1
|
Li X, Feng R, Guo Z, Meng Y, Zou Y, Liao W, Peng Q, Zhong H, Zhao W. Direct investigations of the effects of nicardipine on calcium channels of astrocytes by Atomic Force Microscopy. Talanta 2024; 274:125947. [PMID: 38537353 DOI: 10.1016/j.talanta.2024.125947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/12/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Calcium channel blockers (CCB) of astrocytes can blockade the calcium ions entry through the voltage gated calcium channels (VGCC), and is widely used in the diseases related with VGCC of astrocytes. But many aspects of the interaction mechanisms between the CCB and VGCC of astrocytes still remain unclear due to the limited resolution of the approaches. Herein the effects of the nicardipine (a type of CCB) on VGCC of astrocytes were investigated at very high spatial, force and electrical resolution by multiple modes of Atomic Force Microscopy (AFM) directly. The results reveal that after the addition of nicardipine, the recognition signals of VGCC disappeared; the specific unbinding forces vanished; the conductivity of the astrocytes decreased (the current decreased about 2.9 pA and the capacitance was doubled); the surface potential of the astrocytes reduced about 14.2 mV. The results of electrical properties investigations are consistent with the simulation experiments. The relations between these biophysical and biochemical properties of VGCC have been discussed. All these demonstrate that the interactions between nicardipine and VGCC have been studied at nanometer spatial resolution, at picoNewton force resolution and very high electrical signal resolution (pA in current, pF in capacitance and 0.1 mV in surface potential) level. The approaches are considered to be high resolution and high sensitivity, and will be helpful and useful in the further investigations of the effects of other types of CCB on ion channels, and will also be helpful in the investigations of mechanisms and therapy of ion channelopathies.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Rongrong Feng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Zeling Guo
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yu Meng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Yulan Zou
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Wenchao Liao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Qianwei Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, People's Republic of China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China.
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, People's Republic of China; School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, People's Republic of China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, People's Republic of China.
| |
Collapse
|
2
|
Li H, Korcari A, Ciufo D, Mendias CL, Rodeo SA, Buckley MR, Loiselle AE, Pitt GS, Cao C. Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties. FASEB J 2023; 37:e23007. [PMID: 37261735 PMCID: PMC10254118 DOI: 10.1096/fj.202300607r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone, and cartilage development and homeostasis, knowledge about Ca2+ signaling and the source of Ca2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca2+ signaling through CaV 1.2 voltage-gated Ca2+ channel in tendon formation. Using a reporter mouse, we found that CaV 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;CaV 1.2TS mice that express a gain-of-function mutant CaV 1.2 in tendon. We found that mutant tendons were hypertrophic, with more tendon fibroblasts but decreased cell density. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendons. Biomechanical testing revealed that the hypertrophic tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomic analysis showed no significant difference in the abundance of type I and III collagens, but mutant tendons had about two-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2, and cathepsin K. Taken together, these data highlight roles for increased Ca2+ signaling through CaV 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
Collapse
Affiliation(s)
- Haiyin Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonion Korcari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - David Ciufo
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Scott A. Rodeo
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY, USA
| | - Mark R. Buckley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Alayna E. Loiselle
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Chike Cao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopeadics, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
3
|
Li H, Korcari A, Ciufo D, Mendias CL, Rodeo SA, Buckley MR, Loiselle AE, Pitt GS, Cao C. Increased Ca 2+ signaling through Ca V 1.2 induces tendon hypertrophy with increased collagen fibrillogenesis and biomechanical properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525119. [PMID: 36747837 PMCID: PMC9900778 DOI: 10.1101/2023.01.24.525119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Tendons are tension-bearing tissues transmitting force from muscle to bone for body movement. This mechanical loading is essential for tendon development, homeostasis, and healing after injury. While Ca 2+ signaling has been studied extensively for its roles in mechanotransduction, regulating muscle, bone and cartilage development and homeostasis, knowledge about Ca 2+ signaling and the source of Ca 2+ signals in tendon fibroblast biology are largely unknown. Here, we investigated the function of Ca 2+ signaling through Ca V 1.2 voltage-gated Ca 2+ channel in tendon formation. Using a reporter mouse, we found that Ca V 1.2 is highly expressed in tendon during development and downregulated in adult homeostasis. To assess its function, we generated ScxCre;Ca V 1.2 TS mice that express a gain-of-function mutant Ca V 1.2 channel (Ca V 1.2 TS ) in tendon. We found that tendons in the mutant mice were approximately 2/3 larger and had more tendon fibroblasts, but the cell density of the mutant mice decreased by around 22%. TEM analyses demonstrated increased collagen fibrillogenesis in the hypertrophic tendon. Biomechanical testing revealed that the hypertrophic Achilles tendons display higher peak load and stiffness, with no changes in peak stress and elastic modulus. Proteomics analysis reveals no significant difference in the abundance of major extracellular matrix (ECM) type I and III collagens, but mutant mice had about 2-fold increase in other ECM proteins such as tenascin C, tenomodulin, periostin, type XIV and type VIII collagens, around 11-fold increase in the growth factor of TGF-β family myostatin, and significant elevation of matrix remodeling proteins including Mmp14, Mmp2 and cathepsin K. Taken together, these data highlight roles for increased Ca 2+ signaling through Ca V 1.2 on regulating expression of myostatin growth factor and ECM proteins for tendon collagen fibrillogenesis during tendon formation.
Collapse
|
4
|
Ruiz-Fernández AR, Campos L, Gutierrez-Maldonado SE, Núñez G, Villanelo F, Perez-Acle T. Nanosecond Pulsed Electric Field (nsPEF): Opening the Biotechnological Pandora’s Box. Int J Mol Sci 2022; 23:ijms23116158. [PMID: 35682837 PMCID: PMC9181413 DOI: 10.3390/ijms23116158] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Nanosecond Pulsed Electric Field (nsPEF) is an electrostimulation technique first developed in 1995; nsPEF requires the delivery of a series of pulses of high electric fields in the order of nanoseconds into biological tissues or cells. They primary effects in cells is the formation of membrane nanopores and the activation of ionic channels, leading to an incremental increase in cytoplasmic Ca2+ concentration, which triggers a signaling cascade producing a variety of effects: from apoptosis up to cell differentiation and proliferation. Further, nsPEF may affect organelles, making nsPEF a unique tool to manipulate and study cells. This technique is exploited in a broad spectrum of applications, such as: sterilization in the food industry, seed germination, anti-parasitic effects, wound healing, increased immune response, activation of neurons and myocites, cell proliferation, cellular phenotype manipulation, modulation of gene expression, and as a novel cancer treatment. This review thoroughly explores both nsPEF’s history and applications, with emphasis on the cellular effects from a biophysics perspective, highlighting the role of ionic channels as a mechanistic driver of the increase in cytoplasmic Ca2+ concentration.
Collapse
Affiliation(s)
- Alvaro R. Ruiz-Fernández
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| | - Leonardo Campos
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Sebastian E. Gutierrez-Maldonado
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Gonzalo Núñez
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
| | - Felipe Villanelo
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
| | - Tomas Perez-Acle
- Computational Biology Lab, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile; (L.C.); (S.E.G.-M.); (G.N.); (F.V.)
