1
|
Yu H, Ren L, Wang Y, Wang H, Zhang M, Pan C, Yuan L, Zhang J, Epstein IR, Gao Q. Chiral Locomotion Transitions of an Active Gel and Their Chemomechanical Origin. J Am Chem Soc 2025; 147:5182-5188. [PMID: 39876696 DOI: 10.1021/jacs.4c15550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves. Analysis reveals that the phase difference (Δφ) between orthogonal components of kinematic quantities, such as chemomechanical force, displacement, and velocity, determines rotational chirality, i.e., chiral locomotion transition occurs when Δφ changes sign. This criterion is illustrated with a kinematic equation, which can be applied to biological and physical systems, including super-rotational/superhelical locomotion reported recently during E. gracilis swimming and sperm navigation. This work has potential applications for the design of functional materials and intelligent robots.
Collapse
Affiliation(s)
- Haodi Yu
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P.R. China
| | - Yunjie Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Hui Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Meng Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - Jiujun Zhang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, P.R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham 02454-9110, Massachusetts, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| |
Collapse
|
2
|
Negro G, Head LC, Carenza LN, Shendruk TN, Marenduzzo D, Gonnella G, Tiribocchi A. Topology controls flow patterns in active double emulsions. Nat Commun 2025; 16:1412. [PMID: 39915471 PMCID: PMC11802772 DOI: 10.1038/s41467-025-56236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
Active emulsions and liquid crystalline shells are intriguing and experimentally realisable types of topological matter. Here we numerically study the morphology and spatiotemporal dynamics of a double emulsion, where one or two passive small droplets are embedded in a larger active droplet. We find activity introduces a variety of rich and nontrivial nonequilibrium states in the system. First, a double emulsion with a single active droplet becomes self-motile, and there is a transition between translational and rotational motion: both of these regimes remain defect-free, hence topologically trivial. Second, a pair of particles nucleate one or more disclination loops, with conformational dynamics resembling a rotor or chaotic oscillator, accessed by tuning activity. In the first state a single, topologically charged, disclination loop powers the rotation. In the latter state, this disclination stretches and writhes in 3D, continuously undergoing recombination to yield an example of an active living polymer. These emulsions can be self-assembled in the lab, and provide a pathway to form flow and topological patterns in active matter in a controlled way, as opposed to bulk systems that typically yield active turbulence.
Collapse
Affiliation(s)
- Giuseppe Negro
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
| | - Louise C Head
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK.
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA.
| | - Livio N Carenza
- Physics Department, College of Sciences, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Türkiye
| | - Tyler N Shendruk
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, UK
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, Italy
| | - Adriano Tiribocchi
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, via dei Taurini 19, Roma, Italy
- INFN "Tor Vergata", Via della Ricerca Scientifica 1, Roma, Italy
| |
Collapse
|
3
|
Guo RX, Li JJ, Ai BQ. Diffusion of active particles driven by odd interactions. Phys Rev E 2025; 111:014105. [PMID: 39972852 DOI: 10.1103/physreve.111.014105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/12/2024] [Indexed: 02/21/2025]
Abstract
Odd systems do not conserve energy, violate time-reversal symmetry, and remain far from equilibrium. How odd interactions between particles affect their diffusion remains unknown. To investigate this issue, we studied the diffusion and glass transition of a two-dimensional Kob-Andersen mixture, where Brownian particles interact via the Lennard-Jones potential and nonconservative odd forces. Our findings indicate a significant influence of odd interactions on the system's diffusion dynamics. Odd interactions always promote diffusion. These interactions lead to a nonmonotonic relationship between the effective diffusion coefficient and particle number density. Specifically, in systems with low oddness, the diffusion coefficient decreases steadily with increasing particle number density. Conversely, in systems with moderate oddness, an optimal particle number density exists that maximizes the diffusion coefficient. For systems with high oddness, we observe two distinct peaks in the diffusion coefficient-particle number density relationship. Furthermore, our investigation into the glass transition under dense conditions reveals that adjusting the oddness at low temperatures can induce a transition from a glassy state to a liquid state. Our findings offer a deeper insight into the diffusion processes in systems with odd interactions from a critical perspective.
