1
|
Beernink BM, Vogel JP, Lei L. Enhancers in Plant Development, Adaptation and Evolution. PLANT & CELL PHYSIOLOGY 2025; 66:461-476. [PMID: 39412125 PMCID: PMC12085095 DOI: 10.1093/pcp/pcae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/13/2024] [Accepted: 10/09/2024] [Indexed: 05/18/2025]
Abstract
Understanding plant responses to developmental and environmental cues is crucial for studying morphological divergence and local adaptation. Gene expression changes, governed by cis-regulatory modules (CRMs) including enhancers, are a major source of plant phenotypic variation. However, while genome-wide approaches have revealed thousands of putative enhancers in mammals, far fewer have been identified and functionally characterized in plants. This review provides an overview of how enhancers function to control gene regulation, methods to predict DNA sequences that may have enhancer activity, methods utilized to functionally validate enhancers and the current knowledge of enhancers in plants, including how they impact plant development, response to environment and evolutionary adaptation.
Collapse
Affiliation(s)
- Bliss M Beernink
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - John P Vogel
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Li Lei
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Takou M, Bellis ES, Lasky JR. Predicting gene expression responses to environment in Arabidopsis thaliana using natural variation in DNA sequence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.25.591174. [PMID: 38712066 PMCID: PMC11071634 DOI: 10.1101/2024.04.25.591174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The evolution of gene expression responses is a critical component of adaptation to variable environments. Predicting how DNA sequence influences expression is challenging because the genotype to phenotype map is not well resolved for cis regulatory elements, transcription factor binding, regulatory interactions, and epigenetic features, not to mention how these factors respond to environment. We tested if flexible machine learning models could learn some of the underlying cis-regulatory genotype to phenotype map. We tested this approach using cold-responsive transcriptome profiles in 5 diverse Arabidopsis thaliana accessions. We first tested for evidence that cis regulation plays a role in environmental response, finding 14 and 15 motifs that were significantly enriched within the up- and down-stream regions of cold-responsive differentially regulated genes (DEGs). We next applied convolutional neural networks (CNNs), which learn de novo cis-regulatory motifs in DNA sequences to predict expression response to environment. We found that CNNs predicted differential expression with moderate accuracy, with evidence that predictions were hindered by biological complexity of regulation and the large potential regulatory code. Overall, approaches to predict DEGs between specific environments based only on proximate DNA sequences require further development, and additional information may be required.
Collapse
Affiliation(s)
| | - Emily S Bellis
- Pennsylvania State University, University Park, 16802, USA
- Department of Computer Science, Arkansas State University, Jonesboro AR
| | - Jesse R Lasky
- Pennsylvania State University, University Park, 16802, USA
| |
Collapse
|
3
|
Mishra P, Barrera TS, Grieshop K, Agrawal AF. Cis-regulatory Variation in Relation to Sex and Sexual Dimorphism in Drosophila melanogaster. Genome Biol Evol 2024; 16:evae234. [PMID: 39613311 DOI: 10.1093/gbe/evae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2024] [Indexed: 12/01/2024] Open
Abstract
Much of sexual dimorphism is likely due to sex-biased gene expression, which results from differential regulation of a genome that is largely shared between males and females. Here, we use allele-specific expression to explore cis-regulatory variation in Drosophila melanogaster in relation to sex. We develop a Bayesian framework to infer the transcriptome-wide joint distribution of cis-regulatory effects across the sexes. We also examine patterns of cis-regulatory variation with respect to two other levels of variation in sexual dimorphism: (i) across genes that vary in their degree of sex-biased expression and (ii) among tissues that vary in their degree of dimorphism (e.g. relatively low dimorphism in heads vs. high dimorphism in gonads). We uncover evidence of widespread cis-regulatory variation in all tissues examined, with female-biased genes being especially enriched for this variation. A sizeable proportion of cis-regulatory variation is inferred to have sex-specific effects, with sex-dependent cis effects being much more frequent in gonads than in heads. Finally, we find some genes where 1 allele contributes to more than 50% of a gene's expression in heterozygous males but <50% of its expression in heterozygous females. Such variants could provide a mechanism for sex-specific dominance reversals, a phenomenon important for sexually antagonistic balancing selection. However, tissue differences in allelic imbalance are approximately as frequent as sex differences, perhaps suggesting that sexual conflict may not be particularly unique in shaping patterns of expression variation.
Collapse
Affiliation(s)
- Prashastha Mishra
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Tania S Barrera
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| | - Karl Grieshop
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE-10691, Sweden
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Aneil F Agrawal
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada M5S 3B2
| |
Collapse
|
4
|
Bell AD, Valencia F, Paaby AB. Stabilizing selection and adaptation shape cis and trans gene expression variation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618466. [PMID: 39464158 PMCID: PMC11507773 DOI: 10.1101/2024.10.15.618466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An outstanding question in the evolution of gene expression is the relative influence of neutral processes versus natural selection, including adaptive change driven by directional selection as well as stabilizing selection, which may include compensatory dynamics. These forces shape patterns of gene expression variation within and between species, including the regulatory mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific gene expression variation among seven wild C. elegans strains, with varying degrees of genomic divergence from the reference strain N2, leveraging this system's unique advantages to comprehensively evaluate gene expression evolution. By capturing allele-specific and between-strain changes in expression, we characterize the regulatory architecture and inheritance mode of gene expression variation within C. elegans and assess their relationship to nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. We conclude that stabilizing selection is a dominant influence in maintaining expression phenotypes within the species, and the discovery that genes with higher overall expression tend to exhibit fewer expression differences supports this conclusion, as do widespread instances of cis differences compensated in trans. Moreover, analyses of human expression data replicate our finding that higher expression genes have less variable expression. We also observe evidence for directional selection driving expression divergence, and that expression divergence accelerates with increasing genomic divergence. To provide community access to the data from this first analysis of allele-specific expression in C. elegans, we introduce an interactive web application, where users can submit gene-specific queries to view expression, regulatory pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
5
|
Zhao R, Lukacsovich T, Gaut R, Emerson JJ. FREQ-Seq2: a method for precise high-throughput combinatorial quantification of allele frequencies. G3 (BETHESDA, MD.) 2023; 13:jkad162. [PMID: 37494033 PMCID: PMC10542570 DOI: 10.1093/g3journal/jkad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 01/26/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023]
Abstract
The accurate determination of allele frequencies is crucially important across a wide range of problems in genetics, such as developing population genetic models, making inferences from genome-wide association studies, determining genetic risk for diseases, as well as other scientific and medical applications. Furthermore, understanding how allele frequencies change over time in populations is central to ascertaining their evolutionary dynamics. We present a precise, efficient, and economical method (FREQ-Seq2) for quantifying the relative frequencies of different alleles at loci of interest in mixed population samples. Through the creative use of paired barcode sequences, we exponentially increased the throughput of the original FREQ-Seq method from 48 to 2,304 samples. FREQ-Seq2 can be targeted to specific genomic regions of interest, which are amplified using universal barcoded adapters to generate Illumina sequencing libraries. Our enhanced method, available as a kit along with open-source software for analyzing sequenced libraries, enables the detection and removal of errors that are undetectable in the original FREQ-Seq method as well as other conventional methods for allele frequency quantification. Finally, we validated the performance of our sequencing-based approach with a highly multiplexed set of control samples as well as a competitive evolution experiment in Escherichia coli and compare the latter to estimates derived from manual colony counting. Our analyses demonstrate that FREQ-Seq2 is flexible, inexpensive, and produces large amounts of data with low error, low noise, and desirable statistical properties. In summary, FREQ-Seq2 is a powerful method for quantifying allele frequency that provides a versatile approach for profiling mixed populations.
