1
|
Lipophorin receptors regulate mushroom body development and complex behaviors in Drosophila. BMC Biol 2022; 20:198. [PMID: 36071487 PMCID: PMC9454125 DOI: 10.1186/s12915-022-01393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drosophila melanogaster lipophorin receptors (LpRs), LpR1 and LpR2, are members of the LDLR family known to mediate lipid uptake in a range of organisms from Drosophila to humans. The vertebrate orthologs of LpRs, ApoER2 and VLDL-R, function as receptors of a glycoprotein involved in development of the central nervous system, Reelin, which is not present in flies. ApoER2 and VLDL-R are associated with the development and function of the hippocampus and cerebral cortex, important association areas in the mammalian brain, as well as with neurodevelopmental and neurodegenerative disorders linked to those regions. It is currently unknown whether LpRs play similar roles in the Drosophila brain. RESULTS We report that LpR-deficient flies exhibit impaired olfactory memory and sleep patterns, which seem to reflect anatomical defects found in a critical brain association area, the mushroom bodies (MB). Moreover, cultured MB neurons respond to mammalian Reelin by increasing the complexity of their neurite arborization. This effect depends on LpRs and Dab, the Drosophila ortholog of the Reelin signaling adaptor protein Dab1. In vitro, two of the long isoforms of LpRs allow the internalization of Reelin, suggesting that Drosophila LpRs interact with human Reelin to induce downstream cellular events. CONCLUSIONS These findings demonstrate that LpRs contribute to MB development and function, supporting the existence of a LpR-dependent signaling in Drosophila, and advance our understanding of the molecular factors functioning in neural systems to generate complex behaviors in this model. Our results further emphasize the importance of Drosophila as a model to investigate the alterations in specific genes contributing to neural disorders.
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Kotsyuba E, Dyachuk V. Immunocytochemical Localization of Enzymes Involved in Dopamine, Serotonin, and Acetylcholine Synthesis in the Optic Neuropils and Neuroendocrine System of Eyestalks of Paralithodes camtschaticus. Front Neuroanat 2022; 16:844654. [PMID: 35464134 PMCID: PMC9024244 DOI: 10.3389/fnana.2022.844654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
Abstract
Identifying the neurotransmitters secreted by specific neurons in crustacean eyestalks is crucial to understanding their physiological roles. Here, we combined immunocytochemistry with confocal microscopy and identified the neurotransmitters dopamine (DA), serotonin (5-HT), and acetylcholine (ACh) in the optic neuropils and X-organ sinus gland (XO-SG) complex of the eyestalks of Paralithodes camtschaticus (red king crab). The distribution of Ach neurons was studied by choline acetyltransferase (ChAT) immunohistochemistry and compared with that of DA neurons examined in the same or adjacent sections by tyrosine hydroxylase (TH) immunohistochemistry. We detected 5-HT, TH, and ChAT in columnar, amacrine, and tangential neurons in the optic neuropils and established the presence of immunoreactive fibers and neurons in the terminal medulla in the XO region of the lateral protocerebrum. Additionally, we detected ChAT and 5-HT in the endogenous cells of the SG of P. camtschaticus for the first time. Furthermore, localization of 5-HT- and ChAT-positive cells in the SG indicated that these neurotransmitters locally modulate the secretion of neurohormones that are synthesized in the XO. These findings establish the presence of several neurotransmitters in the XO-SG complex of P. camtschaticus.
Collapse
|
4
|
Martin C, Jahn H, Klein M, Hammel JU, Stevenson PA, Homberg U, Mayer G. The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biol 2022; 20:26. [PMID: 35073910 PMCID: PMC9136957 DOI: 10.1186/s12915-021-01196-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of the brain and its major neuropils in Panarthropoda (comprising Arthropoda, Tardigrada and Onychophora) remains enigmatic. As one of the closest relatives of arthropods, onychophorans are regarded as indispensable for a broad understanding of the evolution of panarthropod organ systems, including the brain, whose anatomical and functional organisation is often used to gain insights into evolutionary relations. However, while numerous recent studies have clarified the organisation of many arthropod nervous systems, a detailed investigation of the onychophoran brain with current state-of-the-art approaches is lacking, and further inconsistencies in nomenclature and interpretation hamper its understanding. To clarify the origins and homology of cerebral structures across panarthropods, we analysed the brain architecture in the onychophoran Euperipatoides rowelli by combining X-ray micro-computed tomography, histology, immunohistochemistry, confocal microscopy, and three-dimensional reconstruction. RESULTS Here, we use this detailed information to generate a consistent glossary for neuroanatomical studies of Onychophora. In addition, we report novel cerebral structures, provide novel details on previously known brain areas, and characterise further structures and neuropils in order to improve the reproducibility of neuroanatomical observations. Our findings support homology of mushroom bodies and central bodies in onychophorans and arthropods. Their antennal nerve cords and olfactory lobes most likely evolved independently. In contrast to previous reports, we found no evidence for second-order visual neuropils, or a frontal ganglion in the velvet worm brain. CONCLUSION We imaged the velvet worm nervous system at an unprecedented level of detail and compiled a comprehensive glossary of known and previously uncharacterised neuroanatomical structures to provide an in-depth characterisation of the onychophoran brain architecture. We expect that our data will improve the reproducibility and comparability of future neuroanatomical studies.