Collapse
Affiliation(s)
- Rui-Xue Guo
- South China Normal University, South China Normal University, Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, Guangzhou 510006, China and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangzhou 510006, China
| | - Jia-Jian Li
- South China Normal University, South China Normal University, Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, Guangzhou 510006, China and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangzhou 510006, China
| | - Bao-Quan Ai
- South China Normal University, South China Normal University, Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, Guangzhou 510006, China and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Guangzhou 510006, China
| |
Collapse
|
4
|
Li ZY, Chen YP, Liu HY, Li B. Three-Dimensional Chiral Morphogenesis of Active Fluids. PHYSICAL REVIEW LETTERS 2024; 132:138401. [PMID: 38613297 DOI: 10.1103/physrevlett.132.138401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Chirality is an essential nature of biological systems. However, it remains obscure how the handedness at the microscale is translated into chiral morphogenesis at the tissue level. Here, we investigate three-dimensional (3D) tissue morphogenesis using an active fluid theory invoking chirality. We show that the coordination of achiral and chiral stresses, arising from microscopic interactions and energy input of individual cells, can engender the self-organization of 3D papillary and helical structures. The achiral active stress drives the nucleation of asterlike topological defects, which initiate 3D out-of-plane budding, followed by rodlike elongation. The chiral active stress excites vortexlike topological defects, which favor the tip spheroidization and twisting of the elongated rod. These results unravel the chiral morphogenesis observed in our experiments of 3D organoids generated by human embryonic stem cells.
Collapse
Affiliation(s)
- Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yun-Ping Chen
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hao-Yu Liu
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Negro G, Carenza LN, Gonnella G, Marenduzzo D, Orlandini E. Topological phases and curvature-driven pattern formation in cholesteric shells. SOFT MATTER 2023; 19:1987-2000. [PMID: 36847796 DOI: 10.1039/d2sm01347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We study the phase behaviour of cholesteric liquid crystal shells with different geometries. We compare the cases of tangential anchoring and no anchoring at the surface, focussing on the former case, which leads to a competition between the intrinsic tendency of the cholesteric to twist and the anchoring free energy which suppresses it. We then characterise the topological phases arising close to the isotropic-cholesteric transition. These typically consist of quasi-crystalline or amorphous tessellations of the surface by half-skyrmions, which are stable at lower and larger shell sizes, respectively. For ellipsoidal shells, defects in the tessellation couple to a local curvature, and according to the shell size, they either migrate to the poles or distribute uniformly on the surface. For toroidal shells, the variations in the local curvature of the surface stabilise heterogeneous phases where cholesteric or isotropic patterns coexist with hexagonal lattices of half-skyrmions.
Collapse
Affiliation(s)
- G Negro
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - L N Carenza
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | - G Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - E Orlandini
- Dipartimento di Fisica e Astronomia, Università di Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Filopodia rotate and coil by actively generating twist in their actin shaft. Nat Commun 2022; 13:1636. [PMID: 35347113 PMCID: PMC8960877 DOI: 10.1038/s41467-022-28961-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia. The authors show how tubular surface structures in all cell types, have the ability to twist and perform rotary sweeping motion to explore the extracellular environment. This has implications for migration, sensing and cell communication.
Collapse
|
7
|
Shen H, An O, Ren X, Song Y, Tang SJ, Ke XY, Han J, Tay DJT, Ng VHE, Molias FB, Pitcheshwar P, Leong KW, Tan KK, Yang H, Chen L. ADARs act as potent regulators of circular transcriptome in cancer. Nat Commun 2022; 13:1508. [PMID: 35314703 PMCID: PMC8938519 DOI: 10.1038/s41467-022-29138-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/15/2022] [Indexed: 01/01/2023] Open
Abstract
Circular RNAs (circRNAs) are produced by head-to-tail back-splicing which is mainly facilitated by base-pairing of reverse complementary matches (RCMs) in circRNA flanking introns. Adenosine deaminases acting on RNA (ADARs) are known to bind double-stranded RNAs for adenosine to inosine (A-to-I) RNA editing. Here we characterize ADARs as potent regulators of circular transcriptome by identifying over a thousand of circRNAs regulated by ADARs in a bidirectional manner through and beyond their editing function. We find that editing can stabilize or destabilize secondary structures formed between RCMs via correcting A:C mismatches to I(G)-C pairs or creating I(G).U wobble pairs, respectively. We provide experimental evidence that editing also favors the binding of RNA-binding proteins such as PTBP1 to regulate back-splicing. These ADARs-regulated circRNAs which are ubiquitously expressed in multiple types of cancers, demonstrate high functional relevance to cancer. Our findings support a hitherto unappreciated bidirectional regulation of circular transcriptome by ADARs and highlight the complexity of cross-talk in RNA processing and its contributions to tumorigenesis.