Collapse
Affiliation(s)
- Roy Zhao
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
| | - Tamas Lukacsovich
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Rebecca Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - J J Emerson
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Nanni AV, Morse AM, Newman JRB, Choquette NE, Wedow JM, Liu Z, Leakey ADB, Conesa A, Ainsworth EA, McIntyre LM. Variation in leaf transcriptome responses to elevated ozone corresponds with physiological sensitivity to ozone across maize inbred lines. Genetics 2022; 221:iyac080. [PMID: 35579358 PMCID: PMC9339315 DOI: 10.1093/genetics/iyac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
We examine the impact of sustained elevated ozone concentration on the leaf transcriptome of 5 diverse maize inbred genotypes, which vary in physiological sensitivity to ozone (B73, Mo17, Hp301, C123, and NC338), using long reads to assemble transcripts and short reads to quantify expression of these transcripts. More than 99% of the long reads, 99% of the assembled transcripts, and 97% of the short reads map to both B73 and Mo17 reference genomes. Approximately 95% of the genes with assembled transcripts belong to known B73-Mo17 syntenic loci and 94% of genes with assembled transcripts are present in all temperate lines in the nested association mapping pan-genome. While there is limited evidence for alternative splicing in response to ozone stress, there is a difference in the magnitude of differential expression among the 5 genotypes. The transcriptional response to sustained ozone stress in the ozone resistant B73 genotype (151 genes) was modest, while more than 3,300 genes were significantly differentially expressed in the more sensitive NC338 genotype. There is the potential for tandem duplication in 30% of genes with assembled transcripts, but there is no obvious association between potential tandem duplication and differential expression. Genes with a common response across the 5 genotypes (83 genes) were associated with photosynthesis, in particular photosystem I. The functional annotation of genes not differentially expressed in B73 but responsive in the other 4 genotypes (789) identifies reactive oxygen species. This suggests that B73 has a different response to long-term ozone exposure than the other 4 genotypes. The relative magnitude of the genotypic response to ozone, and the enrichment analyses are consistent regardless of whether aligning short reads to: long read assembled transcripts; the B73 reference; the Mo17 reference. We find that prolonged ozone exposure directly impacts the photosynthetic machinery of the leaf.
Collapse
Affiliation(s)
- Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Alison M Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy R B Newman
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Nicole E Choquette
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jessica M Wedow
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zihao Liu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Andrew D B Leakey
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ana Conesa
- Department of Cell and Microbial Sciences, University of Florida, Gainesville, FL 32611, USA
- Institute for Integrative Systems Biology, Spanish National Research Council, 46980 Paterna, Spain
| | - Elizabeth A Ainsworth
- Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Crop Sciences, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL 61801, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Muyle AM, Seymour DK, Lv Y, Huettel B, Gaut BS. Gene-body methylation in plants: mechanisms, functions and important implications for understanding evolutionary processes. Genome Biol Evol 2022; 14:6550137. [PMID: 35298639 PMCID: PMC8995044 DOI: 10.1093/gbe/evac038] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Gene body methylation (gbM) is an epigenetic mark where gene exons are methylated in the CG context only, as opposed to CHG and CHH contexts (where H stands for A, C, or T). CG methylation is transmitted transgenerationally in plants, opening the possibility that gbM may be shaped by adaptation. This presupposes, however, that gbM has a function that affects phenotype, which has been a topic of debate in the literature. Here, we review our current knowledge of gbM in plants. We start by presenting the well-elucidated mechanisms of plant gbM establishment and maintenance. We then review more controversial topics: the evolution of gbM and the potential selective pressures that act on it. Finally, we discuss the potential functions of gbM that may affect organismal phenotypes: gene expression stabilization and upregulation, inhibition of aberrant transcription (reverse and internal), prevention of aberrant intron retention, and protection against TE insertions. To bolster the review of these topics, we include novel analyses to assess the effect of gbM on transcripts. Overall, a growing body of literature finds that gbM correlates with levels and patterns of gene expression. It is not clear, however, if this is a causal relationship. Altogether, functional work suggests that the effects of gbM, if any, must be relatively small, but there is nonetheless evidence that it is shaped by natural selection. We conclude by discussing the potential adaptive character of gbM and its implications for an updated view of the mechanisms of adaptation in plants.
Collapse
Affiliation(s)
| | | | - Yuanda Lv
- Provincial Key Laboratory of Agrobiology, Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | | |
Collapse
|
8
|
Horvath R, Josephs EB, Pesquet E, Stinchcombe JR, Wright SI, Scofield D, Slotte T. Selection on Accessible Chromatin Regions in Capsella grandiflora. Mol Biol Evol 2021; 38:5563-5575. [PMID: 34498072 PMCID: PMC8662636 DOI: 10.1093/molbev/msab270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Accurate estimates of genome-wide rates and fitness effects of new mutations are essential for an improved understanding of molecular evolutionary processes. Although eukaryotic genomes generally contain a large noncoding fraction, functional noncoding regions and fitness effects of mutations in such regions are still incompletely characterized. A promising approach to characterize functional noncoding regions relies on identifying accessible chromatin regions (ACRs) tightly associated with regulatory DNA. Here, we applied this approach to identify and estimate selection on ACRs in Capsella grandiflora, a crucifer species ideal for population genomic quantification of selection due to its favorable population demography. We describe a population-wide ACR distribution based on ATAC-seq data for leaf samples of 16 individuals from a natural population. We use population genomic methods to estimate fitness effects and proportions of positively selected fixations (α) in ACRs and find that intergenic ACRs harbor a considerable fraction of weakly deleterious new mutations, as well as a significantly higher proportion of strongly deleterious mutations than comparable inaccessible intergenic regions. ACRs are enriched for expression quantitative trait loci (eQTL) and depleted of transposable element insertions, as expected if intergenic ACRs are under selection because they harbor regulatory regions. By integrating empirical identification of intergenic ACRs with analyses of eQTL and population genomic analyses of selection, we demonstrate that intergenic regulatory regions are an important source of nearly neutral mutations. These results improve our understanding of selection on noncoding regions and the role of nearly neutral mutations for evolutionary processes in outcrossing Brassicaceae species.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, Lansing, MI, USA
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Douglas Scofield
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Gutiérrez-Valencia J, Fracassetti M, Horvath R, Laenen B, Désamore A, Drouzas AD, Friberg M, Kolář F, Slotte T. Genomic Signatures of Sexual Selection on Pollen-Expressed Genes in Arabis alpina. Mol Biol Evol 2021; 39:6456311. [PMID: 34878144 PMCID: PMC8788238 DOI: 10.1093/molbev/msab349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.
Collapse
Affiliation(s)
- Juanita Gutiérrez-Valencia
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Robert Horvath
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Aurélie Désamore
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Andreas D Drouzas
- Laboratory of Systematic Botany and Phytogeography, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Magne Friberg
- Department of Biology, Lund University, Lund, Sweden
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Wang Y, Dai A, Chen Y, Tang T. Gene Body Methylation Confers Transcription Robustness in Mangroves During Long-Term Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2021; 12:733846. [PMID: 34630483 PMCID: PMC8493031 DOI: 10.3389/fpls.2021.733846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 05/23/2023]
Abstract
Whether induced epigenetic changes contribute to long-term adaptation remains controversial. Recent studies indicate that environmentally cued changes in gene body methylation (gbM) can facilitate acclimatization. However, such changes are often associated with genetic variation and their contribution to long-term stress adaptation remains unclear. Using whole-genome bisulfite sequencing, we examined evolutionary gains and losses of gbM in mangroves that adapted to extreme intertidal environments. We treated mangrove seedlings with salt stress, and investigated expression changes in relation with stress-induced or evolutionarily-acquired gbM changes. Evolution and function of gbM was compared with that of genetic variation. Mangroves gained much more gbM than their terrestrial relatives, mainly through convergent evolution. Genes that convergently gained gbM during evolution are more likely to become methylated in response to salt stress in species where they are normally not marked. Stress-induced and evolutionarily convergent gains of gbM both correlate with reduction in expression variation, conferring genome-wide expression robustness under salt stress. Moreover, convergent gbM evolution is uncoupled with convergent sequence evolution. Our findings suggest that transgenerational inheritance of acquired gbM helps environmental canalization of gene expression, facilitating long-term stress adaptation of mangroves in the face of a severe reduction in genetic diversity.