Collapse
Affiliation(s)
- Christine Martin
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| | - Henry Jahn
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Mercedes Klein
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum hereon, 21502, Geesthacht, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behaviour, Institute of Biology, University of Leipzig, 04103, Leipzig, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-Universität Marburg, 35043, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35032, Marburg, Germany
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, 34132, Kassel, Germany.
| |
Collapse
|
5
|
Harzsch S, Dircksen H, Hansson BS. Local olfactory interneurons provide the basis for neurochemical regionalization of olfactory glomeruli in crustaceans. J Comp Neurol 2021; 530:1399-1422. [PMID: 34843626 DOI: 10.1002/cne.25283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
The primary olfactory centers of metazoans as diverse as arthropods and mammals consist of an array of fields of dense synaptic neuropil, the olfactory glomeruli. However, the neurochemical structure of crustacean olfactory glomeruli is largely understudied when compared to the insects. We analyzed the glomerular architecture in selected species of hermit crabs using immunohistochemistry against presynaptic proteins, the neuropeptides orcokinin, RFamide and allatostatin, and the biogenic amine serotonin. Our study reveals an unexpected level of structural complexity, unmatched by what is found in the insect olfactory glomeruli. Peptidergic and aminergic interneurons provide the structural basis for a regionalization of the crustacean glomeruli into longitudinal and concentric compartments. Our data suggest that local olfactory interneurons take a central computational role in modulating the information transfer from olfactory sensory neurons to projection neurons within the glomeruli. Furthermore, we found yet unknown neuronal elements mediating lateral inhibitory interactions across the glomerular array that may play a central role in modulating the transfer of sensory input to the output neurons through presynaptic inhibition. Our study is another step in understanding the function of crustacean olfactory glomeruli as highly complex units of local olfactory processing.
Collapse
Affiliation(s)
- Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | | | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
6
|
Harzsch S, Krieger J. Genealogical relationships of mushroom bodies, hemiellipsoid bodies, and their afferent pathways in the brains of Pancrustacea: Recent progress and open questions. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 65:101100. [PMID: 34488068 DOI: 10.1016/j.asd.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
According to all latest phylogenetic analyses, the taxon Pancrustacea embraces the crustaceans in the traditional sense and the hexapods. Members of the Pancrustacea for a long time have been known to display distinct similarities in the architecture of their brains. Here, we review recent progress and open questions concerning structural and functional communalities of selected higher integrative neuropils in the lateral protocerebrum of pancrustaceans, the mushroom bodies and hemiellipsoid bodies. We also discuss the projection neuron pathway which provides a distinct input channel to both mushroom and hemiellipsoid bodies from the primary chemosensory centers in the deutocerebrum. Neuronal characters are mapped on a current pancrustacean phylogeny in order to extract those characters that are part of the pancrustacean ground pattern. Furthermore, we summarize recent insights into the evolutionary transformation of mushroom body morphology across the Pancrustacea.
Collapse
Affiliation(s)
- S Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| | - J Krieger
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| |
Collapse
|
7
|
Strausfeld NJ. Mushroom bodies and reniform bodies coexisting in crabs cannot both be homologs of the insect mushroom body. J Comp Neurol 2021; 529:3265-3271. [PMID: 33829500 DOI: 10.1002/cne.25152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/06/2022]
Abstract
In one species of shore crab (Brachyura, Varunidae), a center that supports long-term visual habituation and that matches the reniform body's morphology has been claimed as a homolog of the insect mushroom body despite lacking traits that define it as such. The discovery in a related species of shore crab of a mushroom body possessing those defining traits renders that interpretation unsound. Two phenotypically distinct, coexisting centers cannot both be homologs of the insect mushroom body. The present commentary outlines the history of research leading to misidentification of the reniform body as a mushroom body. One conclusion is that if both centers support learning and memory, this would be viewed as a novel and fascinating attribute of the pancrustacean brain.