Collapse
Affiliation(s)
- Haoqing Shen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xi Ren
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yangyang Song
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sze Jing Tang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Ke
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daryl Jin Tai Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vanessa Hui En Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fernando Bellido Molias
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Priyankaa Pitcheshwar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ka Wai Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Burada PS, Maity R, Jülicher F. Hydrodynamics of chiral squirmers. Phys Rev E 2022; 105:024603. [PMID: 35291102 DOI: 10.1103/physreve.105.024603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Many microorganisms take a chiral path while swimming in an ambient fluid. In this paper we study the combined behavior of two chiral swimmers using the well-known squirmer model taking into account chiral asymmetries. In contrast to the simple squirmer model, which has an axisymmetric distribution of slip velocity, the chiral squirmer has additional asymmetries in the surface slip, which contribute to both translations and rotations of the motion. As a result, swimming trajectories can become helical and chiral asymmetries arise in the flow patterns. We study the swimming trajectories of a pair of chiral squirmers that interact hydrodynamically. This interaction can lead to attraction and repulsion, and in some cases even to bounded states where the swimmers continue to periodically orbit around a common average trajectory. Such bound states are a signature of the chiral nature of the swimmers. Our study could be relevant to the collective movements of ciliated microorganisms.
Collapse
Affiliation(s)
- P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - R Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - F Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|
9
|
Edge current and pairing order transition in chiral bacterial vortices. Proc Natl Acad Sci U S A 2021; 118:2107461118. [PMID: 34561308 DOI: 10.1073/pnas.2107461118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
Bacterial suspensions show turbulence-like spatiotemporal dynamics and vortices moving irregularly inside the suspensions. Understanding these ordered vortices is an ongoing challenge in active matter physics, and their application to the control of autonomous material transport will provide significant development in microfluidics. Despite the extensive studies, one of the key aspects of bacterial propulsion has remained elusive: The motion of bacteria is chiral, i.e., it breaks mirror symmetry. Therefore, the mechanism of control of macroscopic active turbulence by microscopic chirality is still poorly understood. Here, we report the selective stabilization of chiral rotational direction of bacterial vortices in achiral circular microwells sealed by an oil/water interface. The intrinsic chirality of bacterial swimming near the top and bottom interfaces generates chiral collective motions of bacteria at the lateral boundary of the microwell that are opposite in directions. These edge currents grow stronger as bacterial density increases, and, within different top and bottom interfaces, their competition leads to a global rotation of the bacterial suspension in a favored direction, breaking the mirror symmetry of the system. We further demonstrate that chiral edge current favors corotational configurations of interacting vortices, enhancing their ordering. The intrinsic chirality of bacteria is a key feature of the pairing order transition from active turbulence, and the geometric rule of pairing order transition may shed light on the strategy for designing chiral active matter.
Collapse
|
10
|
Markovich T, Lubensky TC. Odd Viscosity in Active Matter: Microscopic Origin and 3D Effects. PHYSICAL REVIEW LETTERS 2021; 127:048001. [PMID: 34355935 DOI: 10.1103/physrevlett.127.048001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
In common fluids, viscosity is associated with dissipation. However, when time-reversal symmetry is broken a new type of nondissipative "viscosity" emerges. Recent theories and experiments on classical 2D systems with active spinning particles have heightened interest in "odd viscosity," but a microscopic theory for it in active materials is still absent. Here, we present such first-principles microscopic Hamiltonian theory, valid for both 2D and 3D, showing that odd viscosity is present in any system, even at zero temperature, with globally or locally aligned spinning components. Our work substantially extends the applicability of odd viscosity into 3D fluids, and specifically to internally driven active materials, such as living matter (e.g., actomyosin gels). We find intriguing 3D effects of odd viscosity such as propagation of anisotropic bulk shear waves and breakdown of Bernoulli's principle.
