1
|
Graciano A, Liu A. Protein-derived cofactors: chemical innovations expanding enzyme catalysis. Chem Soc Rev 2025; 54:4502-4530. [PMID: 40151987 PMCID: PMC11951088 DOI: 10.1039/d4cs00981a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Indexed: 03/29/2025]
Abstract
Protein-derived cofactors, formed through posttranslational modification of a single amino acid or covalent crosslinking of amino acid side chains, represent a rapidly expanding class of catalytic moieties that redefine enzyme functionality. Once considered rare, these cofactors are recognized across all domains of life, with their repertoire growing from 17 to 38 types in two decades in our survey. Their biosynthesis proceeds via diverse pathways, including oxidation, metal-assisted rearrangements, and enzymatic modifications, yielding intricate motifs that underpin distinctive catalytic strategies. These cofactors span paramagnetic and non-radical states, including both mono-radical and crosslinked radical forms, sometimes accompanied by additional modifications. While their discovery has accelerated, mechanistic understanding lags, as conventional mutagenesis disrupts cofactor assembly. Emerging approaches, such as site-specific incorporation of non-canonical amino acids, now enable precise interrogation of cofactor biogenesis and function, offering a viable and increasingly rigorous means to gain mechanistic insights. Beyond redox chemistry and electron transfer, these cofactors confer enzymes with expanded functionalities. Recent studies have unveiled new paradigms, such as long-range remote catalysis and redox-regulated crosslinks as molecular switches. Advances in structural biology, mass spectrometry, and biophysical spectroscopy continue to elucidate their mechanisms. Moreover, synthetic biology and biomimetic chemistry are increasingly leveraging these natural designs to engineer enzyme-inspired catalysts. This review integrates recent advances in cofactor biogenesis, reactivity, metabolic regulation, and synthetic applications, highlighting the expanding chemical landscape and growing diversity of protein-derived cofactors and their far-reaching implications for enzymology, biocatalysis, and biotechnology.
Collapse
Affiliation(s)
- Angelica Graciano
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, Texas 78249, USA.
| |
Collapse
|
2
|
Gatreddi S, Urdiain-Arraiza J, Desguin B, Hausinger RP, Hu J. Structural Basis for the Catalysis and Substrate Specificity of a LarA Racemase with a Broad Substrate Spectrum. ACS Catal 2025; 15:2857-2866. [PMID: 40013250 PMCID: PMC11851776 DOI: 10.1021/acscatal.4c07804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/28/2025]
Abstract
The LarA family consists of diverse racemases/epimerases that interconvert the diastereomers of α-hydroxyacids by using a nickel-pincer nucleotide (NPN) cofactor. The hidden redox reaction catalyzed by the NPN cofactor makes LarA enzymes attractive engineering targets for various applications. However, how a LarA enzyme binds its natural substrate and recognizes different α-hydroxyacids has not been elucidated. Here, we report three high-resolution structures of the enzyme-substrate complexes of a broad-spectrum LarA enzyme from Isosphaera pallida (LarA Ip ). The substrate binding mode reveals a near-optimal orientation and distance between the hydride donor and acceptor, consistent with an updated proton-coupled hydride transfer mechanism. The experimentally solved structures, together with the structural models of other LarA enzymes, lead to the identification of the residues/structural elements that are critically involved in the interactions with different α-hydroxyacids. Collectively, this work provides a structural basis for the catalysis and substrate specificity of the LarA enzymes.