- Facultad de Ingeniería y Tecnología, Universidad San Sebastian, Bellavista 7, Santiago 8420524, Chile
- Correspondence: (A.R.R.-F.); (T.P.-A.)
| |
Collapse
|
5
|
Calcium Signaling in Neurons and Glial Cells: Role of Cav1 channels. Neuroscience 2019; 421:95-111. [DOI: 10.1016/j.neuroscience.2019.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 11/18/2022]
|
6
|
Cao C, Oswald AB, Fabella BA, Ren Y, Rodriguiz R, Trainor G, Greenblatt MB, Hilton MJ, Pitt GS. The Ca V1.2 L-type calcium channel regulates bone homeostasis in the middle and inner ear. Bone 2019; 125:160-168. [PMID: 31121355 PMCID: PMC6615562 DOI: 10.1016/j.bone.2019.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/07/2023]
Abstract
Bone remodeling of the auditory ossicles and the otic capsule is highly restricted and tightly controlled by the osteoprotegerin (OPG)/receptor activator of nuclear factor kappa-Β ligand (RANKL)/receptor activator of nuclear factor kappa-Β (RANK) system. In these bony structures, a pathological decrease in OPG expression stimulates osteoclast differentiation and excessive resorption followed by accrual of sclerotic bone, ultimately resulting in the development of otosclerosis, a leading cause of deafness in adults. Understanding the signaling pathways involved in maintaining OPG expression in the ear would shed light on the pathophysiology of otosclerosis and other ear bone-related diseases. We and others previously demonstrated that Ca2+ signaling through the L-type CaV1.2 Ca2+ channel positively regulates OPG expression and secretion in long bone osteoblasts and their precursor cells in vitro and in vivo. Whether CaV1.2 regulates OPG expression in ear bones has not been investigated. We drove expression of a gain-of-function CaV1.2 mutant channel (CaV1.2TS) using Col2a1-Cre, which we found to target osteochondral/osteoblast progenitors in the auditory ossicles and the otic capsule. Col2a1-Cre;CaV1.2TS mice displayed osteopetrosis of these bones shown by μCT 3D reconstruction, histological analysis, and lack of bone sculpting, findings similar to phenotypes seen in mice with an osteoclast defect. Consistent with those observations, we found that Col2a1-Cre;CaV1.2TS mutant mice showed reduced osteoclasts in the otic capsule, upregulated mRNA expression of Opg and Opg/Rankl ratio, and increased mRNA expression of osteoblast differentiation marker genes in the otic capsule, suggesting both an anti-catabolic and anabolic effect of CaV1.2TS mutant channel contributed to the observed morphological changes of the ear bones. Further, we found that Col2a1-Cre;CaV1.2TS mice experienced hearing loss and displayed defects of body balance in behavior tests, confirming that the CaV1.2-dependent Ca2+ influx affects bone structure in the ear and consequent hearing and vestibular functions. Together, these data support our hypothesis that Ca2+ influx through CaV1.2TS promotes OPG expression from osteoblasts, thereby affecting bone modeling/remodeling in the auditory ossicles and the otic capsule. These data provide insight into potential pathological mechanisms underlying perturbed OPG expression and otosclerosis.
Collapse
Affiliation(s)
- Chike Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 413 East 69th St., New York, NY 10021, USA.
| | - Aaron B Oswald
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Brian A Fabella
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yinshi Ren
- Department of Orthopaedic Surgery, Duke University School of Medicine, 450 Research Drive, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, 450 Research Drive, Durham, NC 27710, USA
| | - Ramona Rodriguiz
- Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, 308 Research Drive, Durham, NC 27708, USA
| | - George Trainor
- Harrington Discovery Institute, Innovation Support Center, 2103 Cornell Road, Cleveland, OH 44106, USA
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10021, USA; Research Division, Hospital for Special Surgery, New York, NY 10021, USA
| | - Matthew J Hilton
- Department of Orthopaedic Surgery, Duke University School of Medicine, 450 Research Drive, Durham, NC 27710, USA; Department of Cell Biology, Duke University School of Medicine, 450 Research Drive, Durham, NC 27710, USA
| | - Geoffrey S Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, 413 East 69th St., New York, NY 10021, USA
| |
Collapse
|
7
|
Yu Q, Shao D, Zhang R, Ouyang W, Zhang Z. Effects of drinking water fluorosis on L-type calcium channel of hippocampal neurons in mice. CHEMOSPHERE 2019; 220:169-175. [PMID: 30583209 DOI: 10.1016/j.chemosphere.2018.12.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/19/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The study aimed to investigate the effects of drinking water fluorosis on L-type calcium channels (LTCCs) in mouse hippocampal neurons. A total of 60 newly weaned ICR male mice were randomly divided into control, low fluoride and high fluoride groups. After 3 and 6 months of exposure to fluoride, the patch clamp technique was used to detect the peak and relative values (I/Imax), steady-state activation curve ratio (G/Gmax), decay time constant, and tail current time constant of LTCCs currents in hippocampal CA1 region of mouse brain slices. Fluoride greatly reduced the serum and urinary calcium concentrations in mice, and the chronic fluorosis has a greater impact than subchronic fluorosis. The peak value of LTCCs current in pyramidal neurons of hippocampal CA1 area was significant and increased with the prolonged exposure time. The relative values of current and steady-state coefficients were changed greatly. The decay and tail current time increased significantly. High fluorine concentration indicates great peak value and open time of LTCCs opening. LTCCs are sensitive to fluoride exposure. The activation voltage of calcium channels induced by fluoride exposure is decreased, the opening time of calcium channels is prolonged, and the calcium influx per unit time increased, thereby overloading calcium concentration in neurons and this may be an explanation for intracellular calcium overload caused by fluoride. The imbalance of calcium metabolism caused by fluorosis may be a pathogenesis of brain injury induced by fluoride. Furthermore, the risk of brain damage from low-fluorine exposure cannot be ignored.
Collapse
Affiliation(s)
- Qiuli Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Dandan Shao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Rui Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Wei Ouyang
- College of Sports and Health Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Zigui Zhang
- College of Xing Zhi, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| |
Collapse
|
8
|
Abstract
This review will first describe the importance of Ca2+ entry for function of excitable cells, and the subsequent discovery of voltage-activated calcium conductances in these cells. This finding was rapidly followed by the identification of multiple subtypes of calcium conductance in different tissues. These were initially termed low- and high-voltage activated currents, but were then further subdivided into L-, N-, PQ-, R- and T-type calcium currents on the basis of differing pharmacology, voltage-dependent and kinetic properties, and single channel conductance. Purification of skeletal muscle calcium channels allowed the molecular identification of the pore-forming and auxiliary α2δ, β and ϒ subunits present in these calcium channel complexes. These advances then led to the cloning of the different subunits, which permitted molecular characterisation, to match the cloned channels with physiological function. Studies with knockout and other mutant mice then allowed further investigation of physiological and pathophysiological roles of calcium channels. In terms of pharmacology, cardiovascular L-type channels are targets for the widely used antihypertensive 1,4-dihydropyridines and other calcium channel blockers, N-type channels are a drug target in pain, and α2δ-1 is the therapeutic target of the gabapentinoid drugs, used in neuropathic pain. Recent structural advances have allowed a deeper understanding of Ca2+ permeation through the channel pore and the structure of both the pore-forming and auxiliary subunits. Voltage-gated calcium channels are subject to multiple pathways of modulation by G-protein and second messenger regulation. Furthermore, their trafficking pathways, subcellular localisation and functional specificity are the subjects of active investigation.
Collapse
|
9
|
Lal S, Scarinci N, Perez PL, Cantero MDR, Cantiello HF. Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2). PLoS One 2018; 13:e0202029. [PMID: 30133487 PMCID: PMC6104948 DOI: 10.1371/journal.pone.0202029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
Ion channels are transmembrane proteins that mediate ion transport across biological membranes. Ion channel function is traditionally characterized by electrical parameters acquired with techniques such as patch-clamping and reconstitution in lipid bilayer membranes (BLM) that provide relevant information such as ionic conductance, selectivity, and gating properties. High resolution structural information of ion channels however, requires independent technologies, of which atomic force microscopy (AFM) is the only one that provides topological features of single functional channel proteins in their native environments. To date practically no data exist on direct correlations between electrical features and topological parameters from functional single channel complexes. Here, we report the design and construction of a BLM reconstitution microchamber that supports the simultaneous recording of electrical currents and AFM imaging from single channel complexes. As proof-of-principle, we tested the technique on polycystin-2 (PC2, TRPP2), a TRP channel family member from which we had previously elucidated its tetrameric topology by AFM imaging, and single channel currents by the BLM technique. The experimental setup provided direct structural-functional correlates from PC2 single channel complexes that disclosed novel topological changes between the closed and open sub-conductance states of the functional channel, namely, an inverse correlation between conductance and height of the channel. Unexpectedly, we also disclosed intrinsic PC2 mechanosensitivity in response to external forces. The platform provides a suitable means of accessing topological information to correlate with ion channel electrical parameters essential to understand the physiology of these transmembrane proteins.
