1
|
Werner MH, Mehner-Breitfeld D, Brüser T. A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane. Sci Rep 2024; 14:13754. [PMID: 38877109 PMCID: PMC11178869 DOI: 10.1038/s41598-024-64547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA-TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.
Collapse
Affiliation(s)
- Max-Hinrich Werner
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Denise Mehner-Breitfeld
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Brüser
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
2
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
He L, Tang W, Huang L, Zhou W, Huang S, Zou L, Yuan L, Men D, Chen S, Hu Y. Rational design of a genome-based insulated system in Escherichia coli facilitates heterologous uricase expression for hyperuricemia treatment. Bioeng Transl Med 2023; 8:e10449. [PMID: 36925686 PMCID: PMC10013758 DOI: 10.1002/btm2.10449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/18/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Hyperuricemia is a prevalent disease worldwide that is characterized by elevated urate levels in the blood owing to purine metabolic disorders, which can result in gout and comorbidities. To facilitate the treatment of hyperuricemia through the uricolysis, we engineered a probiotic Escherichia coli Nissle 1917 (EcN) named EcN C6 by inserting an FtsP-uricase cassette into an "insulated site" located between the uspG and ahpF genes. Expression of FtsP-uricase in this insulated region did not influence the probiotic properties or global gene transcription of EcN but strongly increased the enzymatic activity for urate degeneration, suggesting that the genome-based insulated system is an ideal strategy for EcN modification. Oral administration of EcN C6 successfully alleviated hyperuricemia, related symptoms and gut microbiota in a purine-rich food-induced hyperuricemia rat model and a uox-knockout mouse model. Together, our study provides an insulated site for heterologous gene expression in EcN strain and a recombinant EcN C6 strain as a safe and effective therapeutic candidate for hyperuricemia treatment.
Collapse
Affiliation(s)
- Lina He
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wei Tang
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Ling Huang
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wei Zhou
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shaojia Huang
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Linxuan Zou
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lisha Yuan
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dong Men
- State Key Laboratory of VirologyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and BiosafetyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
| | - Yangbo Hu
- State Key Laboratory of VirologyWuhan Institute of Virology, Chinese Academy of SciencesWuhanChina
- Hubei Jiangxia LaboratoryWuhanChina
| |
Collapse
|
4
|
Severi E, Bunoro Batista M, Lannoy A, Stansfeld PJ, Palmer T. Characterization of a TatA/TatB binding site on the TatC component of the Escherichia coli twin arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001298. [PMID: 36790402 PMCID: PMC10197872 DOI: 10.1099/mic.0.001298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In Escherichia coli and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon. The polytopic membrane protein TatC forms the core of the Tat receptor and harbours two binding sites for the sequence-related TatA and TatB proteins. A 'polar' cluster binding site, formed by TatC transmembrane helices (TMH) 5 and 6 is occupied by TatB in the resting receptor and exchanges for TatA during receptor activation. The second binding site, lying further along TMH6, is occupied by TatA in the resting state, but its functional relevance is unclear. Here we have probed the role of this second binding site through a programme of random and targeted mutagenesis. Characterization of three stably produced TatC variants, P221R, M222R and L225P, each of which is inactive for protein transport, demonstrated that the substitutions did not affect assembly of the Tat receptor. Moreover, the substitutions that we analysed did not abolish TatA or TatB binding to either binding site. Using targeted mutagenesis we introduced bulky substitutions into the TatA binding site. Molecular dynamics simulations and crosslinking analysis indicated that TatA binding at this site was substantially reduced by these amino acid changes, but TatC retained function. While it is not clear whether TatA binding at the TMH6 site is essential for Tat activity, the isolation of inactivating substitutions indicates that this region of the protein has a critical function.