Collapse
Affiliation(s)
- Santhosh Gatreddi
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Julian Urdiain-Arraiza
- Louvain Institute
of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Benoit Desguin
- Louvain Institute
of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Robert P. Hausinger
- Department
of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Jian Hu
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
3
|
Vucko T, Strilets D, Soumillion P, Desguin B, Vincent SP. Chemo-enzymatic synthesis of NPN cofactor taking advantage of ADP-ribosyl cyclase and LarC cyclometallase promiscuous activities. Bioorg Chem 2024; 153:107879. [PMID: 39406107 DOI: 10.1016/j.bioorg.2024.107879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 12/14/2024]
Abstract
The nickel-pincer nucleotide cofactor (NPN) is a widespread organometallic cofactor required for lactate racemase (LarA) and for α-hydroxy acid racemases and epimerases of the LarA superfamily. Its biosynthesis, which starts with nicotinic acid adenine dinucleotide (NaAD), requires three enzymes: LarB, LarC, and LarE, and can be performed in vitro with purified enzymes. Nevertheless, as LarE and LarC are single turnover enzymes, the in vitro NPN biosynthesis requires huge amounts of enzymes (particularly 2 equivalents of LarE), which hampers the study of NPN and of NPN-dependent enzymes. By using adenosine diphosphate (ADP)-ribosyl cyclase (ARC), we exchanged the nicotinamide moiety in NAD+ with synthetic pyridine-3,5-bisthiocarboxylic acid in order to synthesize the novel intermediate pyridinium-3,5-bisthiocarboxylic acid adenine dinucleotide (P2TAD). The latter could be produced at a multimilligram scale allowing its characterization by Nuclear Magnetic Resonance (NMR) and mass spectrometry. Interestingly, P2TAD could directly be used by LarC in order to generate the NPN cofactor, bypassing both LarB and LarE. Globally, a new chemoenzymatic route towards NPN was developed via the intermediate P2TAD, which should facilitate the biochemical and biotechnological investigations on NPN binding enzymes.
Collapse
Affiliation(s)
- Timothé Vucko
- Department of Chemistry, Laboratory of Bio-Organic Chemistry, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Dmytro Strilets
- Department of Chemistry, Laboratory of Bio-Organic Chemistry, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Benoît Desguin
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium.
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-Organic Chemistry, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium.
| |
Collapse
|
4
|
Smets B, Boschker HTS, Wetherington MT, Lelong G, Hidalgo-Martinez S, Polerecky L, Nuyts G, De Wael K, Meysman FJR. Multi-wavelength Raman microscopy of nickel-based electron transport in cable bacteria. Front Microbiol 2024; 15:1208033. [PMID: 38525072 PMCID: PMC10959288 DOI: 10.3389/fmicb.2024.1208033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cable bacteria embed a network of conductive protein fibers in their cell envelope that efficiently guides electron transport over distances spanning up to several centimeters. This form of long-distance electron transport is unique in biology and is mediated by a metalloprotein with a sulfur-coordinated nickel (Ni) cofactor. However, the molecular structure of this cofactor remains presently unknown. Here, we applied multi-wavelength Raman microscopy to identify cell compounds linked to the unique cable bacterium physiology, combined with stable isotope labeling, and orientation-dependent and ultralow-frequency Raman microscopy to gain insight into the structure and organization of this novel Ni-cofactor. Raman spectra of native cable bacterium filaments reveal vibrational modes originating from cytochromes, polyphosphate granules, proteins, as well as the Ni-cofactor. After selective extraction of the conductive fiber network from the cell envelope, the Raman spectrum becomes simpler, and primarily retains vibrational modes associated with the Ni-cofactor. These Ni-cofactor modes exhibit intense Raman scattering as well as a strong orientation-dependent response. The signal intensity is particularly elevated when the polarization of incident laser light is parallel to the direction of the conductive fibers. This orientation dependence allows to selectively identify the modes that are associated with the Ni-cofactor. We identified 13 such modes, some of which display strong Raman signals across the entire range of applied wavelengths (405-1,064 nm). Assignment of vibrational modes, supported by stable isotope labeling, suggest that the structure of the Ni-cofactor shares a resemblance with that of nickel bis(1,2-dithiolene) complexes. Overall, our results indicate that cable bacteria have evolved a unique cofactor structure that does not resemble any of the known Ni-cofactors in biology.