Collapse
Affiliation(s)
- Sumit Lal
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Paula L. Perez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
10
|
Liao Q, Zhang R, Wang X, Nian W, Ke L, Ouyang W, Zhang Z. Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:74-79. [PMID: 28697452 DOI: 10.1016/j.etap.2017.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effects of fluoride exposure on the mRNA expression of Cav1.2 calcium signaling pathway and apoptosis regulatory molecules in PC12 cells. The viability of PC12 cell receiving high fluoride (5.0mM) and low fluoride (0.5mM) alone or fluoride combined with L-type calcium channel (LTCC) agonist/inhibitor (5umol/L FPL6417/2umol/L nifedipine) was detected using cell counting kit-8 at different time points (2, 4, 6, 8, 12, 10, and 24h). Changes in the cell configuration were observed after exposing the cells to fluoride for 24h. The expression levels of molecules related to the LTCC were examined, particularly, Cav1.2, c-fos, CAMK II, Bax, and Bcl-2. Fluoride poisoning induced severe cell injuries, such as decreased PC12 cell activity, enhanced cell apoptosis, high c-fos, CAMKII, and Bax mRNA expression levels. Bcl-2 expression level was also reduced. Meanwhile, high fluoride, high fluoride with FPL64176, and low fluoride with FPL64176 enhanced the Cav1.2 expression level. In contrast, low fluoride, high fluoride with nifedipine, and low fluoride with nifedipine reduced the Cav1.2 expression level. Thus, Cav1.2 may be an important molecular target for the fluorosis treatment, and the LTCC inhibitor nifedipine may be an effective drug for fluorosis.
Collapse
Affiliation(s)
- Qiuxia Liao
- College of Chemistry and Life Science at Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Rui Zhang
- College of Chemistry and Life Science at Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Xiaoyu Wang
- College of Chemistry and Life Science at Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Weiwei Nian
- College of Chemistry and Life Science at Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Lulu Ke
- College of Chemistry and Life Science at Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Wei Ouyang
- College of Sports and Health Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Zigui Zhang
- College of Xing Zhi, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| |
Collapse
|
11
|
Structure-Function Relationship of the Voltage-Gated Calcium Channel Cav1.1 Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:23-39. [DOI: 10.1007/978-3-319-55858-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Dolphin AC. Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 2016; 594:5369-90. [PMID: 27273705 PMCID: PMC5043047 DOI: 10.1113/jp272262] [Citation(s) in RCA: 237] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 12/22/2022] Open
Abstract
Voltage‐gated calcium channels are essential players in many physiological processes in excitable cells. There are three main subdivisions of calcium channel, defined by the pore‐forming α1 subunit, the CaV1, CaV2 and CaV3 channels. For all the subtypes of voltage‐gated calcium channel, their gating properties are key for the precise control of neurotransmitter release, muscle contraction and cell excitability, among many other processes. For the CaV1 and CaV2 channels, their ability to reach their required destinations in the cell membrane, their activation and the fine tuning of their biophysical properties are all dramatically influenced by the auxiliary subunits that associate with them. Furthermore, there are many diseases, both genetic and acquired, involving voltage‐gated calcium channels. This review will provide a general introduction and then concentrate particularly on the role of auxiliary α2δ subunits in both physiological and pathological processes involving calcium channels, and as a therapeutic target.
![]()
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Wu J, Yan Z, Li Z, Yan C, Lu S, Dong M, Yan N. Structure of the voltage-gated calcium channel Cav1.1 complex. Science 2016; 350:aad2395. [PMID: 26680202 DOI: 10.1126/science.aad2395] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The voltage-gated calcium channel Ca(v)1.1 is engaged in the excitation-contraction coupling of skeletal muscles. The Ca(v)1.1 complex consists of the pore-forming subunit α1 and auxiliary subunits α2δ, β, and γ. We report the structure of the rabbit Ca(v)1.1 complex determined by single-particle cryo-electron microscopy. The four homologous repeats of the α1 subunit are arranged clockwise in the extracellular view. The γ subunit, whose structure resembles claudins, interacts with the voltage-sensing domain of repeat IV (VSD(IV)), whereas the cytosolic β subunit is located adjacent to VSD(II) of α1. The α2 subunit interacts with the extracellular loops of repeats I to III through its VWA and Cache1 domains. The structure reveals the architecture of a prototypical eukaryotic Ca(v) channel and provides a framework for understanding the function and disease mechanisms of Ca(v) and Na(v) channels.
Collapse
Affiliation(s)
- Jianping Wu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhen Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhangqiang Li
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shan Lu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Mengqiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing 100084, China. Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China. Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Intramolecular ex vivo Fluorescence Resonance Energy Transfer (FRET) of Dihydropyridine Receptor (DHPR) β1a Subunit Reveals Conformational Change Induced by RYR1 in Mouse Skeletal Myotubes. PLoS One 2015; 10:e0131399. [PMID: 26114725 PMCID: PMC4482598 DOI: 10.1371/journal.pone.0131399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 06/02/2015] [Indexed: 11/29/2022] Open
Abstract
The dihydropyridine receptor (DHPR) β1a subunit is essential for skeletal muscle excitation-contraction coupling, but the structural organization of β1a as part of the macromolecular DHPR-ryanodine receptor type I (RyR1) complex is still debatable. We used fluorescence resonance energy transfer (FRET) to probe proximity relationships within the β1a subunit in cultured skeletal myotubes lacking or expressing RyR1. The fluorescein biarsenical reagent FlAsH was used as the FRET acceptor, which exhibits fluorescence upon binding to specific tetracysteine motifs, and enhanced cyan fluorescent protein (CFP) was used as the FRET donor. Ten β1a reporter constructs were generated by inserting the CCPGCC FlAsH binding motif into five positions probing the five domains of β1a with either carboxyl or amino terminal fused CFP. FRET efficiency was largest when CCPGCC was positioned next to CFP, and significant intramolecular FRET was observed for all constructs suggesting that in situ the β1a subunit has a relatively compact conformation in which the carboxyl and amino termini are not extended. Comparison of the FRET efficiency in wild type to that in dyspedic (lacking RyR1) myotubes revealed that in only one construct (H458 CCPGCC β1a -CFP) FRET efficiency was specifically altered by the presence of RyR1. The present study reveals that the C-terminal of the β1a subunit changes conformation in the presence of RyR1 consistent with an interaction between the C-terminal of β1a and RyR1 in resting myotubes.
Collapse
|
15
|
Hu H, Wang Z, Wei R, Fan G, Wang Q, Zhang K, Yin CC. The molecular architecture of dihydropyrindine receptor/L-type Ca2+ channel complex. Sci Rep 2015; 5:8370. [PMID: 25667046 PMCID: PMC4322351 DOI: 10.1038/srep08370] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022] Open
Abstract
Dihydropyridine receptor (DHPR), an L-type Ca2+ channel complex, plays an essential role in muscle contraction, secretion, integration of synaptic input in neurons and synaptic transmission. The molecular architecture of DHPR complex remains elusive. Here we present a 15-Å resolution cryo-electron microscopy structure of the skeletal DHPR/L-type Ca2+ channel complex. The DHPR has an asymmetrical main body joined by a hook-like extension. The main body is composed of a “trapezoid” and a “tetrahedroid”. Homologous crystal structure docking and site-specific antibody labelling revealed that the α1 and α2 subunits are located in the “trapezoid” and the β subunit is located in the “tetrahedroid”. This structure revealed the molecular architecture of a eukaryotic Ca2+ channel complex. Furthermore, this structure provides structural insights into the key elements of DHPR involved in physical coupling with the RyR/Ca2+ release channel and shed light onto the mechanism of excitation-contraction coupling.
Collapse
Affiliation(s)
- Hongli Hu
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Zhao Wang
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Risheng Wei
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Guizhen Fan
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Qiongling Wang
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Kaiming Zhang
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| | - Chang-Cheng Yin
- Department of Biophysics, Peking University Health Science Centre, Peking University, 38 College Road, Beijing 100191, China
| |
Collapse
|
16
|
Baker MR, Fan G, Serysheva II. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 2015; 25:4803. [PMID: 25844145 PMCID: PMC4748972 DOI: 10.4081/ejtm.2015.4803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/22/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022] Open
Abstract
Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants.