Collapse
Affiliation(s)
- Tomer Markovich
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Tom C Lubensky
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
11
|
Olsen KS. Diffusion of active particles with angular velocity reversal. Phys Rev E 2021; 103:052608. [PMID: 34134289 DOI: 10.1103/physreve.103.052608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/26/2021] [Indexed: 11/07/2022]
Abstract
Biological and synthetic microswimmers display a wide range of swimming trajectories depending on driving forces and torques. In this paper we consider a simple overdamped model of self-propelled particles with a constant self-propulsion speed but an angular velocity that varies in time. Specifically, we consider the case of both deterministic and stochastic angular velocity reversals, mimicking several synthetic active matter systems, such as propelled droplets. The orientational correlation function and effective diffusivity is studied using Langevin dynamics simulations and perturbative methods.
Collapse
|
12
|
Kole SJ, Alexander GP, Ramaswamy S, Maitra A. Layered Chiral Active Matter: Beyond Odd Elasticity. PHYSICAL REVIEW LETTERS 2021; 126:248001. [PMID: 34213949 DOI: 10.1103/physrevlett.126.248001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
In equilibrium liquid crystals, chirality leads to a variety of spectacular three-dimensional structures, but chiral and achiral phases with the same broken continuous symmetries have identical long-time, large-scale dynamics. In this Letter, starting from active model H^{*}, the general hydrodynamics of a pseudoscalar in a momentum-conserving fluid, we demonstrate that chirality qualitatively modifies the dynamics of layered liquid crystals in active systems in both two and three dimensions due to an active "odder" elasticity. In three dimensions, we demonstrate that the hydrodynamics of active cholesterics differs fundamentally from smectic-A liquid crystals, unlike their equilibrium counterpart. This distinction can be used to engineer a columnar array of vortices, with an antiferromagnetic vorticity alignment, that can be switched on and off by external strain. A two-dimensional chiral layered state-an array of lines on an incompressible, freestanding film of chiral active fluid with a preferred normal direction-is generically unstable. However, this instability can be tuned in easily realizable experimental settings when the film is either on a substrate or in an ambient fluid.
Collapse
Affiliation(s)
- S J Kole
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Gareth P Alexander
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
| | - Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005 Paris, France
| |
Collapse
|
13
|
Plan ELCVM, Yeomans JM, Doostmohammadi A. Activity pulses induce spontaneous flow reversals in viscoelastic environments. J R Soc Interface 2021; 18:20210100. [PMID: 33849330 PMCID: PMC8086915 DOI: 10.1098/rsif.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Complex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions, such as proliferation, motility and cell death, and such cellular systems are often characterized by pulsating actomyosin activities. Here, using an active gel model, we numerically explore spontaneous flow generation by activity pulses in the presence of a viscoelastic medium. The results show that cross-talk between the activity-induced deformations of the viscoelastic surroundings and the time-dependent response of the active medium to these deformations can lead to the reversal of spontaneously generated active flows. We explain the mechanism behind this phenomenon based on the interaction between the active flow and the viscoelastic medium. We show the importance of relaxation time scales of both the polymers and the active particles and provide a phase space over which such spontaneous flow reversals can be observed. Our results suggest new experiments investigating the role of controlled pulses of activity in living systems ensnared in complex mircoenvironments.
Collapse
Affiliation(s)
- Emmanuel L C Vi M Plan
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100 000, Viet Nam.,Faculty of Natural Science, Duy Tan University, Da Nang 550 000, Viet Nam
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, UK
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Maitra A, Lenz M, Voituriez R. Chiral Active Hexatics: Giant Number Fluctuations, Waves, and Destruction of Order. PHYSICAL REVIEW LETTERS 2020; 125:238005. [PMID: 33337208 DOI: 10.1103/physrevlett.125.238005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Active materials, composed of internally driven particles, have properties that are qualitatively distinct from matter at thermal equilibrium. However, the most spectacular departures from equilibrium phase behavior are thought to be confined to systems with polar or nematic asymmetry. In this Letter, we show that such departures are also displayed by more symmetric phases such as hexatics if, in addition, the constituent particles have chiral asymmetry. We show that chiral active hexatics whose rotation rate does not depend on density have giant number fluctuations. If the rotation rate depends on density, the giant number fluctuations are suppressed due to a novel orientation-density sound mode with a linear dispersion which propagates even in the overdamped limit. However, we demonstrate that beyond a finite but large length scale, a chirality and activity-induced relevant nonlinearity invalidates the predictions of the linear theory and destroys the hexatic order. In addition, we show that activity modifies the interactions between defects in the active chiral hexatic phase, making them nonmutual. Finally, to demonstrate the generality of a chiral active hexatic phase we show that it results from the melting of chiral active crystals in finite systems.