Collapse
|
8
|
Strausfeld N, Sayre ME. Shore crabs reveal novel evolutionary attributes of the mushroom body. eLife 2021; 10:65167. [PMID: 33559601 PMCID: PMC7872517 DOI: 10.7554/elife.65167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.
Collapse
Affiliation(s)
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Krieger J, Hörnig MK, Kenning M, Hansson BS, Harzsch S. More than one way to smell ashore - Evolution of the olfactory pathway in terrestrial malacostracan crustaceans. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101022. [PMID: 33385761 DOI: 10.1016/j.asd.2020.101022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Crustaceans provide a fascinating opportunity for studying adaptations to a terrestrial lifestyle because within this group, the conquest of land has occurred at least ten times convergently. The evolutionary transition from water to land demands various morphological and physiological adaptations of tissues and organs including the sensory and nervous system. In this review, we aim to compare the brain architecture between selected terrestrial and closely related marine representatives of the crustacean taxa Amphipoda, Isopoda, Brachyura, and Anomala with an emphasis on the elements of the olfactory pathway including receptor molecules. Our comparison of neuroanatomical structures between terrestrial members and their close aquatic relatives suggests that during the convergent evolution of terrestrial life-styles, the elements of the olfactory pathway were subject to different morphological transformations. In terrestrial anomalans (Coenobitidae), the elements of the primary olfactory pathway (antennules and olfactory lobes) are in general considerably enlarged whereas they are smaller in terrestrial brachyurans compared to their aquatic relatives. Studies on the repertoire of receptor molecules in Coenobitidae do not point to specific terrestrial adaptations but suggest that perireceptor events - processes in the receptor environment before the stimuli bind - may play an important role for aerial olfaction in this group. In terrestrial members of amphipods (Amphipoda: Talitridae) as well as of isopods (Isopoda: Oniscidea), however, the antennules and olfactory sensilla (aesthetascs) are largely reduced and miniaturized. Consequently, their primary olfactory processing centers are suggested to have been lost during the evolution of a life on land. Nevertheless, in terrestrial Peracarida, the (second) antennae as well as their associated tritocerebral processing structures are presumed to compensate for this loss or rather considerable reduction of the (deutocerebral) primary olfactory pathway. We conclude that after the evolutionary transition from water to land, it is not trivial for arthropods to establish aerial olfaction. If we consider insects as an ingroup of Crustacea, then the Coenobitidae and Insecta may be seen as the most successful crustacean representatives in this respect.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Matthes Kenning
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| | - Bill S Hansson
- Max-Planck-Institute for Chemical Ecology, Department of Evolutionary Neuroethology, 07745, Jena, Germany.
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17489, Greifswald, Germany.
| |
Collapse
|
10
|
Krieger J, Hörnig MK, Laidre ME. Shells as 'extended architecture': to escape isolation, social hermit crabs choose shells with the right external architecture. Anim Cogn 2020; 23:1177-1187. [PMID: 32770436 PMCID: PMC7700067 DOI: 10.1007/s10071-020-01419-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Animals' cognitive abilities can be tested by allowing them to choose between alternatives, with only one alternative offering the correct solution to a novel problem. Hermit crabs are evolutionarily specialized to navigate while carrying a shell, with alternative shells representing different forms of 'extended architecture', which effectively change the extent of physical space an individual occupies in the world. It is unknown whether individuals can choose such architecture to solve novel navigational problems. Here, we designed an experiment in which social hermit crabs (Coenobita compressus) had to choose between two alternative shells to solve a novel problem: escaping solitary confinement. Using X-ray microtomography and 3D-printing, we copied preferred shell types and then made artificial alterations to their inner or outer shell architecture, designing only some shells to have the correct architectural fit for escaping the opening of an isolated crab's enclosure. In our 'escape artist' experimental design, crabs had to choose an otherwise less preferred shell, since only this shell had the right external architecture to allow the crab to free itself from isolation. Across multiple experiments, crabs were willing to forgo preferred shells and choose less preferred shells that enabled them to escape, suggesting these animals can solve novel navigational problems with extended architecture. Yet, it remains unclear if individuals solved this problem through trial-and-error or were aware of the deeper connection between escape and exterior shell architecture. Our experiments offer a foundation for further explorations of physical, social, and spatial cognition within the context of extended architecture.