Collapse
Affiliation(s)
| | | | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
17
|
Duan XQ, Zhao ZT, Zhang XY, Wang Y, Wang H, Liu DW, Li GS, Jing L. Fluoride affects calcium homeostasis and osteogenic transcription factor expressions through L-type calcium channels in osteoblast cell line. Biol Trace Elem Res 2014; 162:219-26. [PMID: 25201340 DOI: 10.1007/s12011-014-0118-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 08/28/2014] [Indexed: 01/22/2023]
Abstract
Osteoblast L-type voltage-dependent calcium channels (VDCC) play important roles in maintaining intracellular homeostasis and influencing multiple cellular processes. In particular, they contribute to the activities and functions of osteoblasts (OBs). In order to study how L-type VDCC modulate calcium ion (Ca(2+)) homeostasis and the expression of osteogenic transcription factors in OBs exposed to fluoride, MC3T3-E1 cells were exposed to a gradient of concentrations of fluoride (0, 2.0, 5.0, 10.0 mg/L) in combination with 10 μM nifedipine, a specific inhibitor of VDCC, for 48 h. We examined messenger RNA (mRNA) and protein levels of Cav1.2, the main subunit of VDCC, and c-fos, c-jun, runt-related transcription factor 2 (Runx2), osterix (OSX), and intracellular free Ca(2+) ([Ca(2+)]i) concentrations in MC3T3-E1 cells. Our results showed that [Ca(2+)]i levels increased in a dose-dependent manner with increase in concentration of fluoride. Meantime, results indicated that lower concentrations of fluoride (less than 5 mg/L, especially 2 mg/L) can lead to high expression of Cav1.2 and enhance osteogenic function, while high concentration of fluoride (10 mg/L) can induce decreased Cav1.2 and osteogenic transcriptional factors in MC3T3E1 cells exposed to fluoride. However, the levels of [Ca(2+)]i, Cav1.2, c-fos, c-jun, Runx2, and OSX induced by fluoride were significantly altered and even reversed in the presence of nifedipine. These results demonstrate that L-type calcium channels play a crucial role in Ca(2+) homeostasis and they affect the expression of osteogenic transcription factors in fluoride-treated osteoblasts.
Collapse
Affiliation(s)
- Xiao-Qin Duan
- Department of Rehabilitation Medicine of the Second Hospital Norman Bethune, JiLin University, Changchun, 130041, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pinali C, Kitmitto A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol 2014; 76:1-11. [PMID: 25149127 DOI: 10.1016/j.yjmcc.2014.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
Electron microscopy techniques have made a significant contribution towards understanding muscle physiology since the 1950s. Subsequent advances in hardware and software have led to major breakthroughs in terms of image resolution as well as the ability to generate three-dimensional (3D) data essential for linking structure to function and dysfunction. In this methodological review we consider the application of a relatively new technique, serial block face scanning electron microscopy (SBF-SEM), for the study of cardiac muscle morphology. Employing SBF-SEM we have generated 3D data for cardiac myocytes within the myocardium with a voxel size of ~15 nm in the X-Y plane and 50 nm in the Z-direction. We describe how SBF-SEM can be used in conjunction with selective staining techniques to reveal the 3D cellular organisation and the relationship between the t-tubule (t-t) and sarcoplasmic reticulum (SR) networks. These methods describe how SBF-SEM can be used to provide qualitative data to investigate the organisation of the dyad, a specialised calcium microdomain formed between the t-ts and the junctional portion of the SR (jSR). We further describe how image analysis methods may be applied to interrogate the 3D volumes to provide quantitative data such as the volume of the cell occupied by the t-t and SR membranes and the volumes and surface area of jSR patches. We consider the strengths and weaknesses of the SBF-SEM technique, pitfalls in sample preparation together with tips and methods for image analysis. By providing a 'big picture' view at high resolutions, in comparison to conventional confocal microscopy, SBF-SEM represents a paradigm shift for imaging cellular networks in their native environment.
Collapse
Affiliation(s)
- Christian Pinali
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
19
|
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45. [PMID: 24698266 DOI: 10.1016/j.neuron.2014.03.016] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.
Collapse
Affiliation(s)
- Brett A Simms
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
20
|
Ca2+ channel and Na+/Ca2+ exchange localization in cardiac myocytes. J Mol Cell Cardiol 2013; 58:22-31. [DOI: 10.1016/j.yjmcc.2012.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/01/2023]
|
21
|
Tian X, Liu Y, Liu Y, Wang R, Wagenknecht T, Liu Z, Chen SRW. Ligand-dependent conformational changes in the clamp region of the cardiac ryanodine receptor. J Biol Chem 2012; 288:4066-75. [PMID: 23258540 DOI: 10.1074/jbc.m112.427864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Global conformational changes in the three-dimensional structure of the Ca(2+) release channel/ryanodine receptor (RyR) occur upon ligand activation. A number of ligands are able to activate the RyR channel, but whether these structurally diverse ligands induce the same or different conformational changes in the channel is largely unknown. Here we constructed a fluorescence resonance energy transfer (FRET)-based probe by inserting a CFP after residue Ser-2367 and a YFP after residue Tyr-2801 in the cardiac RyR (RyR2) to yield a CFP- and YFP-dual labeled RyR2 (RyR2(Ser-2367-CFP/Tyr-2801-YFP)). Both of these insertion sites have previously been mapped to the "clamp" region in the four corners of the square-shaped cytoplasmic assembly of the three-dimensional structure of RyR2. Using this novel FRET probe, we monitored the extent of conformational changes in the clamp region of RyR2(Ser-2367-CFP/Tyr-2801-YFP) induced by various ligands. We also monitored the extent of Ca(2+) release induced by the same ligands in HEK293 cells expressing RyR2(Ser-2367-CFP/Tyr-2801-YFP). We detected conformational changes in the clamp region for the ligands caffeine, aminophylline, theophylline, ATP, and ryanodine but not for Ca(2+) or 4-chloro-m-cresol, although they all induced Ca(2+) release. Interestingly, caffeine is able to induce further conformational changes in the clamp region of the ryanodine-modified channel, suggesting that ryanodine does not lock RyR in a fixed conformation. Our data demonstrate that conformational changes in the clamp region of RyR are ligand-dependent and suggest the existence of multiple ligand dependent RyR activation mechanisms associated with distinct conformational changes.
Collapse
Affiliation(s)
- Xixi Tian
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Szpyt J, Lorenzon N, Perez CF, Norris E, Allen PD, Beam KG, Samsó M. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel. J Biol Chem 2012; 287:43853-61. [PMID: 23118233 DOI: 10.1074/jbc.m112.419283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling.
Collapse
Affiliation(s)
- John Szpyt
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Kilpatrick BS, Eden ER, Schapira AH, Futter CE, Patel S. Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. J Cell Sci 2012; 126:60-6. [PMID: 23108667 DOI: 10.1242/jcs.118836] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Accumulating evidence implicates acidic organelles of the endolysosomal system as mobilisable stores of Ca(2+) but their relationship to the better-characterised endoplasmic reticulum (ER) Ca(2+) store remains unclear. Here we show that rapid osmotic permeabilisation of lysosomes evokes prolonged, spatiotemporally complex Ca(2+) signals in primary cultured human fibroblasts. These Ca(2+) signals comprised an initial response that correlated with lysosomal disruption and secondary long-lasting spatially heterogeneous Ca(2+) oscillations that required ER-localised inositol trisphosphate receptors. Electron microscopy identified extensive membrane contact sites between lysosomes and the ER. Mobilisation of lysosomal Ca(2+) stores is thus sufficient to evoke ER-dependent Ca(2+) release probably through lysosome-ER membrane contact sites, and akin to the proposed mechanism of action of the Ca(2+) mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP). Our data identify functional and physical association of discrete Ca(2+) stores important for the genesis of Ca(2+) signal complexity.
Collapse
Affiliation(s)
- Bethan S Kilpatrick
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | |
Collapse
|
24
|
Wen L, Wang Y, Wang H, Kong L, Zhang L, Chen X, Ding Y. L-type calcium channels play a crucial role in the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Biochem Biophys Res Commun 2012; 424:439-45. [PMID: 22771798 DOI: 10.1016/j.bbrc.2012.06.128] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 06/25/2012] [Indexed: 12/15/2022]
Abstract
L-type voltage-dependent Ca(2+) channels (VDCC(L)) play an important role in the maintenance of intracellular calcium homeostasis, and influence multiple cellular processes. They have been confirmed to contribute to the functional activities of osteoblasts. Recently, VDCC(L) expression was reported in mesenchymal stem cells (MSCs), but the role of VDCC(L) in MSCs is still undetermined. The aim of this study was to determine whether VDCC(L) may be regarded as a new regulator in the proliferation and osteogenic differentiation of rat MSC (rMSCs). In this study, we examined functional Ca(2+) currents (I(Ca)) and mRNA expression of VDCC(L) in rMSCs, and then suppressed VDCC(L) using nifedipine (Nif), a VDCC(L) blocker, to investigate its role in rMSCs. The proliferation and osteogenic differentiation of MSCs were analyzed by MTT, flow cytometry, alkaline phosphatase (ALP), Alizarin Red S staining, RT-PCR, and real-time PCR assays. We found that Nif exerts antiproliferative and apoptosis-inducing effects on rMSCs. ALP activity and mineralized nodules were significantly decreased after Nif treatment. Moreover, the mRNA levels of the osteogenic markers, osteocalcin (OCN), bone sialoprotein (BSP), and runt-related transcription factor 2 (Runx2), were also down-regulated. In addition, we transfected α1C-siRNA into the cells to further confirm the role of VDCC(L) in rMSCs, and a similar effect on osteogenesis was found. These results suggest that VDCC(L) plays a crucial role in the proliferation and osteogenic differentiation of rMSCs.