Collapse
Affiliation(s)
- Bent Smets
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Henricus T. S. Boschker
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Maxwell T. Wetherington
- Materials Characterization Laboratory, Pennsylvania State University, State College, PA, United States
| | - Gérald Lelong
- Institut de Minéralogie, de Physique des Matériaux et Cosmochimie (IMPMC), Sorbonne Universités, France—Muséum National d’Histoire Naturelle, Paris, France
| | | | - Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Nuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
- Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Karolien De Wael
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Filip J. R. Meysman
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
5
|
Bhatti T, Kumar A, Parihar A, Moncy HK, Emge TJ, Waldie KM, Hasanayn F, Goldman AS. Metal-Ligand Proton Tautomerism, Electron Transfer, and C(sp 3)-H Activation by a 4-Pyridinyl-Pincer Iridium Hydride Complex. J Am Chem Soc 2023; 145:18296-18306. [PMID: 37552857 PMCID: PMC10450815 DOI: 10.1021/jacs.3c03376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/10/2023]
Abstract
The para-N-pyridyl-based PCP pincer proligand 3,5-bis(di-tert-butylphosphinomethyl)-2,6-dimethylpyridine (pN-tBuPCP-H) was synthesized and metalated to give the iridium complex (pN-tBuPCP)IrHCl (2-H). In marked contrast with its phenyl-based congeners, e.g., (tBuPCP)IrHCl and derivatives, 2-H is highly air-sensitive and reacts with oxidants such as ferrocenium, trityl cation, and benzoquinone. These oxidations ultimately lead to intramolecular activation of a phosphino-t-butyl C(sp3)-H bond and cyclometalation. Considering the greater electronegativity of N than C, 2-H is expected to be less easily oxidized than simple PCP derivatives; cyclic voltammetry and DFT calculations support this expectation. However, 2-H is calculated to undergo metal-ligand-proton tautomerism (MLPT) to give an N-protonated complex that can be described with resonance forms representing a zwitterionic complex (with a negative charge on Ir) and a p-N-pyridylidene (a remote N-heterocyclic carbene) Ir(I) complex. One-electron oxidation of this tautomer is calculated to be dramatically more favorable than direct oxidation of 2-H (ΔΔG° = -31.3 kcal/mol). The resulting Ir(II) oxidation product is easily deprotonated to give metalloradical 2• which is observed by NMR spectroscopy. 2• can be further oxidized to give cationic Ir(III) complex, 2+, which can oxidatively add a phosphino-t-butyl C-H bond and undergo deprotonation to give the observed cyclometalated product. DFT calculations indicate that less sterically hindered analogues of 2+ would preferentially undergo intermolecular addition of C(sp3)-H bonds, for example, of n-alkanes. The resulting iridium alkyl complexes could undergo facile β-H elimination to afford olefin, thereby completing a catalytic cycle for alkane dehydrogenation driven by one-electron oxidation and deprotonation, enabled by MLPT.
Collapse
Affiliation(s)
- Tariq
M. Bhatti
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Akshai Kumar
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish Parihar
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Hellan K. Moncy
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas J. Emge
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kate M. Waldie
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Faraj Hasanayn
- Department
of Chemistry, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Alan S. Goldman
- Department
of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
6
|
Yu W, Zhou Y, Zhao Y, Bai W. Syntheses and characterizations of rhenaindole complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Gatreddi S, Sui D, Hausinger RP, Hu J. Irreversible inactivation of lactate racemase by sodium borohydride reveals reactivity of the nickel-pincer nucleotide cofactor. ACS Catal 2023; 13:1441-1448. [PMID: 37886035 PMCID: PMC10599654 DOI: 10.1021/acscatal.2c05461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The nickel-pincer nucleotide (NPN) cofactor discovered in lactate racemase from Lactiplantibacillus plantarum (LarALp) is essential for the activities of racemases/epimerases in the highly diverse LarA superfamily. Prior mechanistic studies have established a proton-coupled hydride-transfer mechanism for LarALp, but direct evidence showing that hydride attacks the C4 atom in the pyridinium ring of NPN has been lacking. Here, we show that sodium borohydride (NaBH4) irreversibly inactivates LarALp accompanied by a rapid color change of the enzyme. The altered ultraviolet-visible spectra during NaBH4 titration supported hydride transfer to C4 of NPN, and the concomitant Ni loss unraveled by mass spectrometry experiments accounted for the irreversible inactivation. High resolution structures of LarALp revealed a substantially weakened C-Ni bond in the metastable sulfite-NPN adduct where the NPN cofactor is in the reduced state. These findings allowed us to propose a mechanism of LarALp inactivation by NaBH4 that provides key insights into the enzyme-catalyzed reaction and sheds light on the reactivity of small molecule NPN mimetics.