Collapse
Affiliation(s)
- Yushuai Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Aimei Dai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiping Chen
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian Tang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
He F, Steige KA, Kovacova V, Göbel U, Bouzid M, Keightley PD, Beyer A, de Meaux J. Cis-regulatory evolution spotlights species differences in the adaptive potential of gene expression plasticity. Nat Commun 2021; 12:3376. [PMID: 34099660 PMCID: PMC8184852 DOI: 10.1038/s41467-021-23558-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/29/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is the variation in phenotype that a single genotype can produce in different environments and, as such, is an important component of individual fitness. However, whether the effect of new mutations, and hence evolution, depends on the direction of plasticity remains controversial. Here, we identify the cis-acting modifications that have reshaped gene expression in response to dehydration stress in three Arabidopsis species. Our study shows that the direction of effects of most cis-regulatory variants differentiating the response between A. thaliana and the sister species A. lyrata and A. halleri depends on the direction of pre-existing plasticity in gene expression. A comparison of the rate of cis-acting variant accumulation in each lineage indicates that the selective forces driving adaptive evolution in gene expression favors regulatory changes that magnify the stress response in A. lyrata. The evolutionary constraints measured on the amino-acid sequence of these genes support this interpretation. In contrast, regulatory changes that mitigate the plastic response to stress evolved more frequently in A. halleri. Our results demonstrate that pre-existing plasticity may be a stepping stone for adaptation, but its selective remodeling differs between lineages.
Collapse
Affiliation(s)
- F He
- CEPLAS, University of Cologne, Cologne, Germany
| | - K A Steige
- CEPLAS, University of Cologne, Cologne, Germany
| | - V Kovacova
- CECAD, University of Cologne, Cologne, Germany
| | - U Göbel
- CEPLAS, University of Cologne, Cologne, Germany
| | - M Bouzid
- CEPLAS, University of Cologne, Cologne, Germany
| | - P D Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - A Beyer
- CEPLAS, University of Cologne, Cologne, Germany
| | - J de Meaux
- CEPLAS, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Gao Z, Li H, Yang X, Yang P, Chen J, Shi T. Biased allelic expression in tissues of F1 hybrids between tropical and temperate lotus (Nelumbo nuicfera). PLANT MOLECULAR BIOLOGY 2021; 106:207-220. [PMID: 33738679 DOI: 10.1007/s11103-021-01138-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
The genome-wide allele-specific expression in F1 hybrids from the cross of tropical and temperate lotus unveils how cis-regulatory divergences affect genes in key pathways related to ecotypic divergence. Genetic variation, particularly cis-regulatory variation, plays a crucial role in phenotypic variation and adaptive evolution in plants. Temperate and tropical lotus, the two ecotypes of Nelumbo nucifera, show distinction in the degree of rhizome enlargement, which is associated with winter dormancy. To understand the roles of genome-wide cis-regulatory divergences on adaptive evolution of temperate and tropical lotus (Nelumbo nucifera), here we performed allele-specific expression (ASE) analyses on the tissues including flowers, leaves and rhizome from F1 hybrids of tropical and temperate lotus. For all investigated tissues in F1s, about 36% of genes showed ASE and about 3% of genes showed strong consistent ASE. Most of ASEs were biased towards the tropical parent in all surveyed samples, indicating that the tropical genome might be dominant over the temperate genome in gene expression of tissues from their F1 hybrids. We found that promoter sequences with similar allelic expression are more conserved than genes with significant or conditional ASE, suggesting the cis-regulatory sequence divergence underlie the allelic expression bias. We further uncovered biased genes being related to phenotypic differentiation between two lotus ecotypes, especially metabolic and phytohormone-related pathways in the rhizome. Overall, our study provides a global landscape of cis-regulatory variations between two lotus ecotypes and highlights their roles in rhizome growth variation for the climatic adaptation.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan, 430081, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
13
|
Muyle A, Ross-Ibarra J, Seymour DK, Gaut BS. Gene body methylation is under selection in Arabidopsis thaliana. Genetics 2021; 218:6237897. [PMID: 33871638 PMCID: PMC8225343 DOI: 10.1093/genetics/iyab061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
In plants, mammals and insects, some genes are methylated in the CG dinucleotide context, a phenomenon called gene body methylation (gbM). It has been controversial whether this phenomenon has any functional role. Here, we took advantage of the availability of 876 leaf methylomes in Arabidopsis thaliana to characterize the population frequency of methylation at the gene level and to estimate the site-frequency spectrum of allelic states. Using a population genetics model specifically designed for epigenetic data, we found that genes with ancestral gbM are under significant selection to remain methylated. Conversely, ancestrally unmethylated genes were under selection to remain unmethylated. Repeating the analyses at the level of individual cytosines confirmed these results. Estimated selection coefficients were small, on the order of 4 Nes = 1.4, which is similar to the magnitude of selection acting on codon usage. We also estimated that A. thaliana is losing gbM threefold more rapidly than gaining it, which could be due to a recent reduction in the efficacy of selection after a switch to selfing. Finally, we investigated the potential function of gbM through its link with gene expression. Across genes with polymorphic methylation states, the expression of gene body methylated alleles was consistently and significantly higher than unmethylated alleles. Although it is difficult to disentangle genetic from epigenetic effects, our work suggests that gbM has a small but measurable effect on fitness, perhaps due to its association to a phenotype-like gene expression.
Collapse
Affiliation(s)
- Aline Muyle
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| | - Jeffrey Ross-Ibarra
- Evolution and Ecology, Center for Population Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Danelle K Seymour
- Botany & Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Brandon S Gaut
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697-2525, USA
| |
Collapse
|
14
|
Dziasek K, Simon L, Lafon-Placette C, Laenen B, Wärdig C, Santos-González J, Slotte T, Köhler C. Hybrid seed incompatibility in Capsella is connected to chromatin condensation defects in the endosperm. PLoS Genet 2021; 17:e1009370. [PMID: 33571184 PMCID: PMC7904229 DOI: 10.1371/journal.pgen.1009370] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/24/2021] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
Hybridization of closely related plant species is frequently connected to endosperm arrest and seed failure, for reasons that remain to be identified. In this study, we investigated the molecular events accompanying seed failure in hybrids of the closely related species pair Capsella rubella and C. grandiflora. Mapping of QTL for the underlying cause of hybrid incompatibility in Capsella identified three QTL that were close to pericentromeric regions. We investigated whether there are specific changes in heterochromatin associated with interspecific hybridizations and found a strong reduction of chromatin condensation in the endosperm, connected with a strong loss of CHG and CHH methylation and random loss of a single chromosome. Consistent with reduced DNA methylation in the hybrid endosperm, we found a disproportionate deregulation of genes located close to pericentromeric regions, suggesting that reduced DNA methylation allows access of transcription factors to targets located in heterochromatic regions. Since the identified QTL were also associated with pericentromeric regions, we propose that relaxation of heterochromatin in response to interspecies hybridization exposes and activates loci leading to hybrid seed failure.