Collapse
Affiliation(s)
- Ananyo Maitra
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
| | - Martin Lenz
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
- PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005, Paris, France
| | - Raphael Voituriez
- Sorbonne Université and CNRS, Laboratoire Jean Perrin, F-75005, Paris, France
- Sorbonne Université and CNRS, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| |
Collapse
|
15
|
Fadda F, Molina JJ, Yamamoto R. Dynamics of a chiral swimmer sedimenting on a flat plate. Phys Rev E 2020; 101:052608. [PMID: 32575256 DOI: 10.1103/physreve.101.052608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Three-dimensional simulations with fully resolved hydrodynamics are performed to study the dynamics of a single squirmer with and without gravity to clarify its motion in the vicinity of a flat plate. In the absence of gravity and chirality, the usual dynamics of a squirmer near a wall are recovered. The introduction of chirality modifies the swimming motion of squirmers, adding a component of motion in the third direction. When sedimentation is considered, different dynamics emerge for different gravity strength regimes. In a moderate gravity regime, neutral squirmers and pullers eventually stop moving and reorient in a direction perpendicular to the plate; by contrast, pushers exhibit continuous motion in a tilted direction. In the strong gravity regime, all squirmers sediment and reorient perpendicular to the plate. In this study, chirality is introduced to model realistic microswimmers, and its crucial effects on the nature of squirmer trajectories, which change from straight to circular, are discussed.
Collapse
Affiliation(s)
- Federico Fadda
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - John Jairo Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
16
|
Pathogenic diversity of RNA variants and RNA variation-associated factors in cancer development. Exp Mol Med 2020; 52:582-593. [PMID: 32346127 PMCID: PMC7210288 DOI: 10.1038/s12276-020-0429-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, with the development of RNA sequencing technologies such as next-generation sequencing (NGS) for RNA, numerous variations of alternatively processed RNAs made by alternative splicing, RNA editing, alternative maturation of microRNA (miRNA), RNA methylation, and alternative polyadenylation have been uncovered. Furthermore, abnormally processed RNAs can cause a variety of diseases, including obesity, diabetes, Alzheimer’s disease, and cancer. Especially in cancer development, aberrant RNAs caused by deregulated RNA modifiers or regulators are related to progression. Accumulating evidence has reported that aberrant RNAs promote carcinogenesis in many cancers, including liver cancer, leukemia, melanoma, lung cancer, breast cancer, and other cancers, in which abnormal RNA processing occurs in normal cells. Therefore, it is necessary to understand the precise roles and mechanisms of disease-related RNA processing in various cancers for the development of therapeutic interventions. In this review, the underlying mechanisms of variations in the RNA life cycle and the biological impacts of RNA variations on carcinogenesis will be discussed, and therapeutic strategies for the treatment of tumor malignancies will be provided. We also discuss emerging roles of RNA regulators in hepatocellular carcinogenesis. A single gene can generate a variety of RNA products, and changes in this final RNA output can directly contribute to cancer onset and progression. The initial transcription of each DNA sequence yields a raw RNA strand that subsequently undergoes a variety of modification processes that shape its function. Hee Doo Yang and Suk Woo Nam, The Catholic University of Korea, Seoul, have reviewed the potential impact of these mechanisms on malignancy. Some cancers, for example, express RNA sequences that have been inappropriately edited by an enzymatic process called splicing, yielding abnormal RNAs that drive metastasis. Other tumors contain RNAs with atypical chemical modifications, or in which individual nucleotides have been enzymatically converted into other nucleotides. A deeper understanding of these RNA alterations and their impacts could lead to more effective and targeted cancer treatments.
Collapse
|
17
|
Mai MH, Camley BA. Hydrodynamic effects on the motility of crawling eukaryotic cells. SOFT MATTER 2020; 16:1349-1358. [PMID: 31934705 DOI: 10.1039/c9sm01797f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic cell motility is crucial during development, wound healing, the immune response, and cancer metastasis. Some eukaryotic cells can swim, but cells more commonly adhere to and crawl along the extracellular matrix. We study the relationship between hydrodynamics and adhesion that describe whether a cell is swimming, crawling, or combining these motions. Our simple model of a cell, based on the three-sphere swimmer, is capable of both swimming and crawling. As cell-matrix adhesion strength increases, the influence of hydrodynamics on migration diminishes. Cells with significant adhesion can crawl with speeds much larger than their nonadherent, swimming counterparts. We predict that, while most eukaryotic cells are in the strong-adhesion limit, increasing environment viscosity or decreasing cell-matrix adhesion could lead to significant hydrodynamic effects even in crawling cells. Signatures of hydrodynamic effects include a dependence of cell speed on the presence of a nearby substrate or interactions between noncontacting cells. These signatures will be suppressed at large adhesion strengths, but even strongly adherent cells will generate relevant fluid flows that will advect nearby passive particles and swimmers.