Collapse
Affiliation(s)
- Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mariana Bunoro Batista
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Adelie Lannoy
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Alcock F, Berks BC. New insights into the Tat protein transport cycle from characterizing the assembled Tat translocon. Mol Microbiol 2022; 118:637-651. [PMID: 36151601 PMCID: PMC10092561 DOI: 10.1111/mmi.14984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023]
Abstract
The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, UK.,Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Li W, Yin F, Bu Z, Liu Y, Zhang Y, Chen X, Li S, Li L, Zhou R, Huang Q. An Engineered Outer Membrane-Defective Escherichia coli Secreting Protective Antigens against Streptococcus suis via the Twin-Arginine Translocation Pathway as a Vaccine. J Microbiol Biotechnol 2022; 32:278-286. [PMID: 35283432 PMCID: PMC9628857 DOI: 10.4014/jmb.2107.07052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
Live bacterial vector vaccines are one of the most promising vaccine types and have the advantages of low cost, flexibility, and good safety. Meanwhile, protein secretion systems have been reported as useful tools to facilitate the release of heterologous antigen proteins from bacterial vectors. The twin-arginine translocation (Tat) system is an important protein export system that transports fully folded proteins in a signal peptide-dependent manner. In this study, we constructed a live vector vaccine using an engineered commensal Escherichia coli strain in which amiA and amiC genes were deleted, resulting in a leaky outer membrane that allows the release of periplasmic proteins to the extracellular environment. The protective antigen proteins SLY, enolase, and Sbp against Streptococcus suis were targeted to the Tat pathway by fusing a Tat signal peptide. Our results showed that by exploiting the Tat pathway and the outer membrane-defective E. coli strain, the antigen proteins were successfully secreted. The strains secreting the antigen proteins were used to vaccinate mice. After S. suis challenge, the vaccinated group showed significantly higher survival and milder clinical symptoms compared with the vector group. Further analysis showed that the mice in the vaccinated group had lower burdens of bacteria load and slighter pathological changes. Our study reports a novel live bacterial vector vaccine that uses the Tat system and provides a new alternative for developing S. suis vaccine.
Collapse
Affiliation(s)
- Wenyu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Shandong Vocational Animal Science and Veterinary College, Weifang, P.R. China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zixuan Bu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yuying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yongqing Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiabing Chen
- Institute of Animal Husbandry and Veterinary Science, Wuhan Academy of Agricultural Science and Technology, Wuhan 430070, P.R. China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, P.R. China,Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, P.R. China,International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan 430070, P.R. China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan 430070, P.R. China,Corresponding author Phone: +86-27-87281878 Fax: + 86-27-8728 2608 E-mail:
| |
Collapse
|
7
|
Liu J, Yin F, Liu T, Li S, Tan C, Li L, Zhou R, Huang Q. The Tat system and its dependent cell division proteins are critical for virulence of extra-intestinal pathogenic Escherichia coli. Virulence 2020; 11:1279-1292. [PMID: 32962530 PMCID: PMC7549933 DOI: 10.1080/21505594.2020.1817709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022] Open
Abstract
The twin-arginine translocation (Tat) system is involved in a variety of important bacterial physiological processes. Conserved among bacteria and crucial for virulence, the Tat system is deemed as a promising anti-microbial drug target. However, the mechanism of how the Tat system functions in bacterial pathogenesis has not been fully understood. In this study, we showed that the Tat system was critical for the virulence of an extra-intestinal pathogenic E. coli (ExPEC) strain PCN033. A total of 20 Tat-related mutant strains were constructed, and competitive infection assays were performed to evaluate the relative virulence of these mutants. The results demonstrated that several Tat substrate mutants, including the ΔsufI, ΔamiAΔamiC double mutant as well as each single mutant, ΔyahJ, ΔcueO, and ΔnapG, were significantly outcompeted by the WT strain, among which the ΔsufI and ΔamiAΔamiC strains showed the lowest competitive index (CI) value. Results of individual mouse infection assay, in vitro cell adhesion assay, whole blood bactericidal assay, and serum bactericidal assay further confirmed the virulence attenuation phenotype of the ΔsufI and ΔamiAΔamiC strains. Moreover, the two mutants displayed chained morphology in the log phase resembling the Δtat and were defective in stress response. Our results suggest that the Tat system and its dependent cell division proteins SufI, AmiA, and AmiC play critical roles during ExPEC pathogenesis.