Collapse
Affiliation(s)
- Jakob Krieger
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany.
| | - Marie K Hörnig
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Soldmannstraße 23, 17489, Greifswald, Germany
| | - Mark E Laidre
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
11
|
Maza FJ, Sztarker J, Cozzarin ME, Lepore MG, Delorenzi A. A crabs' high-order brain center resolved as a mushroom body-like structure. J Comp Neurol 2020; 529:501-523. [PMID: 32484921 DOI: 10.1002/cne.24960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
The hypothesis of a common origin for high-order memory centers in bilateral animals presents the question of how different brain structures, such as the vertebrate hippocampus and the arthropod mushroom bodies, are both structurally and functionally comparable. Obtaining evidence to support the hypothesis that crustaceans possess structures equivalent to the mushroom bodies that play a role in associative memories has proved challenging. Structural evidence supports that the hemiellipsoid bodies of hermit crabs, crayfish and lobsters, spiny lobsters, and shrimps are homologous to insect mushroom bodies. Although a preliminary description and functional evidence supporting such homology in true crabs (Brachyura) has recently been shown, other authors consider the identification of a possible mushroom body homolog in Brachyura as problematic. Here we present morphological and immunohistochemical data in Neohelice granulata supporting that crabs possess well-developed hemiellipsoid bodies that are resolved as mushroom bodies-like structures. Neohelice exhibits a peduncle-like tract, from which processes project into proximal and distal domains with different neuronal specializations. The proximal domains exhibit spines and en passant-like processes and are proposed here as regions mainly receiving inputs. The distal domains exhibit a "trauben"-like compartmentalized structure with bulky terminal specializations and are proposed here as output regions. In addition, we found microglomeruli-like complexes, adult neurogenesis, aminergic innervation, and elevated expression of proteins necessary for memory processes. Finally, in vivo calcium imaging suggests that, as in insect mushroom bodies, the output regions exhibit stimulus-specific activity. Our results support the shared organization of memory centers across crustaceans and insects.
Collapse
Affiliation(s)
- Francisco Javier Maza
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Julieta Sztarker
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Eugenia Cozzarin
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Maria Grazia Lepore
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Delorenzi
- IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado", Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
12
|
Strausfeld NJ, Wolff GH, Sayre ME. Mushroom body evolution demonstrates homology and divergence across Pancrustacea. eLife 2020; 9:e52411. [PMID: 32124731 PMCID: PMC7054004 DOI: 10.7554/elife.52411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Descriptions of crustacean brains have focused mainly on three highly derived lineages of malacostracans: the reptantian infraorders represented by spiny lobsters, lobsters, and crayfish. Those descriptions advocate the view that dome- or cap-like neuropils, referred to as 'hemiellipsoid bodies,' are the ground pattern organization of centers that are comparable to insect mushroom bodies in processing olfactory information. Here we challenge the doctrine that hemiellipsoid bodies are a derived trait of crustaceans, whereas mushroom bodies are a derived trait of hexapods. We demonstrate that mushroom bodies typify lineages that arose before Reptantia and exist in Reptantia thereby indicating that the mushroom body, not the hemiellipsoid body, provides the ground pattern for both crustaceans and hexapods. We show that evolved variations of the mushroom body ground pattern are, in some lineages, defined by extreme diminution or loss and, in others, by the incorporation of mushroom body circuits into lobeless centers. Such transformations are ascribed to modifications of the columnar organization of mushroom body lobes that, as shown in Drosophila and other hexapods, contain networks essential for learning and memory.