Collapse
Affiliation(s)
- Melissa H Mai
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
18
|
Metselaar L, Yeomans JM, Doostmohammadi A. Topology and Morphology of Self-Deforming Active Shells. PHYSICAL REVIEW LETTERS 2019; 123:208001. [PMID: 31809098 DOI: 10.1103/physrevlett.123.208001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 06/10/2023]
Abstract
We present a generic framework for modeling three-dimensional deformable shells of active matter that captures the orientational dynamics of the active particles and hydrodynamic interactions on the shell and with the surrounding environment. We find that the cross talk between the self-induced flows of active particles and dynamic reshaping of the shell can result in conformations that are tunable by varying the form and magnitude of active stresses. We further demonstrate and explain how self-induced topological defects in the active layer can direct the morphodynamics of the shell. These findings are relevant to understanding morphological changes during organ development and the design of bioinspired materials that are capable of self-organization.
Collapse
Affiliation(s)
- Luuk Metselaar
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Abstract
Chirality is a recurrent theme in the study of biological systems, in which active processes are driven by the internal conversion of chemical energy into work. Bacterial flagella, actomyosin filaments, and microtubule bundles are active systems that are also intrinsically chiral. Despite some exploratory attempt to capture the relations between chirality and motility, many features of intrinsically chiral systems still need to be explored and explained. To address this gap in knowledge, here we study the effects of internal active forces and torques on a 3-dimensional (3D) droplet of cholesteric liquid crystal (CLC) embedded in an isotropic liquid. We consider tangential anchoring of the liquid crystal director at the droplet surface. Contrary to what happens in nematics, where moderate extensile activity leads to droplet rotation, cholesteric active droplets exhibit more complex and variegated behaviors. We find that extensile force dipole activity stabilizes complex defect configurations, in which orbiting dynamics couples to thermodynamic chirality to propel screw-like droplet motion. Instead, dipolar torque activity may either tighten or unwind the cholesteric helix and if tuned, can power rotations with an oscillatory angular velocity of 0 mean.
Collapse
|
20
|
Carenza LN, Gonnella G, Lamura A, Negro G, Tiribocchi A. Lattice Boltzmann methods and active fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:81. [PMID: 31250142 DOI: 10.1140/epje/i2019-11843-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 05/24/2023]
Abstract
We review the state of the art of active fluids with particular attention to hydrodynamic continuous models and to the use of Lattice Boltzmann Methods (LBM) in this field. We present the thermodynamics of active fluids, in terms of liquid crystals modelling adapted to describe large-scale organization of active systems, as well as other effective phenomenological models. We discuss how LBM can be implemented to solve the hydrodynamics of active matter, starting from the case of a simple fluid, for which we explicitly recover the continuous equations by means of Chapman-Enskog expansion. Going beyond this simple case, we summarize how LBM can be used to treat complex and active fluids. We then review recent developments concerning some relevant topics in active matter that have been studied by means of LBM: spontaneous flow, self-propelled droplets, active emulsions, rheology, active turbulence, and active colloids.
Collapse
Affiliation(s)
- Livio Nicola Carenza
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy.
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppe Negro
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Adriano Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| |
Collapse
|
21
|
Yamamoto T, Sano M. Hydrodynamic rotlet dipole driven by spinning chiral liquid crystal droplets. Phys Rev E 2019; 99:022704. [PMID: 30934310 DOI: 10.1103/physreve.99.022704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Indexed: 01/19/2023]
Abstract
Chirality is an essential evolutionary-conserved physical aspect of swimming microorganisms. However, the role of chirality on the hydrodynamics of such microswimmers is still being elucidated. Hydrodynamic theories have so far predicted that, under a torque-free condition satisfied in the system of microswimmers, a rotlet dipole generating a twisting flow is the leading-order singularity of the chiral flow field. Nevertheless, such a chiral flow field has never been experimentally detected. Here we explore a hydrodynamic field generated in a system of a chiral microswimmer, where a droplet of a cholesteric liquid crystal (CLC) exhibits helical and spinning motions in surfactant solutions due to a chiral nonequilibrium cross coupling between the rotation and the Marangoni flow. Combining measurement of the flow field around the spinning CLC droplets and a computational flow modeling, we revealed that the CLC droplets generate a flow field of a rotlet dipole. Remarkably, we found that the chiral component of the flow field decays with distance r as r^{-3}, which is consistent with the theoretical prediction for the flow field produced by a point singularity of a rotlet dipole. Our findings will promote the understanding of roles of chirality on the hydrodynamics in active matter as well as liquid crystals.