Collapse
Affiliation(s)
- Jinjin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Fan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Te Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs of China, Wuhan, China
| |
Collapse
|
8
|
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway. Mol Microbiol 2020; 113:861-871. [PMID: 31971282 PMCID: PMC7317946 DOI: 10.1111/mmi.14461] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/06/2023]
Abstract
The twin-arginine protein transport (Tat pathway) is found in prokaryotes and plant organelles and transports folded proteins across membranes. Targeting of substrates to the Tat system is mediated by the presence of an N-terminal signal sequence containing a highly conserved twin-arginine motif. The Tat machinery comprises membrane proteins from the TatA and TatC families. Assembly of the Tat translocon is dynamic and is triggered by the interaction of a Tat substrate with the Tat receptor complex. This review will summarise recent advances in our understanding of Tat transport, focusing in particular on the roles played by Tat signal peptides in protein targeting and translocation.
Collapse
Affiliation(s)
- Tracy Palmer
- Faculty of Medical Sciences, Centre for Bacterial Cell Biology, Biosciences Institute, Molecular and Cellular Microbiology Theme, Newcastle University, Newcastle upon Tyne, England
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Fröbel J, Blümmel AS, Drepper F, Warscheid B, Müller M. Surface-exposed domains of TatB involved in the structural and functional assembly of the Tat translocase in Escherichia coli. J Biol Chem 2019; 294:13902-13914. [PMID: 31341014 DOI: 10.1074/jbc.ra119.009298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/10/2019] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine-dependent translocases transport folded proteins across bacterial, archaeal, and chloroplast membranes. Upon substrate binding, they assemble from hexahelical TatC and single-spanning TatA and TatB membrane proteins. Although structural and functional details of individual Tat subunits have been reported previously, the sequence and dynamics of Tat translocase assembly remain to be determined. Employing the zero-space cross-linker N,N'-dicyclohexylcarbodiimide (DCCD) in combination with LC-MS/MS, we identified as yet unknown intra- and intermolecular contact sites of TatB and TatC. In addition to their established intramembrane binding sites, both proteins were thus found to contact each other through the soluble N terminus of TatC and the interhelical linker region around the conserved glutamyl residue Glu49 of TatB from Escherichia coli Functional analyses suggested that by interacting with the TatC N terminus, TatB improves the formation of a proficient substrate recognition site of TatC. The Glu49 region of TatB was found also to contact distinct downstream sites of a neighboring TatB molecule and to thereby mediate oligomerization of TatB within the TatBC receptor complex. Finally, we show that global DCCD-mediated cross-linking of TatB and TatC in membrane vesicles or, alternatively, creating covalently linked TatC oligomers prevents TatA from occupying a position close to the TatBC-bound substrate. Collectively, our results are consistent with a circular arrangement of the TatB and TatC units within the TatBC receptor complex and with TatA entering the interior TatBC-binding cavity through lateral gates between TatBC protomers.