Collapse
Affiliation(s)
- Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and BehaviorUniversity of ArizonaTucsonUnited States
| | | | | |
Collapse
|
13
|
Gonzalez H, Bloise L, Maza FJ, Molina VA, Delorenzi A. Memory built in conjunction with a stressor is privileged: Reconsolidation-resistant memories in the crab Neohelice. Brain Res Bull 2020; 157:108-118. [PMID: 32017969 DOI: 10.1016/j.brainresbull.2020.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
The dynamics of memory processes are conserved throughout evolution, a feature based on the hypothesis of a common origin of the high-order memory centers in bilateral animals. Reconsolidation is just one example. The possibility to interfere with long-term memory expression during reconsolidation has been proposed as potentially useful in clinical application to treat traumatic memories. However, several pieces of evidence in rodents show that either robust fear memories or stressful events applied before acquisition promote reconsolidation-resistant memories, i.e., memories that are resistant to the interfering effect of drugs on memory reconsolidation. Conceivably, the generation of these reconsolidation-resistant fear memories also occurs in humans. Is the induction of reconsolidation-resistant memories part of the dynamics of memory processes conserved throughout evolution? In the semiterrestrial crab Neohelice granulata, memory reconsolidation is triggered by a short reminder without reinforcement. Here, we show that an increase in the salience of the aversive stimulus augmented the memory strength; nonetheless, the protein synthesis inhibitor cycloheximide still disrupted the reconsolidation process. However, crabs stressed by a water-deprivation episode before a strong training session built up a memory that was now reconsolidation-resistant. We tested whether these reconsolidation-resistant effects can be challenged by changing parametric conditions of memory-reminder sessions; multiple memory reactivations without reinforcement were not able to trigger the labilization-reconsolidation of this resistant memory. Overall, the present findings suggest that generation of reconsolidation-resistant memories can be another part of the dynamics of memory processes conserved throughout evolution that protects privileged information from change.
Collapse
Affiliation(s)
- Heidi Gonzalez
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Leonardo Bloise
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Francisco J Maza
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| | - Víctor A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - Alejandro Delorenzi
- Departamento de Fisiologíay Biología Molecular y Celular, IFIByNE-CONICET, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
14
|
Krieger J, Hörnig MK, Sandeman RE, Sandeman DC, Harzsch S. Masters of communication: The brain of the banded cleaner shrimp Stenopus hispidus (Olivier, 1811) with an emphasis on sensory processing areas. J Comp Neurol 2019; 528:1561-1587. [PMID: 31792962 DOI: 10.1002/cne.24831] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
The pan-tropic cleaner shrimp Stenopus hispidus (Crustacea, Stenopodidea) is famous for its specific cleaning behavior in association with client fish and an exclusively monogamous life-style. Cleaner shrimps feature a broad communicative repertoire, which is considered to depend on superb motor skills and the underlying mechanosensory circuits in combination with sensory organs. Their most prominent head appendages are the two pairs of very long biramous antennules and antennae, which are used both for attracting client fish and for intraspecific communication. Here, we studied the brain anatomy of several specimens of S. hispidus using histological sections, immunohistochemical labeling as well as X-ray microtomography in combination with 3D reconstructions. Furthermore, we investigated the morphology of antennules and antennae using fluorescence and scanning electron microscopy. Our analyses show that in addition to the complex organization of the multimodal processing centers, especially chemomechanosensory neuropils associated with the antennule and antenna are markedly pronounced when compared to the other neuropils of the central brain. We suggest that in their brains, three topographic maps are present corresponding to the sensory appendages. The brain areas which provide the neuronal substrate for these maps share distinct structural similarities to a unique extent in decapods, such as size and characteristic striated and perpendicular layering. We discuss our findings with respect to the sensory landscape within animal's habitat. In an evolutionary perspective, the cleaner shrimp's brain is an excellent example of how sensory potential and functional demands shape the architecture of primary chemomechanosensory processing areas.
Collapse
Affiliation(s)
- Jakob Krieger
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Renate E Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - David C Sandeman
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Greifswald, Germany
| |
Collapse
|
15
|
Thoen HH, Wolff GH, Marshall J, Sayre ME, Strausfeld NJ. The reniform body: An integrative lateral protocerebral neuropil complex of Eumalacostraca identified in Stomatopoda and Brachyura. J Comp Neurol 2019; 528:1079-1094. [PMID: 31621907 DOI: 10.1002/cne.24788] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 11/10/2022]
Abstract
Mantis shrimps (Stomatopoda) possess in common with other crustaceans, and with Hexapoda, specific neuroanatomical attributes of the protocerebrum, the most anterior part of the arthropod brain. These attributes include assemblages of interconnected centers called the central body complex and in the lateral protocerebra, situated in the eyestalks, paired mushroom bodies. The phenotypic homologues of these centers across Panarthropoda support the view that ancestral integrative circuits crucial to action selection and memory have persisted since the early Cambrian or late Ediacaran. However, the discovery of another prominent integrative neuropil in the stomatopod lateral protocerebrum raises the question whether it is unique to Stomatopoda or at least most developed in this lineage, which may have originated in the upper Ordovician or early Devonian. Here, we describe the neuroanatomical structure of this center, called the reniform body. Using confocal microscopy and classical silver staining, we demonstrate that the reniform body receives inputs from multiple sources, including the optic lobe's lobula. Although the mushroom body also receives projections from the lobula, it is entirely distinct from the reniform body, albeit connected to it by discrete tracts. We discuss the implications of their coexistence in Stomatopoda, the occurrence of the reniform body in another eumalacostracan lineage and what this may mean for our understanding of brain functionality in Pancrustacea.
