in which the structure is involved.
Collapse
Affiliation(s)
- Lilia Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alain Dautant
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Héctor Miranda-Astudillo
- Genetics and Physiology of Microalgae, InBios, PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Marie-France Giraud
- CNRS, UMR5095, IBGC, Bordeaux, France.,Energy Transducing Systems and Mitochondrial Morphology, Université de Bordeaux, Bordeaux, France
| | - Diego González-Halphen
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
33
|
Siegmund SE, Grassucci R, Carter SD, Barca E, Farino ZJ, Juanola-Falgarona M, Zhang P, Tanji K, Hirano M, Schon EA, Frank J, Freyberg Z. Three-Dimensional Analysis of Mitochondrial Crista Ultrastructure in a Patient with Leigh Syndrome by In Situ Cryoelectron Tomography. iScience 2018; 6:83-91. [PMID: 30240627 PMCID: PMC6137323 DOI: 10.1016/j.isci.2018.07.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial diseases produce profound neurological dysfunction via mutations affecting mitochondrial energy production, including the relatively common Leigh syndrome (LS). We recently described an LS case caused by a pathogenic mutation in USMG5, encoding a small supernumerary subunit of mitochondrial ATP synthase. This protein is integral for ATP synthase dimerization, and patient fibroblasts revealed an almost total loss of ATP synthase dimers. Here, we utilize in situ cryoelectron tomography (cryo-ET) in a clinical case-control study of mitochondrial disease to directly study mitochondria within cultured fibroblasts from a patient with LS and a healthy human control subject. Through tomographic analysis of patient and control mitochondria, we find that loss of ATP synthase dimerization due to the pathogenic mutation causes profound disturbances of mitochondrial crista ultrastructure. Overall, this work supports the crucial role of ATP synthase in regulating crista architecture in the context of human disease.
Collapse
Affiliation(s)
- Stephanie E Siegmund
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Robert Grassucci
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen D Carter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Zachary J Farino
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kurenai Tanji
- Department of Cellular, Molecular and Biophysical Studies, Columbia University Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
34
|
Miranda-Astudillo HV, Yadav KNS, Colina-Tenorio L, Bouillenne F, Degand H, Morsomme P, Boekema EJ, Cardol P. The atypical subunit composition of respiratory complexes I and IV is associated with original extra structural domains in Euglena gracilis. Sci Rep 2018; 8:9698. [PMID: 29946152 PMCID: PMC6018760 DOI: 10.1038/s41598-018-28039-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/14/2018] [Indexed: 11/10/2022] Open
Abstract
In mitochondrial oxidative phosphorylation, electron transfer from NADH or succinate to oxygen by a series of large protein complexes in the inner mitochondrial membrane (complexes I-IV) is coupled to the generation of an electrochemical proton gradient, the energy of which is utilized by complex V to generate ATP. In Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes, these respiratory complexes totalize more than 40 Euglenozoa-specific subunits along with about 50 classical subunits described in other eukaryotes. In the present study the Euglena proton-pumping complexes I, III, and IV were purified from isolated mitochondria by a two-steps liquid chromatography approach. Their atypical subunit composition was further resolved and confirmed using a three-steps PAGE analysis coupled to mass spectrometry identification of peptides. The purified complexes were also observed by electron microscopy followed by single-particle analysis. Even if the overall structures of the three oxidases are similar to the structure of canonical enzymes (e.g. from mammals), additional atypical domains were observed in complexes I and IV: an extra domain located at the tip of the peripheral arm of complex I and a "helmet-like" domain on the top of the cytochrome c binding region in complex IV.
