1
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025; 26:442-455. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Seehawer M, Polyak K. Epigenetic drivers of metalloproteinases and metastasis. Trends Cell Biol 2025:S0962-8924(25)00044-3. [PMID: 40089451 DOI: 10.1016/j.tcb.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Metalloproteinases (MPs) are crucial for development and homeostasis due to their diverse physiological functions, from the cellular to the organismal level. Their activity is tightly regulated at multiple levels, including epigenetic regulation through DNA methylation and histone modifications. Aberrant MP expression can result in pathological events, involving extracellular matrix remodeling, which can facilitate cancer cell invasion and dissemination. As clinical testing of MP inhibitors has been limited by toxicity, alternative approaches are needed. Epigenetically-driven MP expression is often specific to cancer cells, giving an enticing possibility for cancer cell-specific targeting. Moreover, aberrant epigenetic activity can also drive other metastatic events. Therefore, targeting the epigenetic regulators of MP expression may be a promising alternative approach for the prevention and treatment of metastatic disease.
Collapse
Affiliation(s)
- Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Zhang R, Jiang WJ, Zhao S, Kang LJ, Wang QS, Feng YM. FOXF2 expression triggered by endocrine therapy orchestrates therapeutic resistance through reorganization of chromatin architecture in breast cancer. Cancer Lett 2025; 612:217463. [PMID: 39828125 DOI: 10.1016/j.canlet.2025.217463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/27/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Patients with estrogen receptor-positive (ER+) breast cancer require long-term endocrine therapy. However, endocrine resistance remains a critical issue to be addressed. Herein, we show that ERα repressed FOXF2 transcription in ER+ breast cancer through facilitating H3K27me3 deposition around its genomic locus, therefore endocrine therapy triggered FOXF2 transcription via loss of H3K27me3. FOXF2 transactivation orchestrated endocrine resistance and bone metastasis. Mechanistically, FOXF2 acted as a pioneer factor to globally activate enhancers of genes involved in epithelial-mesenchymal transition/epithelial-osteogenic transition, as well as super-enhancers of NCOA3 (a coactivator of FOXF2) and SP1 (an upstream transactivator of FOXF2) by recruitingSMARCC1 that mediates the reorganization of chromatin architecture. Additionally, FOXF2 expression levels in the tumors of ER+ breast cancer predicted response to endocrine therapeutic drugs and the outcome of patients. Targeting BRD4, an essential transcriptional coactivator of FOXF2, significantly inhibited FOXF2-orchestrated endocrine resistance and bone metastasis. Our findings uncover a crucial mechanism underlying endocrine resistance and provide a promising strategy for managing endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China
| | - Wen-Jing Jiang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Shuai Zhao
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Li-Juan Kang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China; Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
4
|
Li W, Huang M, Wu Z, Zhang Y, Cai Y, Su J, Xia J, Yang F, Xiao D, Yang W, Xu Y, Liu Z. mRNA-Lipid Nanoparticle-Mediated Restoration of PTPN14 Exhibits Antitumor Effects by Overcoming Anoikis Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309988. [PMID: 39189475 PMCID: PMC11348215 DOI: 10.1002/advs.202309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a challenging prognosis due to early metastasis driven by anoikis resistance. Identifying crucial regulators to overcome this resistance is vital for improving patient outcomes. In this study, a genome-wide CRISPR/Cas9 knockout screen in TNBC cells has identified tyrosine-protein phosphatase nonreceptor type 14 (PTPN14) as a key regulator of anoikis resistance. PTPN14 expression has shown a progressive decrease from normal breast tissue to metastatic tumors. Overexpressing PTPN14 has induced anoikis and inhibited cell proliferation in TNBC cells, while normal human breast cells are unaffected. Mechanistically, PTPN14 is identified as a key factor in dephosphorylating breast cancer antiestrogen resistance 3, a novel substrate, leading to the subsequent inhibition of PI3K/AKT and ERK signaling pathways. Local delivery of in vitro transcribed PTPN14 mRNA encapsulated by lipid nanoparticles in a TNBC mouse model has effectively inhibited tumor growth and metastasis, prolonging survival. The study underscores PTPN14 as a potential therapeutic target for metastatic TNBC, with the therapeutic strategy based on mRNA expression of PTPN14 demonstrating clinical application prospects in alleviating the burden of both primary tumors and metastatic disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoping Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangsha410008P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Ying Cai
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Juncheng Su