Collapse
Affiliation(s)
- Santhosh Gatreddi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Dexin Sui
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Robert P. Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States
| |
Collapse
|
8
|
Chatterjee S, Gatreddi S, Gupta S, Nevarez JL, Rankin JA, Turmo A, Hu J, Hausinger RP. Unveiling the mechanisms and biosynthesis of a novel nickel-pincer enzyme. Biochem Soc Trans 2022; 50:1187-1196. [PMID: 35960008 PMCID: PMC9880988 DOI: 10.1042/bst20220490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/31/2023]
Abstract
The nickel-pincer nucleotide (NPN) coenzyme, a substituted pyridinium mononucleotide that tri-coordinates nickel, was first identified covalently attached to a lysine residue in the LarA protein of lactate racemase. Starting from nicotinic acid adenine dinucleotide, LarB carboxylates C5 of the pyridinium ring and hydrolyzes the phosphoanhydride, LarE converts the C3 and C5 carboxylates to thiocarboxylates, and LarC incorporates nickel to form a C-Ni and two S-Ni bonds, during the biosynthesis of this cofactor. LarB uses a novel carboxylation mechanism involving the transient formation of a cysteinyl-pyridinium adduct. Depending on the source of the enzyme, LarEs either catalyze a sacrificial sulfur transfer from a cysteinyl side chain resulting in the formation of dehydroalanine or they utilize a [4Fe-4S] cluster bound by three cysteine residues to accept and transfer a non-core sulfide atom. LarC is a CTP-dependent enzyme that cytidinylylates its substrate, adds nickel, then hydrolyzes the product to release NPN and CMP. Homologs of the four lar genes are widely distributed in microorganisms, with some species containing multiple copies of larA whereas others lack this gene, consistent with the cofactor serving other functions. Several LarA-like proteins were shown to catalyze racemase or epimerase activities using 2-hydroxyacid substrates other than lactic acid. Thus, lactate racemase is the founding member of a large family of NPN-containing enzymes.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Santhosh Gatreddi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Swati Gupta
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jorge L. Nevarez
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Joel A. Rankin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Aiko Turmo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Kim J. Metal complexes containing
silicon‐based
pincer ligands: Reactivity and application in small molecule activation. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jin Kim
- Department of Chemistry Sunchon National University Suncheon Jeollanam‐do Republic of Korea
| |
Collapse
|
10
|
Lau S, Gasperini D, Webster RL. Amine-Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021; 60:14272-14294. [PMID: 32935898 PMCID: PMC8248159 DOI: 10.1002/anie.202010835] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 11/10/2022]
Abstract
Transfer hydrogenation (TH) has historically been dominated by Meerwein-Ponndorf-Verley (MPV) reactions. However, with growing interest in amine-boranes, not least ammonia-borane (H3 N⋅BH3 ), as potential hydrogen storage materials, these compounds have also started to emerge as an alternative reagent in TH reactions. In this Review we discuss TH chemistry using H3 N⋅BH3 and their analogues (amine-boranes and metal amidoboranes) as sacrificial hydrogen donors. Three distinct pathways were considered: 1) classical TH, 2) nonclassical TH, and 3) hydrogenation. Simple experimental mechanistic probes can be employed to distinguish which pathway is operating and computational analysis can corroborate or discount mechanisms. We find that the pathway in operation can be perturbed by changing the temperature, solvent, amine-borane, or even the substrate used in the system, and subsequently assignment of the mechanism can become nontrivial.
Collapse
Affiliation(s)
- Samantha Lau
- Department of ChemistryUniversity of BathClaverton DownBathUK
| | | | - Ruth L. Webster
- Department of ChemistryUniversity of BathClaverton DownBathUK
| |
Collapse
|
11
|
Lau S, Gasperini D, Webster RL. Amine–Boranes as Transfer Hydrogenation and Hydrogenation Reagents: A Mechanistic Perspective. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Samantha Lau
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Danila Gasperini
- Department of Chemistry University of Bath Claverton Down Bath UK
| | - Ruth L. Webster
- Department of Chemistry University of Bath Claverton Down Bath UK
| |
Collapse
|
12
|
Recent progress on group 10 metal complexes of pincer ligands: From synthesis to activities and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Yan X, Zhang B, Zhang X, Wang H, Duan Y, Guo S. Symmetrical and Non‐symmetrical Pd (II) Pincer Complexes Bearing Mesoionic N‐heterocyclic Thiones: Synthesis, Characterizations and Catalytic Properties. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xuechao Yan
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Bo Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Xin Zhang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Haiying Wang
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Yu‐Ai Duan
- Department of Chemistry Capital Normal University Beijing 100048 China
| | - Shuai Guo
- Department of Chemistry Capital Normal University Beijing 100048 China
| |
Collapse
|
14
|
Swisher NA, Grubbs RH. Synthesis and Characterization of 3,5-Bis(di- tert-butylphosphinito)pyridine Pincer Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas A. Swisher
- Arnold and Mabel Beckman Laboratory for Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert H. Grubbs
- Arnold and Mabel Beckman Laboratory for Chemical Synthesis, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
15
|
Abstract
At least two types of pincer complexes are known to exist in biology. A metal-pyrroloquinolone quinone (PQQ) cofactor was first identified in bacterial methanol dehydrogenase, and later also found in selected short-chain alcohol dehydrogenases of other microorganisms. The PQQ-associated metal can be calcium, magnesium, or a rare earth element depending on the enzyme sequence. Synthesis of this organic ligand requires a series of accessory proteins acting on a small peptide, PqqA. Binding of metal to PQQ yields an ONO-type pincer complex. More recently, a nickel-pincer nucleotide (NPN) cofactor was discovered in lactate racemase, LarA. This cofactor derives from nicotinic acid adenine dinucleotide via action of a carboxylase/hydrolase, sulfur transferase, and nickel insertase, resulting in an SCS-type pincer complex. The NPN cofactor likely occurs in selected other racemases and epimerases of bacteria, archaea, and a few eukaryotes.