Collapse
Affiliation(s)
- Hanne Halkinrud Thoen
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| |
Collapse
|
16
|
Beltz BS. Adaptations to extreme conditions. eLife 2019; 8:50647. [PMID: 31469073 PMCID: PMC6716961 DOI: 10.7554/elife.50647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 11/13/2022] Open
Abstract
The brain architecture of shrimp living in deep-sea vents provides clues to how these organisms have adapted to extreme living.
Collapse
Affiliation(s)
- Barbara S Beltz
- Neuroscience Department, Wellesley College, Wellesley, United States
| |
Collapse
|
17
|
Strausfeld NJ, Sayre ME. Mushroom bodies in Reptantia reflect a major transition in crustacean brain evolution. J Comp Neurol 2019; 528:261-282. [PMID: 31376285 DOI: 10.1002/cne.24752] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 11/11/2022]
Abstract
Brain centers possessing a suite of neuroanatomical characters that define mushroom bodies of dicondylic insects have been identified in mantis shrimps, which are basal malacostracan crustaceans. Recent studies of the caridean shrimp Lebbeus groenlandicus further demonstrate the existence of mushroom bodies in Malacostraca. Nevertheless, received opinion promulgates the hypothesis that domed centers called hemiellipsoid bodies typifying reptantian crustaceans, such as lobsters and crayfish, represent the malacostracan cerebral ground pattern. Here, we provide evidence from the marine hermit crab Pagurus hirsutiusculus that refutes this view. P. hirsutiusculus, which is a member of the infraorder Anomura, reveals a chimeric morphology that incorporates features of a domed hemiellipsoid body and a columnar mushroom body. These attributes indicate that a mushroom body morphology is the ancestral ground pattern, from which the domed hemiellipsoid body derives and that the "standard" reptantian hemiellipsoid bodies that typify Astacidea and Achelata are extreme examples of divergence from this ground pattern. This interpretation is underpinned by comparing the lateral protocerebrum of Pagurus with that of the crayfish Procambarus clarkii and Orconectes immunis, members of the reptantian infraorder Astacidea.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Machon J, Krieger J, Meth R, Zbinden M, Ravaux J, Montagné N, Chertemps T, Harzsch S. Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers. eLife 2019; 8:e47550. [PMID: 31383255 PMCID: PMC6684273 DOI: 10.7554/elife.47550] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/13/2022] Open
Abstract
Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea.
Collapse
Affiliation(s)
- Julia Machon
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Jakob Krieger
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Rebecca Meth
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| | - Magali Zbinden
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Juliette Ravaux
- Sorbonne Université, UMR CNRS MNHN 7208 Biologie des organismes et écosystèmes aquatiques (BOREA), Equipe Adaptation aux Milieux ExtrêmesParisFrance
| | - Nicolas Montagné
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Thomas Chertemps
- Sorbonne Université, UPEC, Univ Paris Diderot, CNRS, INRA, IRD, Institute of Ecology & Environmental Sciences of Paris (iEES-Paris)ParisFrance
| | - Steffen Harzsch
- Department of Cytology and Evolutionary BiologyUniversity of Greifswald, Zoological Institute and MuseumGreifswaldGermany
| |
Collapse
|
19
|
Sayre ME, Strausfeld NJ. Mushroom bodies in crustaceans: Insect-like organization in the caridid shrimp Lebbeus groenlandicus. J Comp Neurol 2019; 527:2371-2387. [PMID: 30861118 DOI: 10.1002/cne.24678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 11/11/2022]
Abstract
Paired centers in the forebrain of insects, called the mushroom bodies, have become the most investigated brain region of any invertebrate due to novel genetic strategies that relate unique morphological attributes of these centers to their functional roles in learning and memory. Mushroom bodies possessing all the morphological attributes of those in dicondylic insects have been identified in mantis shrimps, basal hoplocarid crustaceans that are sister to Eumalacostraca, the most species-rich group of Crustacea. However, unless other examples of mushroom bodies can be identified in Eumalacostraca, the possibility is that mushroom body-like centers may have undergone convergent evolution in Hoplocarida and are unique to this crustacean lineage. Here, we provide evidence that speaks against convergent evolution, describing in detail the paired mushroom bodies in the lateral protocerebrum of a decapod crustacean, Lebbeus groenlandicus, a species belonging to the infraorder Caridea, an ancient lineage of Eumalacostraca.