- Department of Gastrointestinal SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jia Xia
- Department of NephrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Fan Yang
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250011P. R. China
| | - Desheng Xiao
- Department of PathologySchool of Basic MedicineXiangya HospitalCentral South UniversityChangsha410013P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
5
|
Hao L, Boehnke N, Elledge SK, Harzallah NS, Zhao RT, Cai E, Feng YX, Neaher S, Fleming HE, Gupta PB, Hammond PT, Bhatia SN. Targeting and monitoring ovarian cancer invasion with an RNAi and peptide delivery system. Proc Natl Acad Sci U S A 2024; 121:e2307802121. [PMID: 38437557 PMCID: PMC10945808 DOI: 10.1073/pnas.2307802121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/28/2023] [Indexed: 03/06/2024] Open
Abstract
RNA interference (RNAi) therapeutics are an emerging class of medicines that selectively target mRNA transcripts to silence protein production and combat disease. Despite the recent progress, a generalizable approach for monitoring the efficacy of RNAi therapeutics without invasive biopsy remains a challenge. Here, we describe the development of a self-reporting, theranostic nanoparticle that delivers siRNA to silence a protein that drives cancer progression while also monitoring the functional activity of its downstream targets. Our therapeutic target is the transcription factor SMARCE1, which was previously identified as a key driver of invasion in early-stage breast cancer. Using a doxycycline-inducible shRNA knockdown in OVCAR8 ovarian cancer cells both in vitro and in vivo, we demonstrate that SMARCE1 is a master regulator of genes encoding proinvasive proteases in a model of human ovarian cancer. We additionally map the peptide cleavage profiles of SMARCE1-regulated proteases so as to design a readout for downstream enzymatic activity. To demonstrate the therapeutic and diagnostic potential of our approach, we engineered self-assembled layer-by-layer nanoparticles that can encapsulate nucleic acid cargo and be decorated with peptide substrates that release a urinary reporter upon exposure to SMARCE1-related proteases. In an orthotopic ovarian cancer xenograft model, theranostic nanoparticles were able to knockdown SMARCE1 which was in turn reported through a reduction in protease-activated urinary reporters. These LBL nanoparticles both silence gene products by delivering siRNA and noninvasively report on downstream target activity by delivering synthetic biomarkers to sites of disease, enabling dose-finding studies as well as longitudinal assessments of efficacy.
Collapse
Affiliation(s)
- Liangliang Hao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, Minneapolis, MN55455
| | - Susanna K. Elledge
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nour-Saïda Harzallah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Renee T. Zhao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eva Cai
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Yu-Xiong Feng
- Department of Biology, Whitehead Institute for Biomedical Research, Cambridge, MA02142
| | - Sofia Neaher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Heather E. Fleming
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | | | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard University–Massachusetts Institute of Technology Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Marble Center for Cancer Nanomedicine, Massachusetts Institute of Technology, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA02142
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- HHMI, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
6
|
Xiang X, He Y, Zhang Z, Yang X. Interrogations of single-cell RNA splicing landscapes with SCASL define new cell identities with physiological relevance. Nat Commun 2024; 15:2164. [PMID: 38461306 PMCID: PMC10925056 DOI: 10.1038/s41467-024-46480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024] Open
Abstract
RNA splicing shapes the gene regulatory programs that underlie various physiological and disease processes. Here, we present the SCASL (single-cell clustering based on alternative splicing landscapes) method for interrogating the heterogeneity of RNA splicing with single-cell RNA-seq data. SCASL resolves the issue of biased and sparse data coverage on single-cell RNA splicing and provides a new scheme for classifications of cell identities. With previously published datasets as examples, SCASL identifies new cell clusters indicating potentially precancerous and early-tumor stages in triple-negative breast cancer, illustrates cell lineages of embryonic liver development, and provides fine clusters of highly heterogeneous tumor-associated CD4 and CD8 T cells with functional and physiological relevance. Most of these findings are not readily available via conventional cell clustering based on single-cell gene expression data. Our study shows the potential of SCASL in revealing the intrinsic RNA splicing heterogeneity and generating biological insights into the dynamic and functional cell landscapes in complex tissues.