Collapse
Affiliation(s)
- Jorge Nevarez
- Department of Chemistry, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Aiko Turmo
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Jian Hu
- Department of Chemistry, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824 (USA).,Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA)
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, 603 Wilson Road, Room 212, Michigan State University, East Lansing, Michigan 48824 (USA).,Department of Microbiology and Molecular Genetics, 567 Wilson Road, 2215 Biomedical Physical Sciences, Michigan State University, East Lansing, Michigan 48824 (USA)
| |
Collapse
|
16
|
Bioinspired Design and Computational Prediction of SCS Nickel Pincer Complexes for Hydrogenation of Carbon Dioxide. Catalysts 2020. [DOI: 10.3390/catal10030319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inspired by the structures of the active site of lactate racemase and H2 activation mechanism of mono-iron hydrogenase, we proposed a series of sulphur–carbon–sulphur (SCS) nickel complexes and computationally predicted their potentials for catalytic hydrogenation of CO2. Density functional theory calculations reveal a metal–ligand cooperated mechanism with the participation of a sulfur atom in the SCS pincer ligand as a proton receiver for the heterolytic cleavage of H2. For all newly proposed complexes containing functional groups with different electron-donating and withdrawing abilities in the SCS ligand, the predicted free energy barriers for the hydrogenation of CO2 to formic acid are in a range of 22.2–25.5 kcal/mol in water. Such a small difference in energy barriers indicates limited contributions of those functional groups to the charge density of the metal center. We further explored the catalytic mechanism of the simplest model complex for hydrogenation of formic acid to formaldehyde and obtained a total free energy barrier of 34.6 kcal/mol for the hydrogenation of CO2 to methanol.
Collapse
|
17
|
Shi R, Wodrich MD, Pan H, Tirani FF, Hu X. Functional Models of the Nickel Pincer Nucleotide Cofactor of Lactate Racemase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Renyi Shi
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Matthew D. Wodrich
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
- Laboratory for Computational Molecular DesignInstitute of Chemical Science and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) Lausanne 1015 Switzerland
| | - Hui‐Jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Farzaneh Fadaei Tirani
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
18
|
Shi R, Wodrich MD, Pan HJ, Tirani FF, Hu X. Functional Models of the Nickel Pincer Nucleotide Cofactor of Lactate Racemase. Angew Chem Int Ed Engl 2019; 58:16869-16872. [PMID: 31535787 DOI: 10.1002/anie.201910490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Indexed: 11/06/2022]
Abstract
A novel nickel pincer cofactor was recently discovered in lactate racemase. Reported here are three synthetic nickel pincer complexes that are both structural and functional models of the pincer cofactor in lactate racemase. DFT computations suggest the ipso-carbon atom of the pyridinium pincer ligands act as a hydride acceptor for lactate isomerization, whereas an organometallic pathway involving nickel-mediated β-hydride elimination is less favored.