Collapse
Affiliation(s)
- Julia Fröbel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Anne-Sophie Blümmel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Institute of Biology II, Biochemistry-Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry-Functional Proteomics, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Geise H, Heidrich ES, Nikolin CS, Mehner-Breitfeld D, Brüser T. A Potential Late Stage Intermediate of Twin-Arginine Dependent Protein Translocation in Escherichia coli. Front Microbiol 2019; 10:1482. [PMID: 31354642 PMCID: PMC6637791 DOI: 10.3389/fmicb.2019.01482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
The twin-arginine translocation (Tat) system transports folded proteins across membranes of prokaryotes, plant plastids, and some mitochondria. According to blue-native polyacrylamide gel electrophoresis after solubilization with digitonin, distinct interactions between the components TatA, TatB, and TatC result in two major TatBC-containing complexes in Escherichia coli that can bind protein substrates. We now report the first detection of a TatABC complex that likely represents the state at which transport occurs. This complex was initially found when the photo cross-linking amino acid p-benzoyl-l-phenylalanine (Bpa) was introduced at position I50 on the periplasmic side of the first trans-membrane domain of TatC. Cross-linking of TatCI50Bpa resulted in TatC-TatC-cross-links, indicating a close proximity to neighboring TatC in the complex. However, the new complex was not caused by cross-links but rather by non-covalent side chain interactions, as it was also detectable without UV-cross-linking or with an I50Y exchange. The new complex did not contain any detectable substrate. It was slightly upshifted relative to previously reported substrate-containing TatABC complexes. In the absence of TatA, an inactive TatBCI50Bpa complex was formed of the size of wild-type substrate-containing TatABC complexes, suggesting that TatB occupies TatA-binding sites at TatCI50Bpa. When substrate binding was abolished by point mutations, this TatBCI50Bpa complex shifted analogously to active TatABCI50Bpa complexes, indicating that a defect substrate-binding site further enhances TatB association to TatA-binding sites. Only TatA could shift the complex with an intact substrate-binding site, which explains the TatA requirement for substrate transport by TatABC systems.
Collapse
Affiliation(s)
- Hendrik Geise
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| | | | | | | | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
11
|
Abstract
The inner membrane of Gram-negative bacteria is a ~6 nm thick phospholipid bilayer. It forms a semi-permeable barrier between the cytoplasm and periplasm allowing only regulated export and import of ions, sugar polymers, DNA and proteins. Inner membrane proteins, embedded via hydrophobic transmembrane α-helices, play an essential role in this regulated trafficking: they mediate insertion into the membrane (insertases) or complete crossing of the membrane (translocases) or both. The Gram-negative inner membrane is equipped with a variety of different insertases and translocases. Many of them are specialized, taking care of the export of only a few protein substrates, while others have more general roles. Here, we focus on the three general export/insertion pathways, the secretory (Sec) pathway, YidC and the twin-arginine translocation (TAT) pathway, focusing closely on the Escherichia coli (E. coli) paradigm. We only briefly mention dedicated export pathways found in different Gram-negative bacteria. The Sec system deals with the majority of exported proteins and functions both as a translocase for secretory proteins and an insertase for membrane proteins. The insertase YidC assists the Sec system or operates independently on membrane protein clients. Sec and YidC, in common with most export pathways, require their protein clients to be in soluble non-folded states to fit through the translocation channels and grooves. The TAT pathway is an exception, as it translocates folded proteins, some loaded with prosthetic groups.
Collapse
Affiliation(s)
- Jozefien De Geyter
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dries Smets
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Spyridoula Karamanou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Anastassios Economou
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
12
|
New CP, Ma Q, Dabney-Smith C. Routing of thylakoid lumen proteins by the chloroplast twin arginine transport pathway. PHOTOSYNTHESIS RESEARCH 2018; 138:289-301. [PMID: 30101370 DOI: 10.1007/s11120-018-0567-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
Thylakoids are complex sub-organellar membrane systems whose role in photosynthesis makes them critical to life. Thylakoids require the coordinated expression of both nuclear- and plastid-encoded proteins to allow rapid response to changing environmental conditions. Transport of cytoplasmically synthesized proteins to thylakoids or the thylakoid lumen is complex; the process involves transport across up to three membrane systems with routing through three aqueous compartments. Protein transport in thylakoids is accomplished by conserved ancestral prokaryotic plasma membrane translocases containing novel adaptations for the sub-organellar location. This review focuses on the evolutionarily conserved chloroplast twin arginine transport (cpTat) pathway. An overview is provided of known aspects of the cpTat components, energy requirements, and mechanisms with a focus on recent discoveries. Some of the most exciting new studies have been in determining the structural architecture of the membrane complex involved in forming the point of passage for the precursor and binding features of the translocase components. The cpTat system is of particular interest because it transports folded protein domains using only the proton motive force for energy. The implications for mechanism of translocation by recent studies focusing on interactions between membrane Tat components and with the translocating precursor will be discussed.