Collapse
Affiliation(s)
- H V Miranda-Astudillo
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium
| | - K N S Yadav
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - L Colina-Tenorio
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - F Bouillenne
- InBioS/Center for Protein Engineering, Université de Liège, Liege, Belgium
| | - H Degand
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - E J Boekema
- Department of Electron Microscopy, Groningen Biological Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - P Cardol
- Laboratoire de Génétique et Physiologie des microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Liege, Belgium.
| |
Collapse
|
35
|
Anselmi C, Davies KM, Faraldo-Gómez JD. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force. J Gen Physiol 2018; 150:763-770. [PMID: 29643173 PMCID: PMC5940253 DOI: 10.1085/jgp.201812033] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 03/28/2018] [Indexed: 01/09/2023] Open
Abstract
Adenosine triphosphate (ATP) synthases populate the inner membranes of mitochondria, where they produce the majority of the ATP required by the cell. From yeast to vertebrates, cryoelectron tomograms of these membranes have consistently revealed a very precise organization of these enzymes. Rather than being scattered throughout the membrane, the ATP synthases form dimers, and these dimers are organized into rows that extend for hundreds of nanometers. The rows are only observed in the membrane invaginations known as cristae, specifically along their sharply curved edges. Although the presence of these macromolecular structures has been irrefutably linked to the proper development of cristae morphology, it has been unclear what drives the formation of the rows and why they are specifically localized in the cristae. In this study, we present a quantitative molecular-simulation analysis that strongly suggests that the dimers of ATP synthases organize into rows spontaneously, driven by a long-range attractive force that arises from the relief of the overall elastic strain of the membrane. The strain is caused by the V-like shape of the dimers, unique among membrane protein complexes, which induces a strong deformation in the surrounding membrane. The process of row formation is therefore not a result of direct protein-protein interactions or a specific lipid composition of the membrane. We further hypothesize that, once assembled, the ATP synthase dimer rows prime the inner mitochondrial membrane to develop folds and invaginations by causing macroscopic membrane ridges that ultimately become the edges of cristae. In this way, mitochondrial ATP synthases would contribute to the generation of a morphology that maximizes the surface area of the inner membrane, and thus ATP production. Finally, we outline key experiments that would be required to verify or refute this hypothesis.
Collapse
Affiliation(s)
- Claudio Anselmi
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Karen M Davies
- Lawrence Berkeley National Labs, Berkeley, CA .,Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA
| | - José D Faraldo-Gómez
- Theoretical Molecular Biophysics Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
36
|
Structure of the catalytic F 1 head of the F 1-F o ATP synthase from Trypanosoma brucei. Proc Natl Acad Sci U S A 2018. [PMID: 29523707 DOI: 10.1073/pnas.1801103115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
37
|
Conserved in situ arrangement of complex I and III 2 in mitochondrial respiratory chain supercomplexes of mammals, yeast, and plants. Proc Natl Acad Sci U S A 2018. [PMID: 29519876 PMCID: PMC5866595 DOI: 10.1073/pnas.1720702115] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We used electron cryo-tomography and subtomogram averaging to investigate the structure of complex I and its supramolecular assemblies in the inner mitochondrial membrane of mammals, fungi, and plants. Tomographic volumes containing complex I were averaged at ∼4 nm resolution. Principal component analysis indicated that ∼60% of complex I formed a supercomplex with dimeric complex III, while ∼40% were not associated with other respiratory chain complexes. The mutual arrangement of complex I and III2 was essentially conserved in all supercomplexes investigated. In addition, up to two copies of monomeric complex IV were associated with the complex I1III2 assembly in bovine heart and the yeast Yarrowia lipolytica, but their positions varied. No complex IV was detected in the respiratory supercomplex of the plant Asparagus officinalis Instead, an ∼4.5-nm globular protein density was observed on the matrix side of the complex I membrane arm, which we assign to γ-carbonic anhydrase. Our results demonstrate that respiratory chain supercomplexes in situ have a conserved core of complex I and III2, but otherwise their stoichiometry and structure varies. The conserved features of supercomplex assemblies indicate an important role in respiratory electron transfer.