Collapse
Affiliation(s)
- Renyi Shi
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland.,Laboratory for Computational Molecular Design, Institute of Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Hui-Jie Pan
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| | - Farzaneh Fadaei Tirani
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne, 1015, Switzerland
| |
Collapse
|
19
|
Qiu B, Wang W, Yang X. Computational Prediction of Ammonia-Borane Dehydrocoupling and Transfer Hydrogenation of Ketones and Imines Catalyzed by SCS Nickel Pincer Complexes. Front Chem 2019; 7:627. [PMID: 31572716 PMCID: PMC6753508 DOI: 10.3389/fchem.2019.00627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/30/2019] [Indexed: 11/22/2022] Open
Abstract
Inspired by the catalytic mechanism and active site structure of lactate racemase, three scorpion-like SCS nickel pincer complexes were proposed as potential catalysts for transfer hydrogenation of ketones and imines with ammonia-borane (AB) as the hydrogen source. Density functional theory calculations reveal a stepwise hydride and proton transfer mechanism for the dehydrocoupling of AB and hydrogenation of N-methylacetonimine, and a concerted proton-coupled hydride transfer process for hydrogenation of acetone, acetophenone, and 3-methyl-2-butanone. Among all proposed Ni complexes, the one with symmetric NH2 group on both arms of the SCS pincer ligand has the lowest free energy barrier of 15.0 kcal/mol for dehydrogenation of AB, as well as total free energy barriers of 17.8, 18.2, 18.0, and 18.6 kcal/mol for hydrogenation of acetone, N-methylacetonimine, acetophenone, and 3-methyl-2-butanone, respectively.
Collapse
Affiliation(s)
- Bing Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wan Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Hausinger RP, Desguin B, Fellner M, Rankin JA, Hu J. Nickel-pincer nucleotide cofactor. Curr Opin Chem Biol 2018; 47:18-23. [PMID: 30015232 DOI: 10.1016/j.cbpa.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
A novel organometallic cofactor, nickel pyridinium-3,5-dithiocarboxylic acid mononucleotide, was recently discovered in lactate racemase (LarA) of Lactobacillus plantarum. This review summarizes the substantial progress made in uncovering the function of this cofactor as a transient hydride acceptor in the LarA mechanism. The latest developments related to cofactor biosynthesis reveal insights into a pathway in which LarB serves as a nicotinic acid adenine dinucleotide hydrolase/carboxylase, LarE acts as a sacrificial sulfur transferase, and LarC functions as a nickel insertase, forming the nickel-pincer nucleotide cofactor that becomes covalently tethered to LarA in some bacteria. Bioinformatic studies reveal a widespread occurrence of larA, larB, larC, and larE orthologs in microorganisms, and additional roles for the cofactor are considered.
Collapse
Affiliation(s)
- Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - Benoît Desguin
- Institute of Life Sciences, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium
| | - Matthias Fellner
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joel A Rankin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Jian Hu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
21
|
Gafurov ZN, Kagilev AA, Kantyukov AO, Balabaev AA, Sinyashin OG, Yakhvarov DG. Classification and synthesis of nickel pincer complexes. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2086-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Affiliation(s)
- Lillian V. A. Hale
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
23
|
Zhang T, Zhang X, Chung LW. Computational Insights into the Reaction Mechanisms of Nickel-Catalyzed Hydrofunctionalizations and Nickel-Dependent Enzymes. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201700645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonghuan Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
- Lab of Computational Chemistry and Drug Design; Key Laboratory of Chemical Genomics; Peking University Shenzhen Graduate School; Shenzhen 518055 China
| | - Xiaoyong Zhang
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| | - Lung Wa Chung
- Department of Chemistry; South University of Science and Technology of China (SUSTech); Shenzhen 518055 China
| |
Collapse
|
24
|
Rankin JA, Mauban RC, Fellner M, Desguin B, McCracken J, Hu J, Varganov SA, Hausinger RP. Lactate Racemase Nickel-Pincer Cofactor Operates by a Proton-Coupled Hydride Transfer Mechanism. Biochemistry 2018; 57:3244-3251. [PMID: 29489337 DOI: 10.1021/acs.biochem.8b00100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactate racemase (LarA) of Lactobacillus plantarum contains a novel organometallic cofactor with nickel coordinated to a covalently tethered pincer ligand, pyridinium-3-thioamide-5-thiocarboxylic acid mononucleotide, but its function in the enzyme mechanism has not been elucidated. This study presents direct evidence that the nickel-pincer cofactor facilitates a proton-coupled hydride transfer (PCHT) mechanism during LarA-catalyzed lactate racemization. No signal was detected by electron paramagnetic resonance spectroscopy for LarA in the absence or presence of substrate, consistent with a +2 metal oxidation state and inconsistent with a previously proposed proton-coupled electron transfer mechanism. Pyruvate, the predicted intermediate for a PCHT mechanism, was observed in quenched solutions of LarA. A normal substrate kinetic isotope effect ( kH/ kD of 3.11 ± 0.17) was established using 2-α-2H-lactate, further supporting a PCHT mechanism. UV-visible spectroscopy revealed a lactate-induced perturbation of the cofactor spectrum, notably increasing the absorbance at 340 nm, and demonstrated an interaction of the cofactor with the inhibitor sulfite. A crystal structure of LarA provided greater resolution (2.4 Å) than previously reported and revealed sulfite binding to the pyridinium C4 atom of the reduced pincer cofactor, mimicking hydride reduction during a PCHT catalytic cycle. Finally, computational modeling supports hydride transfer to the cofactor at the C4 position or to the nickel atom, but with formation of a nickel-hydride species requiring dissociation of the His200 metal ligand. In aggregate, these studies provide compelling evidence that the nickel-pincer cofactor acts by a PCHT mechanism.