Collapse
Affiliation(s)
- Katarzyna Dziasek
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Lauriane Simon
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
- Present address: Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Cecilia Wärdig
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Juan Santos-González
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Claudia Köhler
- Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Linnean Center of Plant Biology, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
15
|
Groß C, Bortoluzzi C, de Ridder D, Megens HJ, Groenen MAM, Reinders M, Bosse M. Prioritizing sequence variants in conserved non-coding elements in the chicken genome using chCADD. PLoS Genet 2020; 16:e1009027. [PMID: 32966296 PMCID: PMC7535126 DOI: 10.1371/journal.pgen.1009027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/05/2020] [Accepted: 08/05/2020] [Indexed: 11/30/2022] Open
Abstract
The availability of genomes for many species has advanced our understanding of the non-protein-coding fraction of the genome. Comparative genomics has proven itself to be an invaluable approach for the systematic, genome-wide identification of conserved non-protein-coding elements (CNEs). However, for many non-mammalian model species, including chicken, our capability to interpret the functional importance of variants overlapping CNEs has been limited by current genomic annotations, which rely on a single information type (e.g. conservation). We here studied CNEs in chicken using a combination of population genomics and comparative genomics. To investigate the functional importance of variants found in CNEs we develop a ch(icken) Combined Annotation-Dependent Depletion (chCADD) model, a variant effect prediction tool first introduced for humans and later on for mouse and pig. We show that 73 Mb of the chicken genome has been conserved across more than 280 million years of vertebrate evolution. The vast majority of the conserved elements are in non-protein-coding regions, which display SNP densities and allele frequency distributions characteristic of genomic regions constrained by purifying selection. By annotating SNPs with the chCADD score we are able to pinpoint specific subregions of the CNEs to be of higher functional importance, as supported by SNPs found in these subregions are associated with known disease genes in humans, mice, and rats. Taken together, our findings indicate that CNEs harbor variants of functional significance that should be object of further investigation along with protein-coding mutations. We therefore anticipate chCADD to be of great use to the scientific community and breeding companies in future functional studies in chicken.
Collapse
Affiliation(s)
- Christian Groß
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
- Delft Bioinformatics Lab, University of Technology Delft, 2600 GA, Delft, The Netherlands
| | - Chiara Bortoluzzi
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Marcel Reinders
- Delft Bioinformatics Lab, University of Technology Delft, 2600 GA, Delft, The Netherlands
| | - Mirte Bosse
- Animal Breeding and Genomics Group, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
16
|
Kost MA, Perales H, Wijeratne S, Wijeratne AJ, Stockinger EJ, Mercer KL. Transcriptional differentiation of UV-B protectant genes in maize landraces spanning an elevational gradient in Chiapas, Mexico. Evol Appl 2020; 13:1949-1967. [PMID: 32908597 PMCID: PMC7463351 DOI: 10.1111/eva.12954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 11/29/2022] Open
Abstract
Globally, farmers cultivate and maintain crop landraces (i.e., traditional varieties). Landraces contain unique diversity shaped in part by natural and human-mediated selection and are an indispensable resource for farmers. Since environmental conditions change with elevation, crop landraces grown along elevational gradients have provided ideal locations to explore patterns of local adaptation. To further probe traits underlying this differentiation, transcriptome signatures can help provide a foundation for understanding the ways in which functional genetic diversity may be shaped by environment. In this study, we returned to an elevational gradient in Chiapas, Mexico, to assess transcriptional differentiation of genes underlying UV-B protection in locally adapted maize landraces from multiple elevations. We collected and planted landraces from three elevational zones (lowland, approximately 600 m; midland, approximately 1,550 m; highland approximately 2,100 m) in a common garden at 1,531 m. Using RNA-seq data derived from leaf tissue, we performed differential expression analysis between maize from these distinct elevations. Highland and lowland landraces displayed differential expression in phenylpropanoid and flavonoid biosynthesis genes involved in the production of UV-B protectants and did so at a rate greater than expected based on observed background transcriptional differentiation across the genome. These findings provide evidence for the differentiation of suites of genes involved in complex ecologically relevant pathways. Thus, while neutral evolutionary processes may have played a role in the observed patterns of differentiation, UV-B may have also acted as a selective pressure to differentiate maize landraces in the region. Studies of the distribution of functional crop genetic diversity across variable landscapes can aid us in understanding the response of diversity to abiotic/biotic change and, ultimately, may facilitate its conservation and utilization.
Collapse
Affiliation(s)
- Matthew A. Kost
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Hugo Perales
- Departamento de Agricultura, Sociedad y AmbienteEl Colegio de la Frontera SurSan Cristóbal de Las CasasChiapasMexico
| | - Saranga Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
| | - Asela J. Wijeratne
- Molecular and Cellular Imaging CenterOhio Agricultural Research and Development CenterThe Ohio State UniversityWoosterOHUSA
- Department of Biological SciencesArkansas State UniversityJonesboroARUSA
| | - Eric J. Stockinger
- Department of Horticulture and Crop ScienceThe Ohio State UniversityWoosterOHUSA
| | - Kristin L. Mercer
- Department of Horticulture and Crop SciencesThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
17
|
Dong Y, Majda M, Šimura J, Horvath R, Srivastava AK, Łangowski Ł, Eldridge T, Stacey N, Slotte T, Sadanandom A, Ljung K, Smith RS, Østergaard L. HEARTBREAK Controls Post-translational Modification of INDEHISCENT to Regulate Fruit Morphology in Capsella. Curr Biol 2020; 30:3880-3888.e5. [PMID: 32795439 PMCID: PMC7544509 DOI: 10.1016/j.cub.2020.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/27/2023]
Abstract
Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3, 4, 5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6, 7, 8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes—such as post-translational modification of one such regulator—affects organ morphology. HTB encodes a SUMO protease required for fruit shape in Capsella Anisotropic cell growth is suppressed in the fruit valves of the htb mutant HTB stabilizes CrIND through de-SUMOylation to facilitate local auxin biosynthesis
Collapse
Affiliation(s)
- Yang Dong
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Mateusz Majda
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Robert Horvath
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Łukasz Łangowski
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Tilly Eldridge
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Nicola Stacey
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Richard S Smith
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Laso‐Jadart R, Sugier K, Petit E, Labadie K, Peterlongo P, Ambroise C, Wincker P, Jamet J, Madoui M. Investigating population-scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866). Ecol Evol 2020; 10:8894-8905. [PMID: 32884665 PMCID: PMC7452778 DOI: 10.1002/ece3.6588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/11/2022] Open
Abstract
Acclimation allowed by variation in gene or allele expression in natural populations is increasingly understood as a decisive mechanism, as much as adaptation, for species evolution. However, for small eukaryotic organisms, as species from zooplankton, classical methods face numerous challenges. Here, we propose the concept of allelic differential expression at the population-scale (psADE) to investigate the variation in allele expression in natural populations. We developed a novel approach to detect psADE based on metagenomic and metatranscriptomic data from environmental samples. This approach was applied on the widespread marine copepod, Oithona similis, by combining samples collected during the Tara Oceans expedition (2009-2013) and de novo transcriptome assemblies. Among a total of 25,768 single nucleotide variants (SNVs) of O. similis, 572 (2.2%) were affected by psADE in at least one population (FDR < 0.05). The distribution of SNVs under psADE in different populations is significantly shaped by population genomic differentiation (Pearson r = 0.87, p = 5.6 × 10-30), supporting a partial genetic control of psADE. Moreover, a significant amount of SNVs (0.6%) were under both selection and psADE (p < .05), supporting the hypothesis that natural selection and psADE tends to impact common loci. Population-scale allelic differential expression offers new insights into the gene regulation control in populations and its link with natural selection.