Collapse
Affiliation(s)
- Xianke Xiang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Yao He
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Cancer Research Institute, Shenzhen Bay Lab, Shenzhen, 518132, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Deng J, Zhao HJ, Zhong Y, Hu C, Meng J, Wang C, Lan X, Wang X, Chen ZJ, Yan J, Wang W, Li Y. H3K27me3-modulated Hofbauer cell BMP2 signalling enhancement compensates for shallow trophoblast invasion in preeclampsia. EBioMedicine 2023; 93:104664. [PMID: 37331163 DOI: 10.1016/j.ebiom.2023.104664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Preeclampsia (PE) is a common hypertensive pregnancy disorder associated with shallow trophoblast invasion. Although bone morphogenetic protein 2 (BMP2) has been shown to promote trophoblast invasion in vitro, its cellular origin and molecular regulation in placenta, as well as its potential role in PE, has yet to be established. Additionally, whether BMP2 and/or its downstream molecules could serve as potential diagnostic or therapeutic targets for PE has not been explored. METHODS Placentas and sera from PE and healthy pregnant women were subjected to multi-omics analyses, immunoblots, qPCR, and ELISA assays. Immortalized trophoblast cells, primary cultures of human trophoblasts, and first-trimester villous explants were used for in vitro experiments. Adenovirus expressing sFlt-1 (Ad Flt1)-induced PE rat model was used for in vivo studies. FINDINGS We find globally decreased H3K27me3 modifications and increased BMP2 signalling in preeclamptic placentas, which is negatively correlated with clinical manifestations. BMP2 is derived from Hofbauer cells and epigenetically regulated by H3K27me3 modification. BMP2 promotes trophoblast invasion and vascular mimicry by upregulating BMP6 via BMPR1A-SMAD2/3-SMAD4 signalling. BMP2 supplementation alleviates high blood pressure and fetal growth restriction phenotypes in Ad Flt1-induced rat PE model. INTERPRETATION Our findings demonstrate that epigenetically regulated Hofbauer cell-derived BMP2 signalling enhancement in late gestation could serve as a compensatory response for shallow trophoblast invasion in PE, suggesting opportunities for diagnostic marker and therapeutic target applications in PE clinical management. FUNDING National Key Research and Development Program of China (2022YFC2702400), National Natural Science Foundation of China (82101784, 82171648, 31988101), and Natural Science Foundation of Shandong Province (ZR2020QH051, ZR2020MH039).
Collapse
Affiliation(s)
- Jianye Deng
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Jin Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Ying Zhong
- Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Cuiping Hu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jinlai Meng
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Xiangxin Lan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiyao Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Wei Wang
- Division of Neonatology, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02115, USA.