Collapse
Affiliation(s)
- Li Wen
- Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Sheridan DC, Moua O, Lorenzon NM, Beam KG. Bimolecular fluorescence complementation and targeted biotinylation provide insight into the topology of the skeletal muscle Ca ( 2+) channel β1a subunit. Channels (Austin) 2012; 6:26-40. [PMID: 22522946 DOI: 10.4161/chan.18916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In skeletal muscle, L-type calcium channels (DHPRs), localized to plasma membrane sarcoplasmic reticulum junctions, are tightly packed into groups of four termed tetrads. Here, we have used bimolecular fluorescence complementation (BiFC) and targeted biotinylation to probe the structure and organization of β1a subunits associated with native CaV 1.1 in DHPRs of myotubes. The construct YN-β1a-YC, in which the non-fluorescent fragments of YFP ("YN" corresponding to YFP residues 1-158, and "YC" corresponding to YFP residues 159-238) were fused, respectively, to the N- and C-termini of β1a, was fully functional and displayed yellow fluorescence within DHPR tetrads after expression in β1-knockout (β1KO) myotubes; this yellow fluorescence demonstrated the occurrence of BiFC of YN and YC on the β1a N- and C-termini. In these experiments, we avoided overexpression because control experiments in non-muscle cells indicated that this could result in non-specific BiFC. BiFC of YN-β1a-YC in DHPR tetrads appeared to be intramolecular between N- and C-termini of individual β1a subunits rather than between adjacent DHPRs because BiFC (1) was observed for YN-β1a-YC co-expressed with CaV 1.2 (which does not form tetrads) and (2) was not observed after co-expression of YN-β1a-YN plus YC-β1a-YC in β1KO myotubes. Thus, β1a function is compatible with N- and C-termini being close enough together to allow BiFC. However, both termini appeared to have positional freedom and not to be closely opposed by other junctional proteins since both were accessible to gold-streptavidin conjugates. Based on these results, a model is proposed for the arrangement of β1a subunits in DHPR tetrads.
Collapse
Affiliation(s)
- David C Sheridan
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Voltage-gated calcium (Ca(2+)) channels are key transducers of membrane potential changes into intracellular Ca(2+) transients that initiate many physiological events. There are ten members of the voltage-gated Ca(2+) channel family in mammals, and they serve distinct roles in cellular signal transduction. The Ca(V)1 subfamily initiates contraction, secretion, regulation of gene expression, integration of synaptic input in neurons, and synaptic transmission at ribbon synapses in specialized sensory cells. The Ca(V)2 subfamily is primarily responsible for initiation of synaptic transmission at fast synapses. The Ca(V)3 subfamily is important for repetitive firing of action potentials in rhythmically firing cells such as cardiac myocytes and thalamic neurons. This article presents the molecular relationships and physiological functions of these Ca(2+) channel proteins and provides information on their molecular, genetic, physiological, and pharmacological properties.
Collapse
Affiliation(s)
- William A Catterall
- Department of Pharmacology, University of Washington, Seattle, Washington 98195-7280, USA.
| |
Collapse
|
27
|
Minor DL, Findeisen F. Progress in the structural understanding of voltage-gated calcium channel (CaV) function and modulation. Channels (Austin) 2011; 4:459-74. [PMID: 21139419 DOI: 10.4161/chan.4.6.12867] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channels (CaVs) are large, transmembrane multiprotein complexes that couple membrane depolarization to cellular calcium entry. These channels are central to cardiac action potential propagation, neurotransmitter and hormone release, muscle contraction, and calcium-dependent gene transcription. Over the past six years, the advent of high-resolution structural studies of CaV components from different isoforms and CaV modulators has begun to reveal the architecture that underlies the exceptionally rich feedback modulation that controls CaV action. These descriptions of CaV molecular anatomy have provided new, structure-based insights into the mechanisms by which particular channel elements affect voltage-dependent inactivation (VDI), calcium‑dependent inactivation (CDI), and calcium‑dependent facilitation (CDF). The initial successes have been achieved through structural studies of soluble channel domains and modulator proteins and have proven most powerful when paired with biochemical and functional studies that validate ideas inspired by the structures. Here, we review the progress in this growing area and highlight some key open challenges for future efforts.
Collapse
Affiliation(s)
- Daniel L Minor
- Cardiovascular Research Institute, University of California-San Francisco, CA, USA.
| | | |
Collapse
|
28
|
Functional and structural studies of TRP channels heterologously expressed in budding yeast. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:25-40. [PMID: 21290288 DOI: 10.1007/978-94-007-0265-3_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The transient receptor potential (TRP) superfamily is one of the largest families of cation channels. The metazoan TRP family has been subdivided into major branches: TRPC, TRPA, TRPM, TRPP, TRPV, TRPML, and TRPN, while the TRPY family is found in fungi. They are involved in many physiological processes and in the pathogenesis of various disorders. An efficient high-yield expression system for TRP channels is a necessary step towards biophysical and biochemical characterization and structural analysis of these proteins, and the budding yeast, Saccharomyces cerevisiae has proven to be very useful for this purpose. In addition, genetic screens in this organism can be carried out rapidly to identify amino acid residues important for function and to generate useful mutants. Here we present an overview of current developments towards understanding TRP channel function and structure using Saccharomyces cerevisiae as an expression system. In addition, we will summarize recent progress in understanding gating mechanisms of TRP channels using endogenously expressing TRPY channels in S. cerevisiae, and insights gained from genetic screens for mutants in mammalian channels. The discussion will focus particular attention of the use of cryo-electron microscopy (cryo-EM) to determine TRP channel structure, and outlines a "divide and concur" methodology for combining high resolution structures of TRP channel domains determined by X-ray crystallography with lower resolution techniques including cryo-EM and spectroscopy.
Collapse
|
29
|
Lee EH. Ca2+ channels and skeletal muscle diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 103:35-43. [DOI: 10.1016/j.pbiomolbio.2010.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 03/09/2010] [Accepted: 05/19/2010] [Indexed: 11/29/2022]
|
30
|
Murata K, Nishimura S, Kuniyasu A, Nakayama H. Three-dimensional structure of the alpha1-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:215-226. [PMID: 19995890 DOI: 10.1093/jmicro/dfp059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dihydropyridine receptor (DHPR) is a protein complex that consists of five distinct subunits of alpha(1), alpha(2), beta, gamma and delta and functions as a voltage-dependent L-type Ca(2+) channel. Here we purified the alpha(1)-beta complex (approximately 250 kDa) from the rabbit skeletal muscle DHPR and reconstructed its three-dimensional (3D) structure to 38 A resolution by single particle analysis of negative staining electron microscopy. The alpha(1)-beta structure exhibited two unique regions: a pseudo-4-fold petaloid region and an elongated region. X-ray crystallographic models of a homologous voltage-dependent K(+) channel and the beta subunit fit well into the individual regions of the alpha(1)-beta structure, revealing that the two regions correspond to the transmembrane alpha(1) and the cytoplasmic beta subunits, respectively. In addition, 3D reconstruction and immuno-electron microscopic analysis performed on the independently purified DHPR demonstrated that the alpha(1)-beta complex was located in the large globular portion of the DHPR, and the N-terminal region of the beta subunit was extended to the leg-shaped protrusion of the DHPR, which includes the alpha(2)delta subunits. Our results propose a model in which the beta subunit may regulate ion channel function by acting as a hinge between alpha(1) and alpha(2)delta subunits of the DHPR.