Collapse
Affiliation(s)
- Romuald Laso‐Jadart
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Kevin Sugier
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
| | - Emmanuelle Petit
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | - Karine Labadie
- CEA, GenoscopeInstitut de Biologie François JacobUniversité Paris‐SaclayEvryFrance
| | | | | | - Patrick Wincker
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| | - Jean‐Louis Jamet
- Mediterranean Institute of Oceanology (MIO)AMU‐UTLN UM110CNRS UMR7294, IRDUMR235Equipe Ecologie Marine et Biodiversité (EMBIO)Université de ToulonToulon Cedex 9France
| | - Mohammed‐Amin Madoui
- Génomique Métabolique, GenoscopeInstitut François Jacob, CEA, CNRS, Univ EvryUniversité Paris‐SaclayEvryFrance
- Research Federation for the study of Global Ocean Systems Ecology and EvolutionFR2022/Tara Oceans GO‐SEEParisFrance
| |
Collapse
|
19
|
Hämälä T, Tiffin P. Biased Gene Conversion Constrains Adaptation in Arabidopsis thaliana. Genetics 2020; 215:831-846. [PMID: 32414868 PMCID: PMC7337087 DOI: 10.1534/genetics.120.303335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 02/01/2023] Open
Abstract
Reduction of fitness due to deleterious mutations imposes a limit to adaptive evolution. By characterizing features that influence this genetic load we may better understand constraints on responses to both natural and human-mediated selection. Here, using whole-genome, transcriptome, and methylome data from >600 Arabidopsis thaliana individuals, we set out to identify important features influencing selective constraint. Our analyses reveal that multiple factors underlie the accumulation of maladaptive mutations, including gene expression level, gene network connectivity, and gene-body methylation. We then focus on a feature with major effect, nucleotide composition. The ancestral vs. derived status of segregating alleles suggests that GC-biased gene conversion, a recombination-associated process that increases the frequency of G and C nucleotides regardless of their fitness effects, shapes sequence patterns in A. thaliana Through estimation of mutational effects, we present evidence that biased gene conversion hinders the purging of deleterious mutations and contributes to a genome-wide signal of decreased efficacy of selection. By comparing these results to two outcrossing relatives, Arabidopsis lyrata and Capsella grandiflora, we find that protein evolution in A. thaliana is as strongly affected by biased gene conversion as in the outcrossing species. Last, we perform simulations to show that natural levels of outcrossing in A. thaliana are sufficient to facilitate biased gene conversion despite increased homozygosity due to selfing. Together, our results show that even predominantly selfing taxa are susceptible to biased gene conversion, suggesting that it may constitute an important constraint to adaptation among plant species.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter Tiffin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
20
|
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, Scalabrin S, Testolin R, Cipriani G, Wiedemann-Merdinoglu S, Bogs J, Di Gaspero G, Morgante M. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 99:895-909. [PMID: 31571285 DOI: 10.1111/tpj.14370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 05/17/2023]
Abstract
A wild grape haplotype (Rpv3-1) confers resistance to Plasmopara viticola. We mapped the causal factor for resistance to an interval containing a TIR-NB-LRR (TNL) gene pair that originated 1.6-2.6 million years ago by a tandem segmental duplication. Transient coexpression of the TNL pair in Vitis vinifera leaves activated pathogen-induced necrosis and reduced sporulation compared with control leaves. Even though transcripts of the TNL pair from the wild haplotype appear to be partially subject to nonsense-mediated mRNA decay, mature mRNA levels in a homozygous resistant genotype were individually higher than the mRNA trace levels observed for the orthologous single-copy TNL in sensitive genotypes. Allelic expression imbalance in a resistant heterozygote confirmed that cis-acting regulatory variation promotes expression in the wild haplotype. The movement of transposable elements had a major impact on the generation of haplotype diversity, altering the DNA context around similar TNL coding sequences and the GC-content in their proximal 5'-intergenic regions. The wild and domesticated haplotypes also diverged in conserved single-copy intergenic DNA, but the highest divergence was observed in intraspecific and not in interspecific comparisons. In this case, introgression breeding did not transgress the genetic boundaries of the domesticated species, because haplotypes present in modern varieties sometimes predate speciation events between wild and cultivated species.
Collapse
Affiliation(s)
- Serena Foria
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Dario Copetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
- Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Gabriele Magris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Michele Vidotto
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Simone Scalabrin
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| | - Raffaele Testolin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
| | | | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Breitenweg 71, 67435, Neustadt an der Weinstraße, Germany
- Technische Hochschule Bingen, 55411, Bingen am Rhein, Germany
| | | | - Michele Morgante
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, via delle scienze 208, 33100, Udine, Italy
- Istituto di Genomica Applicata, via Jacopo Linussio 51, 33100, Udine, Italy
| |
Collapse
|
21
|
Mattila TM, Laenen B, Slotte T. Population Genomics of Transitions to Selfing in Brassicaceae Model Systems. Methods Mol Biol 2020; 2090:269-287. [PMID: 31975171 DOI: 10.1007/978-1-0716-0199-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many plants harbor complex mechanisms that promote outcrossing and efficient pollen transfer. These include floral adaptations as well as genetic mechanisms, such as molecular self-incompatibility (SI) systems. The maintenance of such systems over long evolutionary timescales suggests that outcrossing is favorable over a broad range of conditions. Conversely, SI has repeatedly been lost, often in association with transitions to self-fertilization (selfing). This transition is favored when the short-term advantages of selfing outweigh the costs, primarily inbreeding depression. The transition to selfing is expected to have major effects on population genetic variation and adaptive potential, as well as on genome evolution. In the Brassicaceae, many studies on the population genetic, gene regulatory, and genomic effects of selfing have centered on the model plant Arabidopsis thaliana and the crucifer genus Capsella. The accumulation of population genomics datasets have allowed detailed investigation of where, when and how the transition to selfing occurred. Future studies will take advantage of the development of population genetics theory on the impact of selfing, especially regarding positive selection. Furthermore, investigation of systems including recent transitions to selfing, mixed mating populations and/or multiple independent replicates of the same transition will facilitate dissecting the effects of mating system variation from processes driven by demography.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Benjamin Laenen
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Tanja Slotte
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
22
|
Bachmann JA, Tedder A, Laenen B, Fracassetti M, Désamoré A, Lafon-Placette C, Steige KA, Callot C, Marande W, Neuffer B, Bergès H, Köhler C, Castric V, Slotte T. Genetic basis and timing of a major mating system shift in Capsella. THE NEW PHYTOLOGIST 2019; 224:505-517. [PMID: 31254395 DOI: 10.1111/nph.16035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 05/23/2023]
Abstract
A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Caroline Callot
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - William Marande
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Barbara Neuffer
- Department of Botany, University of Osnabruck, 49076, Osnabrück, Germany
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
23
|
Mattila TM, Laenen B, Horvath R, Hämälä T, Savolainen O, Slotte T. Impact of demography on linked selection in two outcrossing Brassicaceae species. Ecol Evol 2019; 9:9532-9545. [PMID: 31534673 PMCID: PMC6745670 DOI: 10.1002/ece3.5463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genetic diversity is shaped by mutation, genetic drift, gene flow, recombination, and selection. The dynamics and interactions of these forces shape genetic diversity across different parts of the genome, between populations and species. Here, we have studied the effects of linked selection on nucleotide diversity in outcrossing populations of two Brassicaceae species, Arabidopsis lyrata and Capsella grandiflora, with contrasting demographic history. In agreement with previous estimates, we found evidence for a modest population size expansion thousands of generations ago, as well as efficient purifying selection in C. grandiflora. In contrast, the A. lyrata population exhibited evidence for very recent strong population size decline and weaker efficacy of purifying selection. Using multiple regression analyses with recombination rate and other genomic covariates as explanatory variables, we can explain 47% of the variance in neutral diversity in the C. grandiflora population, while in the A. lyrata population, only 11% of the variance was explained by the model. Recombination rate had a significant positive effect on neutral diversity in both species, suggesting that selection at linked sites has an effect on patterns of neutral variation. In line with this finding, we also found reduced neutral diversity in the vicinity of genes in the C. grandiflora population. However, in A. lyrata no such reduction in diversity was evident, a finding that is consistent with expectations of the impact of a recent bottleneck on patterns of neutral diversity near genes. This study thus empirically demonstrates how differences in demographic history modulate the impact of selection at linked sites in natural populations.