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, 250012, China; Medical Integration and Practice Center, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Gibson SV, Roozitalab RM, Allen MD, Jones JL, Carter EP, Grose RP. Everybody needs good neighbours: the progressive DCIS microenvironment. Trends Cancer 2023; 9:326-338. [PMID: 36739265 DOI: 10.1016/j.trecan.2023.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Ductal carcinoma in situ (DCIS) is a pre-invasive form of breast cancer where neoplastic luminal cells are confined to the ductal tree. While as many as 70% of DCIS cases will remain indolent, most women are treated with surgery, often combined with endocrine and radiotherapies. Overtreatment is therefore a major issue, demanding new methods to stratify patients. Somewhat paradoxically, the neoplastic cells in DCIS are genetically comparable to those in invasive disease, suggesting the tumour microenvironment is the driving force for progression. Clinical and mechanistic studies highlight the complex DCIS microenvironment, with multiple cell types competing to regulate progression. Here, we examine recent studies detailing distinct aspects of the DCIS microenvironment and discuss how these may inform more effective care.
Collapse
Affiliation(s)
- Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Reza M Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Michael D Allen
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - J Louise Jones
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
9
|
Wang JZ, Nassiri F, Mawrin C, Zadeh G. Genomic Landscape of Meningiomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1416:137-158. [PMID: 37432625 DOI: 10.1007/978-3-031-29750-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Despite being the most common primary brain tumor in adults, until recently, the genomics of meningiomas have remained quite understudied. In this chapter we will discuss the early cytogenetic and mutational changes uncovered in meningiomas, from the discovery of the loss of chromosome 22q and the neurofibromatosis-2 (NF2) gene to other non-NF2 driver mutations (KLF4, TRAF7, AKT1, SMO, etc.) discovered using next generation sequencing. We discuss each of these alterations in the context of their clinical significance and conclude the chapter by reviewing recent multiomic studies that have integrated our knowledge of these alterations together to develop novel molecular classifications for meningiomas.
Collapse
Affiliation(s)
- Justin Z Wang
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Farshad Nassiri
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada
| | - Christian Mawrin
- Department of Neuropathology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Gelareh Zadeh
- MacFeeters Hamilton Neuro-Oncology Program, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, Department of Surgery, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Li Z, Tan Y, Li X, Quan J, Bode AM, Cao Y, Luo X. DHRS2 inhibits cell growth and metastasis in ovarian cancer by downregulation of CHKα to disrupt choline metabolism. Cell Death Dis 2022; 13:845. [PMID: 36192391 PMCID: PMC9530226 DOI: 10.1038/s41419-022-05291-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 01/23/2023]
Abstract
The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Yue Tan
- grid.412017.10000 0001 0266 8918Hengyang Medical College, University of South China, Hengyang, 421001 Hunan PR China
| | - Xiang Li
- grid.216417.70000 0001 0379 7164Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China
| | - Jing Quan
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China
| | - Ann M. Bode
- grid.17635.360000000419368657The Hormel Institute, University of Minnesota, Austin, MN 55912 USA
| | - Ya Cao
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China
| | - Xiangjian Luo
- grid.216417.70000 0001 0379 7164Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078 PR China ,grid.216417.70000 0001 0379 7164Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078 China ,grid.216417.70000 0001 0379 7164National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078 China
| |
Collapse
|
11
|
Jiménez C, Antonelli R, Nadal-Ribelles M, Devis-Jauregui L, Latorre P, Solé C, Masanas M, Molero-Valenzuela A, Soriano A, Sánchez de Toledo J, Llobet-Navas D, Roma J, Posas F, de Nadal E, Gallego S, Moreno L, Segura MF. Structural disruption of BAF chromatin remodeller impairs neuroblastoma metastasis by reverting an invasiveness epigenomic program. Mol Cancer 2022; 21:175. [PMID: 36057593 PMCID: PMC9440539 DOI: 10.1186/s12943-022-01643-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target. METHODS Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays. RESULTS Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo. CONCLUSIONS We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Carlos Jiménez
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Roberta Antonelli