Collapse
Affiliation(s)
- Kazuyoshi Murata
- Japan Biological Information Research Center, AIST Tokyo Waterfront, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | |
Collapse
|
31
|
Walsh CP, Davies A, Butcher AJ, Dolphin AC, Kitmitto A. Three-dimensional structure of CaV3.1: comparison with the cardiac L-type voltage-gated calcium channel monomer architecture. J Biol Chem 2009; 284:22310-22321. [PMID: 19520861 PMCID: PMC2755954 DOI: 10.1074/jbc.m109.017152] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium entry through voltage-gated calcium channels has widespread cellular effects upon a host of physiological processes including neuronal excitability, muscle excitation-contraction coupling, and secretion. Using single particle analysis methods, we have determined the first three-dimensional structure, at 23 A resolution, for a member of the low voltage-activated voltage-gated calcium channel family, CaV3.1, a T-type channel. CaV3.1 has dimensions of approximately 115x85x95 A, composed of two distinct segments. The cytoplasmic densities form a vestibule below the transmembrane domain with the C terminus, unambiguously identified by the presence of a His tag being approximately 65 A long and curling around the base of the structure. The cytoplasmic assembly has a large exposed surface area that may serve as a signaling hub with the C terminus acting as a "fishing rod" to bind regulatory proteins. We have also determined a three-dimensional structure, at a resolution of 25 A, for the monomeric form of the cardiac L-type voltage-gated calcium (high voltage-activated) channel with accessory proteins beta and alpha2delta bound to the ion channel polypeptide CaV1.2. Comparison with the skeletal muscle isoform finds a good match particularly with respect to the conformation, size, and shape of the domain identified as that formed by alpha2. Furthermore, modeling of the CaV3.1 structure (analogous to CaV1.2 at these resolutions) into the heteromeric L-type voltage-gated calcium channel complex volume reveals multiple interaction sites for beta-CaV1.2 binding and for the first time identifies the size and organization of the alpha2delta polypeptides.
Collapse
Affiliation(s)
- Conor P Walsh
- Cardiovascular Medicine, School of Clinical and Laboratory Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9NT
| | - Anthony Davies
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Adrian J Butcher
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Ashraf Kitmitto
- Cardiovascular Medicine, School of Clinical and Laboratory Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9NT
| |
Collapse
|
32
|
Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins. Proc Natl Acad Sci U S A 2009; 106:5135-40. [PMID: 19279214 DOI: 10.1073/pnas.0807487106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.
Collapse
|
33
|
Bannister RA. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling. J Muscle Res Cell Motil 2007; 28:275-83. [PMID: 17899404 DOI: 10.1007/s10974-007-9118-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/28/2007] [Indexed: 01/17/2023]
Abstract
Conformational coupling between the L-type voltage-gated Ca(2+) channel (or 1,4-dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca(2+) release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation-contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I-II, II-III, and III-IV) of the DHPR alpha(1S) subunit in bi-directional communication with RyR1 will be discussed.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado at Denver and Health Sciences Center, RC-1, North Tower, P18-7130, Mail Stop F8307, 12800 E. 19th St, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Lacapère JJ, Pebay-Peyroula E, Neumann JM, Etchebest C. Determining membrane protein structures: still a challenge! Trends Biochem Sci 2007; 32:259-70. [PMID: 17481903 DOI: 10.1016/j.tibs.2007.04.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/07/2007] [Accepted: 04/13/2007] [Indexed: 11/20/2022]
Abstract
Determination of structures and dynamics events of transmembrane proteins is important for the understanding of their function. Analysis of such events requires high-resolution 3D structures of the different conformations coupled with molecular dynamics analyses describing the conformational pathways. However, the solution of 3D structures of transmembrane proteins at atomic level remains a particular challenge for structural biochemists--the need for purified and functional transmembrane proteins causes a 'bottleneck'. There are various ways to obtain 3D structures: X-ray diffraction, electron microscopy, NMR and modelling; these methods are not used exclusively of each other, and the chosen combination depends on several criteria. Progress in this field will improve knowledge of ligand-induced activation and inhibition of membrane proteins in addition to aiding the design of membrane-protein-targeted drugs.
Collapse
Affiliation(s)
- Jean-Jacques Lacapère
- INSERM, U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Faculté de Médecine X. Bichat, Université Paris 7, BP 416, F-75018, Paris, France.
| | | | | | | |
Collapse
|
35
|
Serysheva II, Chiu W, Ludtke SJ. Single-particle electron cryomicroscopy of the ion channels in the excitation-contraction coupling junction. Methods Cell Biol 2007; 79:407-35. [PMID: 17327167 DOI: 10.1016/s0091-679x(06)79016-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Irina I Serysheva
- National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
36
|
Ryazantsev S, Abuladze N, Newman D, Bondar G, Kurtz I, Pushkin A. Structural characterization of dimeric murine aminoacylase III. FEBS Lett 2007; 581:1898-902. [PMID: 17434493 DOI: 10.1016/j.febslet.2007.03.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/14/2007] [Accepted: 03/22/2007] [Indexed: 01/08/2023]
Abstract
Aminoacylase III (AAIII) plays an important role in deacetylation of acetylated amino acids and N-acetylated S-cysteine conjugates of halogenated alkenes and alkanes. AAIII, recently cloned from mouse kidney and partially characterized, is a mixture of tetramers and dimers. In the present work, AAIII dimers were purified and shown to be enzymatically active. Limited trypsinolysis showed two domains of approximately 9 and 25 kDa. The three-dimensional structure of the dimer was studied by electron microscopy of negative stained samples and by single-particle reconstruction. A 16A resolution model of the AAIII dimer was created. It has an unusual, cage-like, structure. A realistic AAIII tetramer model was built from two dimers.
Collapse
Affiliation(s)
- Sergey Ryazantsev
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Room 33-080 CHS, 10833 Le Conte Avenue, CA 90095-1689, USA
| | | | | | | | | | | |
Collapse
|
37
|
Petegem FV, Minor D. The structural biology of voltage-gated calcium channel function and regulation. Biochem Soc Trans 2007; 34:887-93. [PMID: 17052221 PMCID: PMC3010275 DOI: 10.1042/bst0340887] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Voltage-gated calcium channels (CaVs) are large (approximately 0.5 MDa), multisubunit, macromolecular machines that control calcium entry into cells in response to membrane potential changes. These molecular switches play pivotal roles in cardiac action potentials, neurotransmitter release, muscle contraction, calcium-dependent gene transcription and synaptic transmission. CaVs possess self-regulatory mechanisms that permit them to change their behaviour in response to activity, including voltage-dependent inactivation, calcium-dependent inactivation and calcium-dependent facilitation. These processes arise from the concerted action of different channel domains with CaV beta-subunits and the soluble calcium sensor calmodulin. Until recently, nothing was known about the CaV structure at high resolution. Recent crystallographic work has revealed the first glimpses at the CaV molecular framework and set a new direction towards a detailed mechanistic understanding of CaV function.
Collapse
Affiliation(s)
| | - D.L. Minor
- To whom correspondence should be addressed ()
| |
Collapse
|
38
|
Mio K, Ogura T, Kiyonaka S, Hiroaki Y, Tanimura Y, Fujiyoshi Y, Mori Y, Sato C. The TRPC3 channel has a large internal chamber surrounded by signal sensing antennas. J Mol Biol 2006; 367:373-83. [PMID: 17258231 DOI: 10.1016/j.jmb.2006.12.043] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/13/2006] [Accepted: 12/15/2006] [Indexed: 11/16/2022]
Abstract
Transient receptor potential (TRP) channels are intrinsic sensors adapted for response to all manner of stimuli both from inside and from outside the cell. Within the TRP superfamily, the canonical TRP-3 (TRPC3) has been widely studied and is involved in various biological processes such as neuronal differentiation, blood vessel constriction, and immune cell maturation. Upon stimulation of surface membrane receptors linked to phospholipase C, TRPC3 mediates transmembrane Ca(2+) influx from outside the cell to control Ca(2+) signaling, in concert with the Ca(2+) release from internal stores. The structural basis of TRP superfamily has, however, been poorly understood. Here we present a structure of the TRPC3 at 15 A resolution. This first 3D depiction of TRP superfamily was reconstructed from 135,909 particle images obtained with cryo-electron microscopy. The large intracellular domain represents a "nested-box" structure: a wireframe outer shell is functionable as sensors for activators and modulators, and a globular inner chamber may modulate ion flow, since it is aligned tandem along the central axis with the dense membrane-spanning core. The transmembrane domain demonstrates a pore-forming property. This structure implies that the TRP superfamily has diversely evolved as sensors specialized for various signals, rather than as simple ion-conducting apparatuses.