Collapse
Affiliation(s)
- Christopher Paul New
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Qianqian Ma
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA
| | - Carole Dabney-Smith
- Cellular, Molecular, and Structural Biology Graduate Program, Miami University, Oxford, OH, 45056, USA.
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
13
|
Gimenez MR, Chandra G, Van Overvelt P, Voulhoux R, Bleves S, Ize B. Genome wide identification and experimental validation of Pseudomonas aeruginosa Tat substrates. Sci Rep 2018; 8:11950. [PMID: 30093651 PMCID: PMC6085387 DOI: 10.1038/s41598-018-30393-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
In bacteria, the twin-arginine translocation (Tat) pathway allows the export of folded proteins through the inner membrane. Proteins targeted to this system are synthesized with N-terminal signal peptides bearing a conserved twin-arginine motif. The Tat pathway is critical for many bacterial processes including pathogenesis and virulence. However, the full set of Tat substrates is unknown in many bacteria, and the reliability of in silico prediction methods largely uncertain. In this work, we performed a combination of in silico analysis and experimental validation to identify a core set of Tat substrates in the opportunistic pathogen Pseudomonas aeruginosa. In silico analysis predicted 44 putative Tat signal peptides in the P. aeruginosa PA14 proteome. We developed an improved amidase-based Tat reporter assay to show that 33 of these are real Tat signal peptides. In addition, in silico analysis of the full translated genome revealed a Tat candidate with a missassigned start codon. We showed that it is a new periplasmic protein in P. aeruginosa. Altogether we discovered and validated 34 Tat substrates. These show little overlap with Escherichia coli Tat substrates, and functional analysis points to a general role for the P. aeruginosa Tat system in the colonization of environmental niches and pathogenicity.
Collapse
Affiliation(s)
- Maxime Rémi Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Perrine Van Overvelt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Romé Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France
| | - Bérengère Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM-UMR7255), Institut de Microbiologie de la Méditerranée, CNRS and Aix-Marseille Univ., 31 Chemin Joseph Aiguier, CS 70071, 13402 Marseille cedex 09, France.
| |
Collapse
|
14
|
Habersetzer J, Moore K, Cherry J, Buchanan G, Stansfeld PJ, Palmer T. Substrate-triggered position switching of TatA and TatB during Tat transport in Escherichia coli. Open Biol 2018; 7:rsob.170091. [PMID: 28814647 PMCID: PMC5577447 DOI: 10.1098/rsob.170091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023] Open
Abstract
The twin-arginine protein transport (Tat) machinery mediates the translocation of folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. The Escherichia coli Tat system comprises TatC and two additional sequence-related proteins, TatA and TatB. The active translocase is assembled on demand, with substrate-binding at a TatABC receptor complex triggering recruitment and assembly of multiple additional copies of TatA; however, the molecular interactions mediating translocase assembly are poorly understood. A ‘polar cluster’ site on TatC transmembrane (TM) helix 5 was previously identified as binding to TatB. Here, we use disulfide cross-linking and molecular modelling to identify a new binding site on TatC TM helix 6, adjacent to the polar cluster site. We demonstrate that TatA and TatB each have the capacity to bind at both TatC sites, however in vivo this is regulated according to the activation state of the complex. In the resting-state system, TatB binds the polar cluster site, with TatA occupying the TM helix 6 site. However when the system is activated by overproduction of a substrate, TatA and TatB switch binding sites. We propose that this substrate-triggered positional exchange is a key step in the assembly of an active Tat translocase.