Collapse
Affiliation(s)
| | - Robert C Mauban
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | | | - Benoît Desguin
- Institute of Life Sciences , Université catholique de Louvain , B-1348 Louvain-La-Neuve , Belgium
| | | | | | - Sergey A Varganov
- Department of Chemistry , University of Nevada , Reno , Nevada 89557 , United States
| | | |
Collapse
|
25
|
|
26
|
Structural insights into the catalytic mechanism of a sacrificial sulfur insertase of the N-type ATP pyrophosphatase family, LarE. Proc Natl Acad Sci U S A 2017; 114:9074-9079. [PMID: 28784764 DOI: 10.1073/pnas.1704967114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The lar operon in Lactobacillus plantarum encodes five Lar proteins (LarA/B/C/D/E) that collaboratively synthesize and incorporate a niacin-derived Ni-containing cofactor into LarA, an Ni-dependent lactate racemase. Previous studies have established that two molecules of LarE catalyze successive thiolation reactions by donating the sulfur atom of their exclusive cysteine residues to the substrate. However, the catalytic mechanism of this very unusual sulfur-sacrificing reaction remains elusive. In this work, we present the crystal structures of LarE in ligand-free and several ligand-bound forms, demonstrating that LarE is a member of the N-type ATP pyrophosphatase (PPase) family with a conserved N-terminal ATP PPase domain and a unique C-terminal domain harboring the putative catalytic site. Structural analysis, combined with structure-guided mutagenesis, leads us to propose a catalytic mechanism that establishes LarE as a paradigm for sulfur transfer through sacrificing its catalytic cysteine residue.
Collapse
|
27
|
Desguin B, Soumillion P, Hausinger RP, Hols P. Unexpected complexity in the lactate racemization system of lactic acid bacteria. FEMS Microbiol Rev 2017; 41:S71-S83. [DOI: 10.1093/femsre/fux021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 12/30/2022] Open
|
28
|
Qiu B, Yang X. A bio-inspired design and computational prediction of scorpion-like SCS nickel pincer complexes for lactate racemization. Chem Commun (Camb) 2017; 53:11410-11413. [DOI: 10.1039/c7cc06416k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computationally predicted scorpion-like SCS nickel pincer complexes are promising for the catalysis of lactate racemization under mild conditions.
Collapse
Affiliation(s)
- Bing Qiu
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Xinzheng Yang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|
29
|
Zhou S, Zheng Q, Huang X, Wang Y, Luo S, Jiang R, Wang L, Ye W, Tian H. Isolation and identification ofl/d-lactate-conjugated bufadienolides from toad eggs revealing lactate racemization in amphibians. Org Biomol Chem 2017. [DOI: 10.1039/c7ob01055a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three pairs of bufadienolidel/d-lactate epimers (1–6) were isolated from the eggs of the toadBufo bufo gargarizans.
Collapse
Affiliation(s)
- Shiwen Zhou
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Xiuyong Huang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Yong Wang
- School of Stomatology and Medicine
- Foshan University
- Foshan 528000
- China
| | - Sifan Luo
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Renwang Jiang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Wencai Ye
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products
- College of Pharmacy
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|