Collapse
Affiliation(s)
- Kazuhiro Mio
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology, Umezono 1-1-4, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
40
|
Al-Khayat HA, Morris EP, Kensler RW, Squire JM. 3D structure of relaxed fish muscle myosin filaments by single particle analysis. J Struct Biol 2006; 155:202-17. [PMID: 16731006 DOI: 10.1016/j.jsb.2006.01.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 01/16/2006] [Indexed: 11/30/2022]
Abstract
To understand the structural changes involved in the force-producing myosin cross-bridge cycle in vertebrate muscle it is necessary to know the arrangement and conformation of the myosin heads at the start of the cycle (i.e. the relaxed state). Myosin filaments isolated from goldfish muscle under relaxing conditions and viewed in negative stain by electron microscopy (EM) were divided into segments and subjected to three-dimensional (3D) single particle analysis without imposing helical symmetry. This allowed the known systematic departure from helicity characteristic of vertebrate striated muscle myosin filaments to be preserved and visualised. The resulting 3D reconstruction reveals details to about 55 A resolution of the myosin head density distribution in the three non-equivalent head 'crowns' in the 429 A myosin filament repeat. The analysis maintained the well-documented axial perturbations of the myosin head crowns and revealed substantial azimuthal perturbations between crowns with relatively little radial perturbation. Azimuthal rotations between crowns were approximately 60 degrees , 60 degrees and 0 degrees , rather than the regular 40 degrees characteristic of an unperturbed helix. The new density map correlates quite well with the head conformations analysed in other EM studies and in the relaxed fish muscle myosin filament structure modelled from X-ray fibre diffraction data. The reconstruction provides information on the polarity of the myosin head array in the A-band, important in understanding the geometry of the myosin head interaction with actin during the cross-bridge cycle, and supports a number of conclusions previously inferred by other methods. The observed azimuthal head perturbations are consistent with the X-ray modelling results from intact muscle, indicating that the observed perturbations are an intrinsic property of the myosin filaments and are not induced by the proximity of actin filaments in the muscle A-band lattice. Comparison of the axial density profile derived in this study with the axial density profile of the X-ray model of the fish myosin filaments which was restricted to contributions from the myosin heads allows the identification of a non-myosin density peak associated with the azimuthally perturbed head crown which can be interpreted as a possible location for C-protein or X-protein (MyBP-C or -X). This position for C-protein is also consistent with the C-zone interference function deduced from previous analysis of the meridional X-ray pattern from frog muscle. It appears that, along with other functions, C-(X-) protein may have the role of slewing the heads of one crown so that they do not clash with the neighbouring actin filaments, but are readily available to interact with actin when the muscle is activated.
Collapse
Affiliation(s)
- Hind A Al-Khayat
- Biological Structure and Function Section, Biomedical Sciences Division, Imperial College London, London SW7 2AZ, UK.
| | | | | | | |
Collapse
|
41
|
Abstract
Cryoelectronmicroscopy is a method for the imaging of macromolecules in the electron microscope. It was originally developed to determine membrane protein structures from two-dimensional crystals, but more recently "single-particle" techniques have become powerful and popular. Three-dimensional reconstructions are obtained from sets of single-particle images by extensive computer processing; the methods are being applied to many macromolecular assemblies.
Collapse
Affiliation(s)
- Liguo Wang
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
42
|
Cheng W, Altafaj X, Ronjat M, Coronado R. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 2005; 102:19225-30. [PMID: 16357209 PMCID: PMC1323149 DOI: 10.1073/pnas.0504334102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the skeletal dihydropyridine receptor (DHPR) pore subunit Ca(V)1.1 (alpha1S) physically interacts with ryanodine receptor type 1 (RyR1), and a molecular signal is transmitted from alpha1S to RyR1 to trigger excitation-contraction (EC) coupling. We show that the beta-subunit of the skeletal DHPR also binds RyR1 and participates in this signaling process. A novel binding site for the DHPR beta1a-subunit was mapped to the M(3201) to W(3661) region of RyR1. In vitro binding experiments showed that the strength of the interaction is controlled by K(3495)KKRR_ _R(3502), a cluster of positively charged residues. Phenotypic expression of skeletal-type EC coupling by RyR1 with mutations in the K(3495)KKRR_ _R(3502) cluster was evaluated in dyspedic myotubes. The results indicated that charge neutralization or deletion severely depressed the magnitude of RyR1-mediated Ca(2+) transients coupled to voltage-dependent activation of the DHPR. Meantime the Ca(2+) content of the sarcoplasmic reticulum was not affected, and the amplitude and activation kinetics of the DHPR Ca(2+) currents were slightly affected. The data show that the DHPR beta-subunit, like alpha1S, interacts directly with RyR1 and is critical for the generation of high-speed Ca(2+) signals coupled to membrane depolarization. These findings indicate that EC coupling in skeletal muscle involves the interplay of at least two subunits of the DHPR, namely alpha1S and beta1a, interacting with possibly different domains of RyR1.
Collapse
Affiliation(s)
- Weijun Cheng
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
43
|
Carbonneau L, Bhattacharya D, Sheridan DC, Coronado R. Multiple loops of the dihydropyridine receptor pore subunit are required for full-scale excitation-contraction coupling in skeletal muscle. Biophys J 2005; 89:243-55. [PMID: 15849247 PMCID: PMC1366522 DOI: 10.1529/biophysj.104.056218] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 04/15/2005] [Indexed: 11/18/2022] Open
Abstract
Understanding which cytosolic domains of the dihydropyridine receptor participate in excitation-contraction (EC) coupling is critical to validate current structural models. Here we quantified the contribution to skeletal-type EC coupling of the alpha1S (CaV1.1) II-III loop when alone or in combination with the rest of the cytosolic domains of alpha1S. Chimeras consisting of alpha1C (CaV1.2) with alpha1S substitutions at each of the interrepeat loops (I-II, II-III, and III-IV loops) and N- and C-terminal domains were evaluated in dysgenic (alpha1S-null) myotubes for phenotypic expression of skeletal-type EC coupling. Myotubes were voltage-clamped, and Ca2+ transients were measured by confocal line-scan imaging of fluo-4 fluorescence. In agreement with previous results, the alpha1C/alpha1S II-III loop chimera, but none of the other single-loop chimeras, recovered a sigmoidal fluorescence-voltage curve indicative of skeletal-type EC coupling. To quantify Ca2+ transients in the absence of inward Ca2+ current, but without changing the external solution, a mutation, E736K, was introduced into the P-loop of repeat II of alpha1C. The Ca2+ transients expressed by the alpha1C(E736K)/alpha1S II-III loop chimera were approximately 70% smaller than those expressed by the Ca2+-conducting alpha1C/alpha1S II-III variant. The low skeletal-type EC coupling expressed by the alpha1C/alpha1S II-III loop chimera was confirmed in the Ca2+-conducting alpha1C/alpha1S II-III loop variant using Cd2+ (10(-4) M) as the Ca2+ current blocker. In contrast to the behavior of the II-III loop chimera, Ca2+ transients expressed by an alpha1C/alpha1S chimera carrying all tested skeletal alpha1S domains (all alpha1S interrepeat loops, N- and C-terminus) were similar in shape and amplitude to wild-type alpha1S, and did not change in the presence of the E736K mutation or in the presence of 10(-4) M Cd2+. Controls indicated that similar dihydropyridine receptor charge movements were expressed by the non-Ca2+ permeant alpha1S(E1014K) variant, the alpha1C(E736K)/alpha1S II-III loop chimera, and the alpha1C(E736K)/alpha1S chimera carrying all tested alpha1S domains. The data indicate that the functional recovery produced by the alpha1S II-III loop is incomplete and that multiple cytosolic domains of alpha1S are necessary for a quantitative recovery of the EC-coupling phenotype of skeletal myotubes. Thus, despite the importance of the II-III loop there may be other critical determinants in alpha1S that influence the efficiency of EC coupling.
Collapse
Affiliation(s)
- Leah Carbonneau
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
44
|
Serysheva II. Structural insights into excitation-contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2005; 69:1226-32. [PMID: 15627376 DOI: 10.1007/s10541-005-0068-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels--the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22-30 A, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24-30 A resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.