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Mariona Nadal-Ribelles
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Laura Devis-Jauregui
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Pablo Latorre
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Carme Solé
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Masanas
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Adrià Molero-Valenzuela
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Soriano
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Josep Sánchez de Toledo
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Catalan Institute of Oncology, L'Hospitalet de Llobregat, Spain
| | - David Llobet-Navas
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain.,Low Prevalence Tumors. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Roma
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Soledad Gallego
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucas Moreno
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Paediatric Oncology and Haematology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Miguel F Segura
- Group of Childhood Cancer and Blood Disorders, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
| |
Collapse
|
12
|
Hu X, Liu R, Hou J, Peng W, Wan S, Xu M, Li Y, Zhang G, Zhai X, Liang P, Cui H. SMARCE1 promotes neuroblastoma tumorigenesis through assisting MYCN-mediated transcriptional activation. Oncogene 2022; 41:4295-4306. [PMID: 35978151 DOI: 10.1038/s41388-022-02428-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023]
Abstract
SMARCE1 gene, encoding a core subunit of SWI/SNF chromatin remodeling complex, is situated on chromosome 17q21-ter region that is frequently gained in neuroblastoma. However, its role in the tumorigenesis remains unknown. Here, we showed that high expression of SMARCE1 was associated with poor prognosis of patients with neuroblastoma, especially those with MYCN amplification. Knockdown of SMARCE1 reduced proliferation, colony formation, and tumorigenicity of neuroblastoma cells. Mechanistically, SMARCE1 directly interacted with MYCN, which was necessary for MYCN-mediated transcriptional activation of downstream target genes including PLK1, ODC1, and E2F2. Overexpression of PLK1, ODC1 or E2F2 significantly reversed the inhibiting effect of SMARCE1 knockdown on the proliferation, colony formation, and tumorigenicity of MYCN-amplified neuroblastoma cells. Moreover, we revealed that MYCN directly regulated SMARCE1 transcription through binding to a non-canonical E-box of SMARCE1 promoter, thus enhancing SMARCE1-MYCN cooperativity. These findings establish SMARCE1 is a critical oncogenic factor in neuroblastoma and provide a new potential target for treatment of neuroblastoma with 17q21-ter gain and MYCN amplification.
Collapse
Affiliation(s)
- Xiaosong Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Sicheng Wan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Minghao Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Yongsen Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, 400010, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China. .,Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
13
|
Akbulut S, Yagin FH, Colak C. Prediction of Breast Cancer Distant Metastasis by Artificial Intelligence Methods from an Epidemiological Perspective. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.62443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Huang Y, Zheng Y, Yao L, Qiao F, Hou Y, Hu X, Li D, Shao Z. RNA binding protein POP7 regulates ILF3 mRNA stability and expression to promote breast cancer progression. Cancer Sci 2022; 113:3801-3813. [PMID: 35579257 DOI: 10.1111/cas.15430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
RNA Binding Proteins(RBPs)play pivotal roles in breast cancer (BC) development. As a RBP, Processing of precursor 7 (POP7) is one of the subunits of RNase P and RNase MRP, however, its exact function and mechanism in BC remain unknown. Here, we showed that expression of POP7 was frequently increased in breast cancer cells and in primary breast tumors. Up-regulated POP7 significantly promoted BC cell proliferation in vitro and primary tumor growth in vivo. POP7 also increased cell migration, invasion in vitro and lung metastasis in vivo. Through RNA-immunoprecipitation coupled with sequencing (RIP-seq), we found that POP7 bound preferentially to intron regions and POP7-binding peak associated genes were mainly enriched in cancer-related pathways. Further, POP7 regulated Interleukin Enhancer Binding Factor 3 (ILF3) expression through influencing its mRNA stability. Knockdown of ILF3 significantly impaired the increased malignant potential of POP7 over-expressing cells, suggesting that POP7 enhances BC progression through regulating ILF3 expression. Collectively, our findings provide the first evidence for the important role of POP7 and its regulation of ILF3 in promoting breast cancer progression.