Collapse
Affiliation(s)
- Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Masaki Sano
- Department of Physics, Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Maitra A, Lenz M. Spontaneous rotation can stabilise ordered chiral active fluids. Nat Commun 2019; 10:920. [PMID: 30796222 PMCID: PMC6385212 DOI: 10.1038/s41467-019-08914-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/06/2019] [Indexed: 12/05/2022] Open
Abstract
Active hydrodynamic theories are a powerful tool to study the emergent ordered phases of internally driven particles such as bird flocks, bacterial suspension and their artificial analogues. While theories of orientationally ordered phases are by now well established, the effect of chirality on these phases is much less studied. In this paper, we present a complete dynamical theory of orientationally ordered chiral particles in two-dimensional incompressible systems. We show that phase-coherent states of rotating chiral particles are remarkably stable in both momentum-conserved and non-conserved systems in contrast to their non-rotating counterparts. Furthermore, defect separation-which drives chaotic flows in non-rotating active fluids-is suppressed by intrinsic rotation of chiral active particles. We thus establish chirality as a source of dramatic stabilisation in active systems, which could be key in interpreting the collective behaviors of some biological tissues, cytoskeletal systems and collections of bacteria.
Collapse
Affiliation(s)
- Ananyo Maitra
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.
| | - Martin Lenz
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.
- MultiScale Material Science for Energy and Environment, UMI 3466, CNRS-MIT, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
23
|
Metselaar L, Doostmohammadi A, Yeomans JM. Topological states in chiral active matter: Dynamic blue phases and active half-skyrmions. J Chem Phys 2019; 150:064909. [DOI: 10.1063/1.5085282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Luuk Metselaar
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
24
|
Jamali T, Naji A. Active fluids at circular boundaries: swim pressure and anomalous droplet ripening. SOFT MATTER 2018; 14:4820-4834. [PMID: 29845128 DOI: 10.1039/c8sm00338f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate the swim pressure exerted by non-chiral and chiral active particles on convex or concave circular boundaries. Active particles are modeled as non-interacting and non-aligning self-propelled Brownian particles. The convex and concave circular boundaries are used to model a fixed inclusion immersed in an active bath and a cavity (or container) enclosing the active particles, respectively. We first present a detailed analysis of the role of convex versus concave boundary curvature and of the chirality of active particles in their spatial distribution, chirality-induced currents, and the swim pressure they exert on the bounding surfaces. The results will then be used to predict the mechanical equilibria of suspended fluid enclosures (generically referred to as 'droplets') in a bulk with active particles being present either inside the bulk fluid or within the suspended droplets. We show that, while droplets containing active particles behave in accordance with standard capillary paradigms when suspended in a normal bulk, those containing a normal fluid exhibit anomalous behaviors when suspended in an active bulk. In the latter case, the excess swim pressure results in non-monotonic dependence of the inside droplet pressure on the droplet radius; hence, revealing an anomalous regime of behavior beyond a threshold radius, in which the inside droplet pressure increases upon increasing the droplet size. Furthermore, for two interconnected droplets, mechanical equilibrium can occur also when the droplets have different sizes. We thus identify a regime of anomalous droplet ripening, where two unequal-sized droplets can reach a final state of equal size upon interconnection, in stark contrast with the standard Ostwald ripening phenomenon, implying shrinkage of the smaller droplet in favor of the larger one.