Collapse
Affiliation(s)
- Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Nicholas J Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, Arizona
| |
Collapse
|
20
|
Wittfoth C, Harzsch S. Adult neurogenesis in the central olfactory pathway of dendrobranchiate and caridean shrimps: New insights into the evolution of the deutocerebral proliferative system in reptant decapods. Dev Neurobiol 2018; 78:757-774. [PMID: 29663684 DOI: 10.1002/dneu.22596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/10/2022]
Abstract
Persistent neurogenesis in the central olfactory pathway characterizes many reptant decapods such as lobsters, crayfish and crabs. In these animals, the deutocerebral proliferative system generates new neurons which integrate into the neuronal network of the first order processing neuropil of the olfactory system, the deutocerebral chemosensory lobes (also called olfactory lobes). However, differences concerning the phenotype and the mechanisms that drive adult neurogenesis were reported in crayfish versus spiny lobsters. While numerous studies have focussed on these mechanisms and regulation of adult neurogenesis, investigations about the phylogenetic distribution are missing. To contribute an evolutionary perspective on adult neurogenesis in decapods, we investigated two representatives of basally diverging lineages, the dendrobranchiate Penaeus vannamei and the caridean Crangon crangon using the thymidine analogue Bromodeoxyuridine (BrdU) as marker for the S phase of cycling cells. Compared to reptant decapods, our results suggest a simpler mechanism of neurogenesis in the adult brain of dendrobranchiate and caridean shrimps. Observed differences in the rate of proliferation and spatial dimensions are suggested to correlate with the complexity of the olfactory system. We assume that a more complex and mitotically more active proliferative system in reptant decapods evolved with the emergence of another processing neuropil, the accessory lobes. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018.
Collapse
Affiliation(s)
- Christin Wittfoth
- Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt University of Greifswald, Zoological Institute & Museum, Greifswald, Germany
- Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Ernst-Moritz-Arndt University of Greifswald, Zoological Institute & Museum, Greifswald, Germany
| |
Collapse
|
21
|
Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog Neurobiol 2017; 161:23-60. [PMID: 29197652 DOI: 10.1016/j.pneurobio.2017.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
Abstract
Malacostracan crustaceans display a large diversity of sizes, morphs and life styles. However, only a few representatives of decapod taxa have served as models for analyzing crustacean olfaction, such as crayfish and spiny lobsters. Crustaceans bear multiple parallel chemosensory pathways represented by different populations of unimodal chemosensory and bimodal chemo- and mechanosensory sensilla on the mouthparts, the walking limbs and primarily on their two pairs of antennae. Here, we focus on the olfactory pathway associated with the unimodal chemosensory sensilla on the first antennal pair, the aesthetascs. We explore the diverse arrangement of these sensilla across malacostracan taxa and point out evolutionary transformations which occurred in the central olfactory pathway. We discuss the evolution of chemoreceptor proteins, comparative aspects of active chemoreception and the temporal resolution of crustacean olfactory system. Viewing the evolution of crustacean brains in light of energetic constraints can help us understand their functional morphology and suggests that in various crustacean lineages, the brains were simplified convergently because of metabolic limitations. Comparing the wiring of afferents, interneurons and output neurons within the olfactory glomeruli suggests a deep homology of insect and crustacean olfactory systems. However, both taxa followed distinct lineages during the evolutionary elaboration of their olfactory systems. A comparison with insects suggests their olfactory systems ö especially that of the vinegar fly ö to be superb examples for "economy of design". Such a comparison also inspires new thoughts about olfactory coding and the functioning of malacostracan olfactory systems in general.