Collapse
|
38
|
Montgomery MG, Gahura O, Leslie AGW, Zíková A, Walker JE. ATP synthase from Trypanosoma brucei has an elaborated canonical F 1-domain and conventional catalytic sites. Proc Natl Acad Sci U S A 2018; 115:2102-2107. [PMID: 29440423 PMCID: PMC5834723 DOI: 10.1073/pnas.1720940115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures and functions of the components of ATP synthases, especially those subunits involved directly in the catalytic formation of ATP, are widely conserved in metazoans, fungi, eubacteria, and plant chloroplasts. On the basis of a map at 32.5-Å resolution determined in situ in the mitochondria of Trypanosoma brucei by electron cryotomography, it has been proposed that the ATP synthase in this species has a noncanonical structure and different catalytic sites in which the catalytically essential arginine finger is provided not by the α-subunit adjacent to the catalytic nucleotide-binding site as in all species investigated to date, but rather by a protein, p18, found only in the euglenozoa. A crystal structure at 3.2-Å resolution of the catalytic domain of the same enzyme demonstrates that this proposal is incorrect. In many respects, the structure is similar to the structures of F1-ATPases determined previously. The α3β3-spherical portion of the catalytic domain in which the three catalytic sites are found, plus the central stalk, are highly conserved, and the arginine finger is provided conventionally by the α-subunits adjacent to each of the three catalytic sites found in the β-subunits. Thus, the enzyme has a conventional catalytic mechanism. The structure differs from previous described structures by the presence of a p18 subunit, identified only in the euglenozoa, associated with the external surface of each of the three α-subunits, thereby elaborating the F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein with three PPRs and appears to have no function in the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Martin G Montgomery
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Ondřej Gahura
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Andrew G W Leslie
- The Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
39
|
Gahura O, Šubrtová K, Váchová H, Panicucci B, Fearnley IM, Harbour ME, Walker JE, Zíková A. The F 1 -ATPase from Trypanosoma brucei is elaborated by three copies of an additional p18-subunit. FEBS J 2018; 285:614-628. [PMID: 29247468 DOI: 10.1111/febs.14364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/16/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
The F-ATPases (also called the F1 Fo -ATPases or ATP synthases) are multi-subunit membrane-bound molecular machines that produce ATP in bacteria and in eukaryotic mitochondria and chloroplasts. The structures and enzymic mechanisms of their F1 -catalytic domains are highly conserved in all species investigated hitherto. However, there is evidence that the F-ATPases from the group of protozoa known as Euglenozoa have novel features. Therefore, we have isolated pure and active F1 -ATPase from the euglenozoan parasite, Trypanosoma brucei, and characterized it. All of the usual eukaryotic subunits (α, β, γ, δ, and ε) were present in the enzyme, and, in addition, two unique features were detected. First, each of the three α-subunits in the F1 -domain has been cleaved by proteolysis in vivo at two sites eight residues apart, producing two assembled fragments. Second, the T. brucei F1 -ATPase has an additional subunit, called p18, present in three copies per complex. Suppression of expression of p18 affected in vitro growth of both the insect and infectious mammalian forms of T. brucei. It also reduced the levels of monomeric and multimeric F-ATPase complexes and diminished the in vivo hydrolytic activity of the enzyme significantly. These observations imply that p18 plays a role in the assembly of the F1 domain. These unique features of the F1 -ATPase extend the list of special characteristics of the F-ATPase from T. brucei, and also, demonstrate that the architecture of the F1 -ATPase complex is not strictly conserved in eukaryotes.
Collapse
Affiliation(s)
- Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Hana Váchová
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
| | - Ian M Fearnley
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Michael E Harbour
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John E Walker
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Science, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Tulloch LB, Menzies SK, Fraser AL, Gould ER, King EF, Zacharova MK, Florence GJ, Smith TK. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues. PLoS Negl Trop Dis 2017; 11:e0005886. [PMID: 28873407 PMCID: PMC5608556 DOI: 10.1371/journal.pntd.0005886] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/21/2017] [Accepted: 08/21/2017] [Indexed: 12/22/2022] Open
Abstract
Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1, a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3, a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1, to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.
Collapse
Affiliation(s)
- Lindsay B. Tulloch
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Stefanie K. Menzies
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Andrew L. Fraser
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Eoin R. Gould
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Elizabeth F. King
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Marija K. Zacharova
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
| | - Gordon J. Florence
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (TKS); (GJF)
| | - Terry K. Smith
- EaStChem School of Chemistry and School of Biology, Biomedical Science Research Complex, University of St Andrews, St Andrews, Fife, United Kingdom
- * E-mail: (TKS); (GJF)
| |
Collapse
|