Collapse
Affiliation(s)
- Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Present address:
Department of Organismal BiologyUppsala UniversityUppsalaSweden
| | - Benjamin Laenen
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Tuomas Hämälä
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMNUSA
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
24
|
Coronado-Zamora M, Salvador-Martínez I, Castellano D, Barbadilla A, Salazar-Ciudad I. Adaptation and Conservation throughout the Drosophila melanogaster Life-Cycle. Genome Biol Evol 2019; 11:1463-1482. [PMID: 31028390 PMCID: PMC6535812 DOI: 10.1093/gbe/evz086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
Previous studies of the evolution of genes expressed at different life-cycle stages of Drosophila melanogaster have not been able to disentangle adaptive from nonadaptive substitutions when using nonsynonymous sites. Here, we overcome this limitation by combining whole-genome polymorphism data from D. melanogaster and divergence data between D. melanogaster and Drosophila yakuba. For the set of genes expressed at different life-cycle stages of D. melanogaster, as reported in modENCODE, we estimate the ratio of substitutions relative to polymorphism between nonsynonymous and synonymous sites (α) and then α is discomposed into the ratio of adaptive (ωa) and nonadaptive (ωna) substitutions to synonymous substitutions. We find that the genes expressed in mid- and late-embryonic development are the most conserved, whereas those expressed in early development and postembryonic stages are the least conserved. Importantly, we found that low conservation in early development is due to high rates of nonadaptive substitutions (high ωna), whereas in postembryonic stages it is due, instead, to high rates of adaptive substitutions (high ωa). By using estimates of different genomic features (codon bias, average intron length, exon number, recombination rate, among others), we also find that genes expressed in mid- and late-embryonic development show the most complex architecture: they are larger, have more exons, more transcripts, and longer introns. In addition, these genes are broadly expressed among all stages. We suggest that all these genomic features are related to the conservation of mid- and late-embryonic development. Globally, our study supports the hourglass pattern of conservation and adaptation over the life-cycle.
Collapse
Affiliation(s)
- Marta Coronado-Zamora
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Irepan Salvador-Martínez
- Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | | | - Antonio Barbadilla
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Isaac Salazar-Ciudad
- Genomics, Bioinformatics and Evolution, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Evo-Devo Helsinki Community, Centre of Excellence in Experimental and Computational Developmental Biology, Institute of Biotechnology, University of Helsinki, Finland.,Centre de Recerca Matemàtica, Cerdanyola del Vallès, Spain
| |
Collapse
|
25
|
Seymour DK, Gaut BS. Phylogenetic Shifts in Gene Body Methylation Correlate with Gene Expression and Reflect Trait Conservation. Mol Biol Evol 2019; 37:31-43. [DOI: 10.1093/molbev/msz195] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
A subset of genes in plant genomes are labeled with DNA methylation specifically at CG residues. These genes, known as gene-body methylated (gbM), have a number of associated characteristics. They tend to have longer sequences, to be enriched for intermediate expression levels, and to be associated with slower rates of molecular evolution. Most importantly, gbM genes tend to maintain their level of DNA methylation between species, suggesting that this trait is under evolutionary constraint. Given the degree of conservation in gbM, we still know surprisingly little about its function in plant genomes or whether gbM is itself a target of selection. To address these questions, we surveyed DNA methylation across eight grass (Poaceae) species that span a gradient of genome sizes. We first established that genome size correlates with genome-wide DNA methylation levels, but less so for genic levels. We then leveraged genomic data to identify a set of 2,982 putative orthologs among the eight species and examined shifts of methylation status for each ortholog in a phylogenetic context. A total of 55% of orthologs exhibited a shift in gbM, but these shifts occurred predominantly on terminal branches, indicating that shifts in gbM are rarely conveyed over time. Finally, we found that the degree of conservation of gbM across species is associated with increased gene length, reduced rates of molecular evolution, and increased gene expression level, but reduced gene expression variation across species. Overall, these observations suggest a basis for evolutionary pressure to maintain gbM status over evolutionary time.
Collapse
Affiliation(s)
- Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA
| |
Collapse
|
26
|
Verta JP, Jones FC. Predominance of cis-regulatory changes in parallel expression divergence of sticklebacks. eLife 2019; 8:e43785. [PMID: 31090544 PMCID: PMC6550882 DOI: 10.7554/elife.43785] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Regulation of gene expression is thought to play a major role in adaptation, but the relative importance of cis- and trans- regulatory mechanisms in the early stages of adaptive divergence is unclear. Using RNAseq of threespine stickleback fish gill tissue from four independent marine-freshwater ecotype pairs and their F1 hybrids, we show that cis-acting (allele-specific) regulation consistently predominates gene expression divergence. Genes showing parallel marine-freshwater expression divergence are found near to adaptive genomic regions, show signatures of natural selection around their transcription start sites and are enriched for cis-regulatory control. For genes with parallel increased expression among freshwater fish, the quantitative degree of cis- and trans-regulation is also highly correlated across populations, suggesting a shared genetic basis. Compared to other forms of regulation, cis-regulation tends to show greater additivity and stability across different genetic and environmental contexts, making it a fertile substrate for the early stages of adaptive evolution.
Collapse
Affiliation(s)
- Jukka-Pekka Verta
- Friedrich Miescher Laboratory of the Max Planck SocietyMax-Planck-RingTübingenGermany
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Felicity C Jones
- Friedrich Miescher Laboratory of the Max Planck SocietyMax-Planck-RingTübingenGermany
| |
Collapse
|
27
|
Horvath R, Laenen B, Takuno S, Slotte T. Single-cell expression noise and gene-body methylation in Arabidopsis thaliana. Heredity (Edinb) 2019; 123:81-91. [PMID: 30651589 PMCID: PMC6781109 DOI: 10.1038/s41437-018-0181-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Gene-body methylation (gbM) refers to an increased level of methylated cytosines specifically in a CG sequence context within genes. gbM is found in plant genes with intermediate expression level, which evolve slowly, and is often broadly conserved across millions of years of evolution. Intriguingly however, some plants lack gbM, and thus it remains unclear whether gbM has a function. In animals, there is support for a role of gbM in reducing erroneous transcription and transcription noise, but so far most studies in plants have tested for an effect of gbM on expression level, not noise. Here, we therefore tested whether gbM was associated with reduced expression noise in Arabidopsis thaliana, using single-cell transcriptome sequencing data from root quiescent centre cells. We find that gbM genes have lower expression noise levels than unmethylated genes. However, an analysis of covariance revealed that, if other genomic features are taken into account, this association disappears. Nonetheless, gbM genes were more consistently expressed across single-cell samples, supporting previous inference that gbM genes are constitutively expressed. Finally, we observed that fewer RNAseq reads map to introns of gbM genes than to introns of unmethylated genes, which indicates that gbM might be involved in reducing erroneous transcription by reducing intron retention.
Collapse
Affiliation(s)
- Robert Horvath
- Department of Ecology, Environment and Plant Sciences, Science for Life laboratory, Stockholm University, Stockholm, 106 91, Sweden.
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life laboratory, Stockholm University, Stockholm, 106 91, Sweden.
| |
Collapse
|
28
|
de Meaux J. Cis-regulatory variation in plant genomes and the impact of natural selection. AMERICAN JOURNAL OF BOTANY 2018; 105:1788-1791. [PMID: 30358892 PMCID: PMC7610988 DOI: 10.1002/ajb2.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 05/04/2023]
Abstract
Understanding the molecular mechanisms that allow phenotypic diversification in response to natural or artificial selection is one of the major challenges of modern biology (Barrett and Hoekstra, 2011). The evolution of gene regulation is a prominent pillar for adaptation in sessile organisms like plants because the activity of genes must be tuned to the environment. Today, we can accurately document the genome-wide distribution of cis-regulatory variants. Here, I summarize how current data show that both positive selection and purifying selection contribute to shape cis-regulatory variation. To disentangle their relative impact, I argue that cis-regulatory and amino-acid evolutionary rates should be analyzed jointly.
Collapse
Affiliation(s)
- Juliette de Meaux
- Institute of Botany, University of Cologne, Zülpicherstr 47b, 50674 Cologne, Germany
- Author for correspondence ()
| |
Collapse
|
29
|
Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proc Natl Acad Sci U S A 2018; 115:E10970-E10978. [PMID: 30373829 PMCID: PMC6243237 DOI: 10.1073/pnas.1801437115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We performed de novo, full-genome sequence analysis of two Populus species, North American quaking and Eurasian trembling aspen, that contain striking levels of genetic variation. Our results showed that positive and negative selection broadly affects patterns of genomic variation, but to varying degrees across coding and noncoding regions. The strength of selection and rates of sequence divergence were strongly related to differences in gene expression and coexpression network connectivity. These results highlight the importance of both positive and negative selection in shaping genome-wide levels of genetic variation in an obligately outcrossing, perennial plant. The resources we present establish aspens as a powerful study system enabling future studies for understanding the genomic determinants of adaptive evolution. The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).