Collapse
|
22
|
Wolff GH, Thoen HH, Marshall J, Sayre ME, Strausfeld NJ. An insect-like mushroom body in a crustacean brain. eLife 2017; 6:29889. [PMID: 28949916 PMCID: PMC5614564 DOI: 10.7554/elife.29889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. With more than four million species, arthropods are the largest and most diverse group of animals on the planet and include, for example, crustaceans, insects and spiders. They are defined by their segmented bodies, hard outer skeletons and jointed limbs. All arthropods share a common ancestor that lived more than 550 million years ago. Exactly how this ancestral arthropod gave rise to the myriad species that exist today is unclear but we know that at some point the arthropod family tree split into branches, one of which went on to become the crustaceans. The crustacean branch then split again, giving rise to a line of descendants that would become the insects. But although insects evolved from crustaceans, the brains of insects possess structures that those of crustaceans do not. Known as mushroom bodies, these structures help to form and store memories. Their absence in crustaceans has therefore been an enduring mystery. Wolff et al. now add a piece to the puzzle by showing that one group of modern-day crustaceans, the mantis shrimps, does in fact possess mushroom bodies. By visualizing cells and pathways within the brains of mantis shrimps, and also a number of closely related species, Wolff et al. show that only these shrimps possess true mushroom bodies. However, some of the mantis shrimp’s close relatives possess a few attributes of these structures. This suggests that mushroom bodies are evolutionarily ancient structures that arose in a common ancestor of insects and crustaceans, before being lost or radically modified in most of the crustaceans. So why did this happen? Mantis shrimps are top predators with excellent vision that hunt over considerable distances, requiring them to evaluate and memorize complex features of their environment. These cognitive demands, which might not be shared by other crustaceans, may have led to the mantis shrimps retaining their mushroom bodies. Further research into the brains and behavior of the mantis shrimp may provide insights into how mushroom bodies construct memories of a complex sensory world.
Collapse
Affiliation(s)
| | | | - Justin Marshall
- Sensory Neurobiology Group, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| |
Collapse
|
23
|
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E. The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 2017; 220:2318-2327. [DOI: 10.1242/jeb.143222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge – acquired through both laboratory and field studies – on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, CONICET, Argentina
| | - Estela Lanza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
24
|
Larrosa PNF, Ojea A, Ojea I, Molina VA, Zorrilla-Zubilete MA, Delorenzi A. Retrieval under stress decreases the long-term expression of a human declarative memory via reconsolidation. Neurobiol Learn Mem 2017; 142:135-145. [PMID: 28285131 DOI: 10.1016/j.nlm.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/02/2017] [Accepted: 03/06/2017] [Indexed: 12/25/2022]
Abstract
Acute stress impairs memory retrieval of several types of memories. An increase in glucocorticoids, several minutes after stressful events, is described as essential to the impairing retrieval-effects of stressors. Moreover, memory retrieval under stress can have long-term consequences. Through what process does the reactivated memory under stress, despite the disrupting retrieval effects, modify long-term memories? The reconsolidation hypothesis proposes that a previously consolidated memory reactivated by a reminder enters a vulnerability phase (labilization) during which it is transiently sensitive to modulation, followed by a re-stabilization phase. However, previous studies show that the expression of memories during reminder sessions is not a condition to trigger the reconsolidation process since unexpressed memories can be reactivated and labilized. Here we evaluate whether it is possible to reactivate-labilize a memory under the impairing-effects of a mild stressor. We used a paradigm of human declarative memory whose reminder structure allows us to differentiate between a reactivated-labile memory state and a reactivated but non-labile state. Subjects memorized a list of five cue-syllables associated with their respective response-syllables. Seventy-two hours later, results showed that the retrieval of the paired-associate memory was impaired when tested 20min after a mild stressor (cold pressor stress (CPS)) administration, coincident with cortisol levels increase. Then, we investigated the long-term effects of CPS administration prior to the reminder session. Under conditions where the reminder initiates the reconsolidation process, CPS impaired the long-term memory expression tested 24h later. In contrast, CPS did not show effects when administered before a reminder session that does not trigger reconsolidation. Results showed that memory reactivation-labilization occurs even when retrieval was impaired. Memory reactivation under stress could hinder -via reconsolidation- the probability of the traces to be expressed in the long term.
Collapse
Affiliation(s)
- Pablo Nicolás Fernández Larrosa
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Alejandro Ojea
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina
| | - Ignacio Ojea
- Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - Inst. de Investigaciones Matemáticas "Luis A. Santalo ́", CONICET-UBA, Argentina.
| | - Victor Alejandro Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, IFEC-CONICET-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina.
| | - María Aurelia Zorrilla-Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO - CONICET), Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | - Alejandro Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria C1428EHA, Argentina.
| |
Collapse
|
25
|
Eichenbaum H. The role of the hippocampus in navigation is memory. J Neurophysiol 2017; 117:1785-1796. [PMID: 28148640 PMCID: PMC5384971 DOI: 10.1152/jn.00005.2017] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/22/2022] Open
Abstract
There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization.
Collapse
Affiliation(s)
- Howard Eichenbaum
- Center for Memory and Brain, Boston University, Boston, Massachusetts
| |
Collapse
|