Collapse
Affiliation(s)
- Tayeb Jamali
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
| | | |
Collapse
|
25
|
Milin AN, Deniz AA. Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry 2018; 57:2470-2477. [PMID: 29569441 DOI: 10.1021/acs.biochem.8b00001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compartmentalization of biochemical components, interactions, and reactions is critical for the function of cells. While intracellular partitioning of molecules via membranes has been extensively studied, there has been an expanding focus in recent years on the critical cellular roles and biophysical mechanisms of action of membraneless organelles (MLOs) such as the nucleolus. In this context, a substantial body of recent work has demonstrated that liquid-liquid phase separation plays a key role in MLO formation. However, less is known about MLO dissociation, with phosphorylation being the primary mechanism demonstrated thus far. In this Perspective, we focus on another mechanism for MLO dissociation that has been described in recent work, namely a reentrant phase transition (RPT). This concept, which emerges from the polymer physics field, provides a mechanistic basis for both formation and dissolution of MLOs by monotonic tuning of RNA concentration, which is an outcome of cellular processes such as transcription. Furthermore, the RPT model also predicts the formation of dynamic substructures (vacuoles) of the kind that have been observed in cellular MLOs. We end with a discussion of future directions in terms of open questions and methods that can be used to answer them, including further exploration of RPTs in vitro, in cells, and in vivo using ensemble and single-molecule methods as well as theory and computation. We anticipate that continued studies will further illuminate the important roles of reentrant phase transitions and associated non-equilibrium dynamics in the spatial patterning of the biochemistry and biology of the cell.
Collapse
Affiliation(s)
- Anthony N Milin
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
26
|
Liao JJ, Huang XQ, Ai BQ. Transport of the moving barrier driven by chiral active particles. J Chem Phys 2018. [DOI: 10.1063/1.5018371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-jing Liao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Xiao-qun Huang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
27
|
Yamamoto T, Sano M. Theoretical model of chirality-induced helical self-propulsion. Phys Rev E 2018; 97:012607. [PMID: 29448380 DOI: 10.1103/physreve.97.012607] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 06/08/2023]
Abstract
We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017)1744-683X10.1039/C7SM00337D]. In the experiment, cholesteric liquid crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations play a crucial role in the emergence of the helical motion of the CLC droplet.
Collapse
Affiliation(s)
- Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Quantitative Biology Center, Kobe 650-0047, Japan
| | - Masaki Sano
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
Fadda F, Gonnella G, Lamura A, Tiribocchi A. Lattice Boltzmann study of chemically-driven self-propelled droplets. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:112. [PMID: 29256179 DOI: 10.1140/epje/i2017-11603-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.
Collapse
Affiliation(s)
- F Fadda
- Dipartimento di Fisica and Sezione INFN Bari, Via Amendola 173, 70126, Bari, Italy
| | - G Gonnella
- Dipartimento di Fisica and Sezione INFN Bari, Via Amendola 173, 70126, Bari, Italy
| | - A Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - A Tiribocchi
- Dipartimento di Fisica e Astronomia, Via Marzolo 8, I-35131, Padova, Italy.
| |
Collapse
|
29
|
Dempster JM, Vázquez-Montejo P, Olvera de la Cruz M. Contractile actuation and dynamical gel assembly of paramagnetic filaments in fast precessing fields. Phys Rev E 2017; 95:052606. [PMID: 28618507 DOI: 10.1103/physrevmaterials.1.064402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Indexed: 05/22/2023]
Abstract
Flexible superparamagnetic filaments are studied under the influence of fast precessing magnetic fields using simulations and a continuum approximation analysis. We find that individual filaments can be made to exert controllable tensile forces along the precession axis. These forces are exploited for microscopic actuation. In bulk, the filaments can be rapidly assembled into different configurations whose material properties depend on the field parameters. The precession frequency affects filament aggregation and conformation by changing the net torques on the filament ends. Using a time-dependent precession angle allows considerable freedom in choosing properties for filament aggregates. As an example, we design a field that twists chains together to dynamically assemble a self-healing gel.
Collapse
Affiliation(s)
- Joshua M Dempster
- Northwestern University Department of Physics and Astronomy, 2145 Sheridan Road F165, Evanston, Illinois 60208, USA
| | - Pablo Vázquez-Montejo
- Northwestern University Department of Materials Science and Engineering, 2220 Campus Drive, Cook Hall 20136, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Northwestern University Department of Physics and Astronomy, 2145 Sheridan Road F165, Evanston, Illinois 60208, USA
- Northwestern University Department of Materials Science and Engineering, 2220 Campus Drive, Cook Hall 20136, Evanston, Illinois 60208, USA
| |
Collapse
|