Collapse
|
30
|
Signor SA, New FN, Nuzhdin S. A Large Panel of Drosophila simulans Reveals an Abundance of Common Variants. Genome Biol Evol 2018; 10:189-206. [PMID: 29228179 PMCID: PMC5767965 DOI: 10.1093/gbe/evx262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
The rapidly expanding availability of large NGS data sets provides an opportunity to investigate population genetics at an unprecedented scale. Drosophila simulans is the sister species of the model organism Drosophila melanogaster, and is often presumed to share similar demographic history. However, previous population genetic and ecological work suggests very different signatures of selection and demography. Here, we sequence a new panel of 170 inbred genotypes of a North American population of D. simulans, a valuable complement to the DGRP and other D. melanogaster panels. We find some unexpected signatures of demography, in the form of excess intermediate frequency polymorphisms. Simulations suggest that this is possibly due to a recent population contraction and selection. We examine the outliers in the D. simulans genome determined by a haplotype test to attempt to parse the contribution of demography and selection to the patterns observed in this population. Untangling the relative contribution of demography and selection to genomic patterns of variation is challenging, however, it is clear that although D. melanogaster was thought to share demographic history with D. simulans different forces are at work in shaping genomic variation in this population of D. simulans.
Collapse
Affiliation(s)
- Sarah A Signor
- Department of Molecular and Computational Biology, University of Southern California
| | - Felicia N New
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California
| |
Collapse
|
31
|
Gould BA, Chen Y, Lowry DB. Gene regulatory divergence between locally adapted ecotypes in their native habitats. Mol Ecol 2018; 27:4174-4188. [PMID: 30168223 DOI: 10.1111/mec.14852] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023]
Abstract
Local adaptation is a key driver of ecological specialization and the formation of new species. Despite its importance, the evolution of gene regulatory divergence among locally adapted populations is poorly understood, especially how that divergence manifests in nature. Here, we evaluate gene expression divergence and allele-specific gene expression responses for locally adapted coastal perennial and inland annual accessions of the yellow monkeyflower, Mimulus guttatus, in a field reciprocal transplant experiment. Overall, 6765 (73%) of surveyed genes were differentially expressed between coastal and inland habitats, while 7213 (77%) were differentially expressed between the coastal perennial and inland annual accessions. Cis-regulatory variation was pervasive, affecting 79% (5532) of differentially expressed genes. We detected trans effects for 52% (3611) of differentially expressed genes. Expression plasticity of alleles across habitats (G × E interactions) appears to be relatively common (affecting 18% of transcripts) and could minimize fitness trade-offs at loci that contribute to local adaptation. We also found evidence that at least one chromosomal inversion may act as supergene by holding together haplotypes of differentially expressed genes, but this pattern depends on habitat context. Our results highlight multiple key patterns regarding the relationship between gene expression and the evolution of locally adapted populations.
Collapse
Affiliation(s)
- Billie A Gould
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Myriad Women's Health, South San Francisco, California
| | - Yani Chen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| |
Collapse
|
32
|
Horvath R, Slotte T. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora. Genome Biol Evol 2018; 9:2911-2920. [PMID: 29036316 PMCID: PMC5737465 DOI: 10.1093/gbe/evx206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
To avoid negative effects of transposable element (TE) proliferation, plants epigenetically silence TEs using a number of mechanisms, including RNA-directed DNA methylation. These epigenetic modifications can extend outside the boundaries of TE insertions and lead to silencing of nearby genes, resulting in a trade-off between TE silencing and interference with nearby gene regulation. Therefore, purifying selection is expected to remove silenced TE insertions near genes more efficiently and prevent their accumulation within a population. To explore how effects of TE silencing on gene regulation shapes purifying selection on TEs, we analyzed whole genome sequencing data from 166 individuals of a large population of the outcrossing species Capsella grandiflora. We found that most TEs are rare, and in chromosome arms, silenced TEs are exposed to stronger purifying selection than those that are not silenced by 24-nucleotide small RNAs, especially with increasing proximity to genes. An age-of-allele test of neutrality on a subset of TEs supports our inference of purifying selection on silenced TEs, suggesting that our results are robust to varying transposition rates. Our results provide new insights into the processes affecting the accumulation of TEs in an outcrossing species and support the view that epigenetic silencing of TEs results in a trade-off between preventing TE proliferation and interference with nearby gene regulation. We also suggest that in the centromeric and pericentromeric regions, the negative aspects of epigenetic TE silencing are missing.
Collapse
Affiliation(s)
- Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| |
Collapse
|
33
|
Wang M, Uebbing S, Pawitan Y, Scofield DG. RPASE: Individual-based allele-specific expression detection without prior knowledge of haplotype phase. Mol Ecol Resour 2018; 18:1247-1262. [PMID: 29858523 DOI: 10.1111/1755-0998.12909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/09/2018] [Accepted: 05/21/2018] [Indexed: 01/04/2023]
Abstract
Variation in gene expression is believed to make a significant contribution to phenotypic diversity and divergence. The analysis of allele-specific expression (ASE) can reveal important insights into gene expression regulation. We developed a novel method called RPASE (Read-backed Phasing-based ASE detection) to test for genes that show ASE. With mapped RNA-seq data from a single individual and a list of SNPs from the same individual as the only input, RPASE is capable of aggregating information across multiple dependent SNPs and producing individual-based gene-level tests for ASE. RPASE performs well in simulations and comparisons. We applied RPASE to multiple bird species and found a potentially rich landscape of ASE.
Collapse
Affiliation(s)
- Mi Wang
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Severin Uebbing
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Douglas G Scofield
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Liang Z, Schnable JC. Functional Divergence between Subgenomes and Gene Pairs after Whole Genome Duplications. MOLECULAR PLANT 2018; 11:388-397. [PMID: 29275166 DOI: 10.1016/j.molp.2017.12.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Gene loss following whole genome duplication (WGD) is often biased, with one subgenome retaining more ancestral genes and the other sustaining more gene deletions. While bias toward the greater expression of gene copies on one subgenome can explain bias in gene loss, this raises the question to what drives differences in gene expression levels between subgenomes. Differences in chromatin modifications and epigenetic markers between subgenomes in several model species are now being identified, providing an explanation for bias in gene expression between subgenomes. WGDs can be classified into duplications with higher, biased gene loss and bias in gene expression between subgenomes versus those with lower, unbiased rates of gene loss and an absence of detectable bias between subgenomes; however, the originally proposed link between these two classes and whether WGD results from an allo- or autopolyploid event is inconsistent with recent data from the allopolyploid Capsella bursa-pastoris. The gene balance hypothesis can explain bias in the functional categories of genes retained following WGD, the difference in gene loss rates between unbiased and biased WGDs, and how plant genomes have avoided being overrun with genes encoding dose-sensitive subunits of multiprotein complexes. Comparisons of gene expression patterns between retained transcription factor pairs in maize suggest the high degree of retention for WGD-derived pairs of transcription factors may instead be explained by the older duplication-degeneration-complementation model.