Collapse
Affiliation(s)
- Johann Habersetzer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kristoffer Moore
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jon Cherry
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Grant Buchanan
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Tracy Palmer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
15
|
Ulfig A, Freudl R. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding. J Biol Chem 2018; 293:7281-7299. [PMID: 29593092 DOI: 10.1074/jbc.ra118.002576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/22/2018] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N-oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC.
Collapse
Affiliation(s)
- Agnes Ulfig
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
| | - Roland Freudl
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany.
| |
Collapse
|
16
|
Hou B, Heidrich ES, Mehner-Breitfeld D, Brüser T. The TatA component of the twin-arginine translocation system locally weakens the cytoplasmic membrane of Escherichia coli upon protein substrate binding. J Biol Chem 2018. [PMID: 29535185 DOI: 10.1074/jbc.ra118.002205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) system that comprises the TatA, TatB, and TatC components transports folded proteins across energized membranes of prokaryotes and plant plastids. It is not known, however, how the transport of this protein cargo is achieved. Favored models suggest that the TatA component supports transport by weakening the membrane upon full translocon assembly. Using Escherichia coli as a model organism, we now demonstrate in vivo that the N terminus of TatA can indeed destabilize the membrane, resulting in a lowered membrane energization in growing cells. We found that in full-length TatA, this effect is counterbalanced by its amphipathic helix. Consistent with these observations, the TatA N terminus induced proton leakage in vitro, indicating membrane destabilization. Fluorescence quenching data revealed that substrate binding causes the TatA hinge region and the N-terminal part of the TatA amphipathic helix to move toward the membrane surface. In the presence of TatBC, substrate binding also reduced the exposure of a specific region in the amphipathic helix, indicating a participation of TatBC. Of note, the substrate-induced reorientation of the TatA amphipathic helix correlated with detectable membrane weakening. We therefore propose a two-state model in which membrane-destabilizing effects of the short TatA membrane anchor are compensated by the membrane-immersed N-terminal part of the amphipathic helix in a resting state. We conclude that substrate binding to TatABC complexes switches the position of the amphipathic helix, which locally weakens the membrane on demand to allow substrate translocation across the membrane.
Collapse
Affiliation(s)
- Bo Hou
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Eyleen S Heidrich
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Denise Mehner-Breitfeld
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Thomas Brüser
- From the Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| |
Collapse
|
17
|
Wojnowska M, Gault J, Yong SC, Robinson CV, Berks BC. Precursor-Receptor Interactions in the Twin Arginine Protein Transport Pathway Probed with a New Receptor Complex Preparation. Biochemistry 2018; 57:1663-1671. [PMID: 29460615 PMCID: PMC5852461 DOI: 10.1021/acs.biochem.8b00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.
Collapse
Affiliation(s)
- Marta Wojnowska
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Joseph Gault
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Shee Chien Yong
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry , University of Oxford , South Parks Road , Oxford OX1 3QZ , United Kingdom
| | - Ben C Berks
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , United Kingdom
| |
Collapse
|
18
|
Unanticipated functional diversity among the TatA-type components of the Tat protein translocase. Sci Rep 2018; 8:1326. [PMID: 29358647 PMCID: PMC5777986 DOI: 10.1038/s41598-018-19640-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/29/2017] [Indexed: 11/08/2022] Open
Abstract
Twin-arginine translocation (Tat) systems transport folded proteins that harbor a conserved arginine pair in their signal peptides. They assemble from hexahelical TatC-type and single-spanning TatA-type proteins. Many Tat systems comprise two functionally diverse, TatA-type proteins, denominated TatA and TatB. Some bacteria in addition express TatE, which thus far has been characterized as a functional surrogate of TatA. For the Tat system of Escherichia coli we demonstrate here that different from TatA but rather like TatB, TatE contacts a Tat signal peptide independently of the proton-motive force and restricts the premature processing of a Tat signal peptide. Furthermore, TatE embarks at the transmembrane helix five of TatC where it becomes so closely spaced to TatB that both proteins can be covalently linked by a zero-space cross-linker. Our results suggest that in addition to TatB and TatC, TatE is a further component of the Tat substrate receptor complex. Consistent with TatE being an autonomous TatAB-type protein, a bioinformatics analysis revealed a relatively broad distribution of the tatE gene in bacterial phyla and highlighted unique protein sequence features of TatE orthologs.