Collapse
Affiliation(s)
- I I Serysheva
- Department of Molecular Physiology and Biophysics, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Serysheva II, Hamilton SL, Chiu W, Ludtke SJ. Structure of Ca2+ release channel at 14 A resolution. J Mol Biol 2005; 345:427-31. [PMID: 15581887 PMCID: PMC2978512 DOI: 10.1016/j.jmb.2004.10.073] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 10/11/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
The 14 A resolution structure of the 2.3 MDa Ca2+ release channel (also known as RyR1) was determined by electron cryomicroscopy and single particle reconstruction. This structure was produced using collected data used for our previous published structures at 22-30 A resolution, but now taking advantage of recent algorithmic improvements in the EMAN software suite. This improved map clearly exhibits more structural detail and allows better defined docking of computationally predicted structural domain folds. Using sequence-based fold recognition, the N-terminal region of RyR1, residues 216-572, was predicted to have significant structural similarity with the IP3-binding core region of the type 1 IP3R. This putative structure was computationally localized to the clamp-shaped region of RyR1, which has been implicated to have a regulatory role in the channel activity.
Collapse
Affiliation(s)
- Irina I. Serysheva
- National Center for Macromolecular Imaging Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics Baylor College of Medicine One Baylor Plaza, Houston TX 77030, USA
| | - Susan L. Hamilton
- Department of Molecular Physiology and Biophysics Baylor College of Medicine One Baylor Plaza, Houston TX 77030, USA
| | - Wah Chiu
- National Center for Macromolecular Imaging Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics Baylor College of Medicine One Baylor Plaza, Houston TX 77030, USA
| | - Steven J. Ludtke
- National Center for Macromolecular Imaging Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Corresponding author:
| |
Collapse
|
46
|
Sheridan DC, Cheng W, Carbonneau L, Ahern CA, Coronado R. Involvement of a heptad repeat in the carboxyl terminus of the dihydropyridine receptor beta1a subunit in the mechanism of excitation-contraction coupling in skeletal muscle. Biophys J 2005; 87:929-42. [PMID: 15298900 PMCID: PMC1304501 DOI: 10.1529/biophysj.104.043810] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chimeras consisting of the homologous skeletal dihydropyridine receptor (DHPR) beta1a subunit and the heterologous cardiac/brain beta2a subunit were used to determine which regions of beta1a were responsible for the skeletal-type excitation-contraction (EC) coupling phenotype. Chimeras were transiently transfected in beta1 knockout myotubes and then voltage-clamped with simultaneous measurement of confocal fluo-4 fluorescence. All chimeras expressed a similar density of DHPR charge movements, indicating that the membrane density of DHPR voltage sensors was not a confounding factor in these studies. The data indicates that a beta1a-specific domain present in the carboxyl terminus, namely the D5 region comprising the last 47 residues (beta1a 478-524), is essential for expression of skeletal-type EC coupling. Furthermore, the location of beta1aD5 immediately downstream from conserved domain D4 is also critical. In contrast, chimeras in which beta1aD5 was swapped by the D5 region of beta2a expressed Ca(2+) transients triggered by the Ca(2+) current, or none at all. A hydrophobic heptad repeat is present in domain D5 of beta1a (L478, V485, V492). To determine the role of this motif, residues in the heptad repeat were mutated to alanines. The triple mutant beta1a(L478A/V485A/V492A) recovered weak skeletal-type EC coupling (DeltaF/F(max) = 0.4 +/- 0.1 vs. 2.7 +/- 0.5 for wild-type beta1a). However, a triple mutant with alanine substitutions at positions out of phase with the heptad repeat, beta1a(S481A/L488A/S495A), was normal (DeltaF/F(max) = 2.1 +/- 0.4). In summary, the presence of the beta1a-specific D5 domain, in its correct position after conserved domain D4, is essential for skeletal-type EC coupling. Furthermore, a heptad repeat in beta1aD5 controls the EC coupling activity. The carboxyl terminal heptad repeat of beta1a might be involved in protein-protein interactions with ryanodine receptor type 1 required for DHPR to ryanodine receptor type 1 signal transmission.
Collapse
Affiliation(s)
- David C Sheridan
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
47
|
Serysheva II. Structural insights into excitation—contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Paolini C, Protasi F, Franzini-Armstrong C. The relative position of RyR feet and DHPR tetrads in skeletal muscle. J Mol Biol 2004; 342:145-53. [PMID: 15313613 DOI: 10.1016/j.jmb.2004.07.035] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/02/2004] [Accepted: 07/05/2004] [Indexed: 10/26/2022]
Abstract
In skeletal muscle, L-type calcium channels (or dihydropyridine receptors, DHPRs) are coupled functionally to the calcium release channels of the sarcoplasmic reticulum (or ryanodine receptors, RyRs) within specialized structures called calcium release units (CRUs). The functional linkage requires a specific positioning of four DHPRs in correspondence of the four identical subunits of a single RyR type 1. Four DHPRs linked to the four binding sites of the RyR1 cytoplasmic domain (or foot), define the corners of a square, constituting a tetrad. RyRs self-assemble into ordered arrays and by associating with them, DHPRs also assemble into ordered arrays. The approximate location of the four DHPRs relative to the four identical subunits of a RyR-foot can be predicted on the basis of the relative position of tetrads and feet within the arrays. However, until recently one vital piece of information has been lacking: the orientation of the two arrays relative to one another. In this work we have defined the relative orientation of the RyR and DHPR arrays by directly superimposing replicas of rotary shadowed images of rows of feet, obtained from isolated SR vesicles, and replicas of tetrad arrays obtained by freeze-fracture. If the orientation for the two sets of images is carefully maintained, the superimposition provides specific constraints on the DHPR-RyR relative position.
Collapse
Affiliation(s)
- Cecilia Paolini
- University of Pennsylvania, Department of Cell & Developmental Biology, Philadelphia 19104-6058, USA.
| | | | | |
Collapse
|
49
|
Orlova EV, Saibil HR. Structure determination of macromolecular assemblies by single-particle analysis of cryo-electron micrographs. Curr Opin Struct Biol 2004; 14:584-90. [PMID: 15465319 DOI: 10.1016/j.sbi.2004.08.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A new generation of electron microscopes equipped with field emission gun electron sources and the ability to image molecules in their native environment at liquid nitrogen or helium temperatures has enabled the analysis of macromolecular structures at medium resolution (approximately 10 angstroms) and in different conformational states. The amalgamation of electron microscopy and X-ray crystallographic approaches makes it possible to solve structures in the 100-1000 angstroms size range, advancing our understanding of the function of complex assemblies. Many new structures have been solved during the past two years, including one of the smallest complexes to be determined by single-particle cryo-electron microscopy, the transferrin receptor-transferrin complex. Other notable results include the near atomic level resolution structure of the nicotinic acetylcholine receptor in helical arrays and an icosahedral virus structure with an asymmetric polymerase resolved.
Collapse
Affiliation(s)
- Elena V Orlova
- School of Crystallography, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | |
Collapse
|
50
|
Ianoul A, Street M, Grant D, Pezacki J, Taylor RS, Johnston LJ. Near-field scanning fluorescence microscopy study of ion channel clusters in cardiac myocyte membranes. Biophys J 2004; 87:3525-35. [PMID: 15339803 PMCID: PMC1304818 DOI: 10.1529/biophysj.104.046383] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Near-field scanning optical microscopy (NSOM) has been used to study the nanoscale distribution of voltage-gated L-type Ca2+ ion channels, which play an important role in cardiac function. NSOM fluorescence imaging of immunostained cardiac myocytes (H9C2 cells) demonstrates that the ion channel is localized in small clusters with an average diameter of 100 nm. The clusters are randomly distributed throughout the cell membrane, with some larger fluorescent patches that high-resolution images show to consist of many small closely-spaced clusters. We have imaged unstained cells to assess the contribution of topography-induced artifacts and find that the topography-induced signal is <10% of the NSOM fluorescence intensity. We have also examined the dependence of the NSOM signal intensity on the tip-sample separation to assess the contributions from fluorophores that are significantly below the cell surface. This indicates that chromophores > approximately 200 nm below the probe will have negligible contributions to the observed signal. The ability to quantitatively measure small clusters of ion channels will facilitate future studies that examine changes in protein localization in stimulated cells and during cardiac development. Our work illustrates the potential of NSOM for studying membrane domains and protein localization/colocalization on a length scale which exceeds that available with optical microscopy.
Collapse
Affiliation(s)
- Anatoli Ianoul
- Steacie Institute for Molecular Sciences and Institute for Microstructural Sciences, National Research Council Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|