Collapse
Affiliation(s)
- Zhikai Liang
- Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - James C Schnable
- Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68503, USA.
| |
Collapse
|
35
|
Suh A, Smeds L, Ellegren H. Abundant recent activity of retrovirus-like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Mol Ecol 2017; 27:99-111. [DOI: 10.1111/mec.14439] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre (EBC); Uppsala University; Uppsala Sweden
| |
Collapse
|
36
|
Beaudry FEG, Barrett SCH, Wright SI. Genomic Loss and Silencing on the Y Chromosomes of Rumex. Genome Biol Evol 2017; 9:3345-3355. [PMID: 29211839 PMCID: PMC5737746 DOI: 10.1093/gbe/evx254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Across many unrelated lineages of plants and animals, Y chromosomes show a recurrent pattern of gene degeneration and loss, but the relative importance of inefficient selection, adaptive gene silencing, and neutral genetic drift in causing degeneration remain poorly understood. Here, we use next-generation genome and transcriptome sequencing to investigate patterns of ongoing Y chromosome degeneration in two annual plant species of Rumex (Polygonaceae) differing in their degree of degeneration and sex chromosome heteromorphism. We find evidence for both gene loss as well as silencing in these young plant sex chromosomes. Our analyses revealed significantly more gene deletion relative to silencing in R. rothschildianus, which has had a larger nonrecombining region for a longer period than R. hastatulus, consistent with this system being at a more advanced stage of degeneration. Intra- and interspecific comparisons of genomic coverage and heterozygosity indicated that loss of expression precedes gene deletion, implying that the final stages of mutation accumulation and gene loss may often occur neutrally. We found no evidence for adaptive silencing of genes that have lost expression. Our results suggest that the initial spread of deleterious regulatory variants and/or epigenetic silencing may be an important driver of early degeneration of Y chromosomes.
Collapse
Affiliation(s)
- Felix E G Beaudry
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Spencer C H Barrett
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Stephen I Wright
- Department of Ecology & Evolutionary Biology, University of Toronto, Ontario, Canada
| |
Collapse
|
37
|
Rhoné B, Mariac C, Couderc M, Berthouly-Salazar C, Ousseini IS, Vigouroux Y. No Excess of Cis-Regulatory Variation Associated with Intraspecific Selection in Wild Pearl Millet (Cenchrus americanus). Genome Biol Evol 2017; 9:388-397. [PMID: 28137746 PMCID: PMC5381623 DOI: 10.1093/gbe/evx004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 12/15/2022] Open
Abstract
Several studies suggest that cis-regulatory mutations are the favorite target of evolutionary changes, one reason being that cis-regulatory mutations might have fewer deleterious pleiotropic effects than protein-coding mutations. A review of the process also suggests that this bias towards adaptive cis-regulatory variation might be less pronounced at the intraspecific level compared with the interspecific level. In this study, we assessed the contribution of cis-regulatory variation to adaptation at the intraspecific level using populations of wild pearl millet (Cenchrus americanus ssp. monodii) sampled along an environmental gradient in Niger. From RNA sequencing of hybrids to assess allele-specific expression, we identified genes with cis-regulatory divergence between two parental accessions collected in contrasted environmental conditions. This revealed that ∼15% of transcribed genes showed cis-regulatory variation. Intersecting the gene set exhibiting cis-regulatory variation with the gene set identified as targets of selection revealed no excess of cis-acting mutations among the selected genes. We additionally found no excess of cis-regulatory variation among genes associated with adaptive traits. As our approach relied on methods identifying mainly genes submitted to strong selection pressure or with high phenotypic effect, the contribution of cis-regulatory changes to soft selection or polygenic adaptive traits remains to be tested. However our results favor the hypothesis that enrichment of adaptive cis-regulatory divergence builds up over time. For short evolutionary time-scales, cis-acting mutations are not predominantly involved in adaptive evolution associated with strong selective signal.
Collapse
Affiliation(s)
- Bénédicte Rhoné
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Lyon, France
| | - Cédric Mariac
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Marie Couderc
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France
| | - Cécile Berthouly-Salazar
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal
| | - Issaka Salia Ousseini
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal.,Biology Department, Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (UMR DIADE), Université Montpellier, France.,Université Abdou Moumouni de Niamey, Niger
| | - Yves Vigouroux
- Unité Mixte de Recherche Diversité Adaptation et Développement des Plantes (UMR DIADE), Institut de Recherche pour le Développement, Montpellier, France.,Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LMI LAPSE), Centre de Recherche de Bel Air, Dakar, Sénégal.,Biology Department, Unité Mixte de Recherche Diversité Adaptation et Développement des plantes (UMR DIADE), Université Montpellier, France
| |
Collapse
|
38
|
Takuno S, Seymour DK, Gaut BS. The Evolutionary Dynamics of Orthologs That Shift in Gene Body Methylation between Arabidopsis Species. Mol Biol Evol 2017; 34:1479-1491. [PMID: 28333248 DOI: 10.1093/molbev/msx099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation labels a specific subset of genes in plant genomes. Recent work has shown that this gene-body methylation (gbM) is a conserved feature of orthologs, because highly methylated genes in one species tend to be highly methylated in another. In this study, we examined the exceptions to that rule by identifying genes that differ in gbM status between two plant species-Arabidopsis thaliana and Arabidopsis lyrata. Using Capsella grandiflora as an outgroup, we polarized the loss and gain of gbM for orthologs in the Arabidopsis lineage. Our survey identified a few hundred genes that differed between ingroup species, out of ∼9,000 orthologs. The estimated rate of gbM gain was ∼2 × 10-9 per gene per year for both ingroup taxa and was similar to the loss rate in A. lyrata. In contrast, A. thaliana had a ∼3-fold higher estimated rate of gbM loss per gene, consistent with a recent diminishment of genome size. As in previous studies, we found that body-methylated genes were expressed broadly across tissues and were also longer than other genic sets. Genes that differed in gbM status exhibited higher variance in expression between species than genes that were body-methylated in both species. Moreover, the gain of gbM in one lineage tended to be associated with an increase of expression in that lineage. The genes that varied in gbM status between species varied more significantly in length between species than other sets of genes; we hypothesize that length is a key feature in the transition between body-methylated and nonmethylated genes.
Collapse
Affiliation(s)
- Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa, Japan
| | - Danelle K Seymour
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
39
|
Josephs EB, Wright SI, Stinchcombe JR, Schoen DJ. The Relationship between Selection, Network Connectivity, and Regulatory Variation within a Population of Capsella grandiflora. Genome Biol Evol 2017; 9:1099-1109. [PMID: 28402527 PMCID: PMC5408089 DOI: 10.1093/gbe/evx068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Interactions between genes can have important consequences for how selection shapes sequence variation at these genes. Specifically, genes that have pleiotropic effects by affecting the expression level of many other genes may be under stronger selective constraint. We used coexpression networks to measure connectivity between genes and investigated the relationship between gene connectivity and selection in a natural population of the plant Capsella grandiflora. We observed that network connectivity was negatively correlated with genetic divergence due to stronger negative selection on highly-connected genes even when controlling for variation in gene expression level. However, the presence of local regulatory variation for a gene's expression level was also associated with reduced negative selection and lower gene connectivity. While it is difficult to disentangle the causal relationships between these factors, our results show that both connectivity and local regulatory variation are important factors for explaining variation in selection between genes.
Collapse
Affiliation(s)
- Emily B. Josephs
- Department of Evolution and Ecology, University of California, Davis
| | - Stephen I. Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario, Canada
| | - Daniel J. Schoen
- Department of Biology, McGill University, Stewart Biology Building, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Nikolov LA, Tsiantis M. Using mustard genomes to explore the genetic basis of evolutionary change. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:119-128. [PMID: 28285128 DOI: 10.1016/j.pbi.2017.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Recent advances in sequencing technologies and gene manipulation tools have driven mustard species into the spotlight of comparative research and have offered powerful insight how phenotypic space is explored during evolution. Evidence emerged for genome-wide signal of transcription factors and gene duplication contributing to trait divergence, e.g., PLETHORA5/7 in leaf complexity. Trait divergence is often manifested in differential expression due to cis-regulatory divergence, as in KNOX genes and REDUCED COMPLEXITY, and can be coupled with protein divergence. Fruit shape in Capsella rubella results from anisotropic growth during three distinct phases. Brassicaceae exhibit novel fruit dispersal strategy, explosive pod shatter, where the rapid movement depends on slow build-up of tension and its rapid release facilitated by asymmetric cell wall thickenings.
Collapse
Affiliation(s)
- Lachezar A Nikolov
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.
| |
Collapse
|