Collapse
|
19
|
Blümmel AS, Drepper F, Knapp B, Eimer E, Warscheid B, Müller M, Fröbel J. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. J Biol Chem 2017; 292:21320-21329. [PMID: 29089385 DOI: 10.1074/jbc.m117.812560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/26/2017] [Indexed: 11/06/2022] Open
Abstract
Twin-arginine translocation (Tat) systems transport folded proteins across cellular membranes with the concerted action of mostly three membrane proteins: TatA, TatB, and TatC. Hetero-oligomers of TatB and TatC form circular substrate-receptor complexes with a central binding cavity for twin-arginine-containing signal peptides. After binding of the substrate, energy from an electro-chemical proton gradient is transduced into the recruitment of TatA oligomers and into the actual translocation event. We previously reported that Tat-dependent protein translocation into membrane vesicles of Escherichia coli is blocked by the compound N,N'-dicyclohexylcarbodiimide (DCCD, DCC). We have now identified a highly conserved glutamate residue in the transmembrane region of E. coli TatC, which when modified by DCCD interferes with the deep insertion of a Tat signal peptide into the TatBC receptor complex. Our findings are consistent with a hydrophobic binding cavity formed by TatB and TatC inside the lipid bilayer. Moreover, we found that DCCD mediates discrete intramolecular cross-links of E. coli TatC involving both its N- and C-tails. These results confirm the close proximity of two distant sequence sections of TatC proposed to concertedly function as the primary docking site for twin-arginine signal peptides.
Collapse
Affiliation(s)
- Anne-Sophie Blümmel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Spemann Graduate School of Biology and Medicine (SGBM).,the Faculty of Biology
| | - Friedel Drepper
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Knapp
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and
| | - Ekaterina Eimer
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine.,the Faculty of Biology
| | - Bettina Warscheid
- the Institute of Biology II, Biochemistry: Functional Proteomics, Faculty of Biology, and.,the BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Müller
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine,
| | - Julia Fröbel
- From the Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine
| |
Collapse
|
20
|
Alcock F, Damen MP, Levring J, Berks BC. In vivo experiments do not support the charge zipper model for Tat translocase assembly. eLife 2017; 6:30127. [PMID: 28857741 PMCID: PMC5601993 DOI: 10.7554/elife.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 12/29/2022] Open
Abstract
The twin-arginine translocase (Tat) transports folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat translocation site is formed by substrate-triggered oligomerization of the protein TatA. Walther and co-workers have proposed a structural model for the TatA oligomer in which TatA monomers self-assemble using electrostatic 'charge zippers' (Cell (2013) 132: 15945). This model was supported by in vitro analysis of the oligomeric state of TatA variants containing charge-inverting substitutions. Here we have used live cell assays of TatA assembly and function in Escherichia coli to re-assess the roles of the charged residues of TatA. Our results do not support the charge zipper model. Instead, we observe that substitutions of charged residues located in the TatA amphipathic helix lock TatA in an assembled state, suggesting that these charged residues play a critical role in the protein translocation step that follows TatA assembly.
Collapse
Affiliation(s)
- Felicity Alcock
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Merel Pm Damen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jesper Levring
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Ben C Berks
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Abstract
The general secretory pathway (Sec) and twin-arginine translocase (Tat) operate in parallel to export proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Substrates are targeted to their respective machineries by N-terminal signal peptides that share a tripartite organization; however, Tat signal peptides harbor a conserved and almost invariant arginine pair that is critical for efficient targeting to the Tat machinery. Tat signal peptides interact with a membrane-bound receptor complex comprised of TatB and TatC components, with TatC containing the twin-arginine recognition site. Here, we isolated suppressors in the signal peptide of the Tat substrate, SufI, that restored Tat transport in the presence of inactivating substitutions in the TatC twin-arginine binding site. These suppressors increased signal peptide hydrophobicity, and copurification experiments indicated that they restored binding to the variant TatBC complex. The hydrophobic suppressors could also act in cis to suppress substitutions at the signal peptide twin-arginine motif that normally prevent targeting to the Tat pathway. Highly hydrophobic variants of the SufI signal peptide containing four leucine substitutions retained the ability to interact with the Tat system. The hydrophobic signal peptides of two Sec substrates, DsbA and OmpA, containing twin lysine residues, were shown to mediate export by the Tat pathway and to copurify with TatBC. These findings indicate that there is unprecedented overlap between Sec and Tat signal peptides and that neither the signal peptide twin-arginine motif nor the TatC twin-arginine recognition site is an essential mechanistic feature for operation of the Tat pathway.IMPORTANCE Protein export is an essential process in all prokaryotes. The Sec and Tat export pathways operate in parallel, with the Sec machinery transporting unstructured precursors and the Tat pathway transporting folded proteins. Proteins are targeted to the Tat pathway by N-terminal signal peptides that contain an almost invariant twin-arginine motif. Here, we make the surprising discovery that the twin arginines are not essential for recognition of substrates by the Tat machinery and that this requirement can be bypassed by increasing the signal peptide hydrophobicity. We further show that signal peptides of bona fide Sec substrates can also mediate transport by the Tat pathway. Our findings suggest that key features of the Tat targeting mechanism have evolved to prevent mistargeting of substrates to the Sec pathway rather than being a critical requirement for function of the Tat pathway.
Collapse
|
22
|
Ulfig A, Fröbel J, Lausberg F, Blümmel AS, Heide AK, Müller M, Freudl R. The h-region of twin-arginine signal peptides supports productive binding of bacterial Tat precursor proteins to the TatBC receptor complex. J Biol Chem 2017; 292:10865-10882. [PMID: 28515319 DOI: 10.1074/jbc.m117.788950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in their binding to the Tat translocase, but some facets of this interaction remain unclear. Here, we investigated the role of the hydrophobic (h-) region of the Escherichia coli trimethylamine N-oxide reductase (TorA) signal peptide in TatBC receptor binding in vivo and in vitro We show that besides the RR motif, a minimal, functional h-region in the signal peptide is required for Tat-dependent export in Escherichia coli Furthermore, we identified mutations in the h-region that synergistically suppressed the export defect of a TorA[KQ]-30aa-MalE Tat reporter protein in which the RR motif was replaced with a lysine-glutamine pair. Strikingly, all suppressor mutations increased the hydrophobicity of the h-region. By systematically replacing a neutral residue in the h-region with various amino acids, we detected a positive correlation between the hydrophobicity of the h-region and the translocation efficiency of the resulting reporter variants. In vitro cross-linking of residues located in the periplasmically-oriented part of the TatBC receptor to TorA[KQ]-30aa-MalE reporter variants harboring a more hydrophobic h-region in their signal peptides confirmed that unlike in TorA[KQ]-30aa-MalE with an unaltered h-region, the mutated reporters moved deep into the TatBC-binding cavity. Our results clearly indicate that, besides the Tat motif, the h-region of the Tat signal peptides is another important binding determinant that significantly contributes to the productive interaction of Tat precursor proteins with the TatBC receptor complex.
Collapse
Affiliation(s)
- Agnes Ulfig
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Julia Fröbel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Frank Lausberg
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Anne-Sophie Blümmel
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Anna Katharina Heide
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| | - Matthias Müller
- the Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
| | - Roland Freudl
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany and
| |
Collapse
|