Collapse
Affiliation(s)
- Yanni Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yizi Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Thyroid and Breast Surgery, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Ling Yao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Qiao
- Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yifeng Hou
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin Hu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Daqiang Li
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
15
|
Quan J, Li N, Tan Y, Liu H, Liao W, Cao Y, Luo X. PGC1α-mediated fatty acid oxidation promotes TGFβ1-induced epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma. Life Sci 2022; 300:120558. [PMID: 35452637 DOI: 10.1016/j.lfs.2022.120558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
Abstract
AIM Cancer cells frequently undergo metabolic reprogramming, which contributes to tumorigenicity and malignancy. Unlike primary cancers, during the process of invasion and distal dissemination, cancer cells are deficient in ATP due to damaged glucose transport. Cells need to rewire metabolic programs to overcome nutrient and energy crises, maintaining survival and forming metastasis. However, the underlying mechanism has not been well understood. We elucidated the metabolic alteration in TGFβ1-induced epithelial-mesenchymal transition (EMT) and metastasis of nasopharyngeal carcinoma (NPC). MAIN METHODS Fluorescent Bodipy fatty acid probe, UPLC-MS/MS analysis, β-oxidation assay, cellular ATP and NADPH/NADP measurement, and Oil Red-O staining were performed to evaluate the activation of FAO pathways in the TGFβ1-induced EMT of NPC cells. Three-dimensional (3D) invasion assay and metastatic animal model were applied to assess the invasive and metastatic capacity of NPC cells. KEY FINDINGS Our current findings reveal that PGC1α-mediated FAO promotes TGFβ1-induced EMT and metastasis of NPC cells. Mechanically, TGFβ1 up-regulates AMPKα1 to activate PGC1α, which transcriptionally boosts FAO-associated genes. The metabolic rewiring mediated by PGC1α facilitates EMT, invasion, and metastasis of NPC. SIGNIFICANCE The present study aims to establish the mechanistic connection between energy metabolic reprogramming and the aggressive phenotype of NPC. These actions further provide new opportunities for developing of novel therapeutics for NPC by targeting PGC1α/ FAO signaling.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Namei Li
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yue Tan
- Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Huiwei Liu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Weihua Liao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, PR China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410078, China.
| |
Collapse
|
16
|
Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194801. [PMID: 35217218 PMCID: PMC8948540 DOI: 10.1016/j.bbagrm.2022.194801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.
Collapse
|
17
|
Carter EP, Roozitalab R, Gibson SV, Grose RP. Tumour microenvironment 3D-modelling: simplicity to complexity and back again. Trends Cancer 2021; 7:1033-1046. [PMID: 34312120 DOI: 10.1016/j.trecan.2021.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Tumours are surrounded by a host of noncancerous cells that fulfil both supportive and suppressive roles within the tumour microenvironment (TME). The drive to understand the biology behind each of these components has led to a rapid expansion in the number and use of 3D in vitro models, as researchers find ways to incorporate multiple cell types into physiomimetic configurations. The use and increasing complexity of these models does however demand many considerations. In this review we discuss approaches adopted to recapitulate complex tumour biology in tractable 3D models. We consider how these cell types can be sourced and combined and examine methods for the deconvolution of complex multicellular models into manageable and informative outputs.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reza Roozitalab
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Shayin V Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
18
|
Zhang S, Jiang VC, Han G, Hao D, Lian J, Liu Y, Cai Q, Zhang R, McIntosh J, Wang R, Dang M, Dai E, Wang Y, Santos D, Badillo M, Leeming A, Chen Z, Hartig K, Bigcal J, Zhou J, Kanagal-Shamanna R, Ok CY, Lee H, Steiner RE, Zhang J, Song X, Nair R, Ahmed S, Rodriquez A, Thirumurthi S, Jain P, Wagner-Bartak N, Hill H, Nomie K, Flowers C, Futreal A, Wang L, Wang M. Longitudinal single-cell profiling reveals molecular heterogeneity and tumor-immune evolution in refractory mantle cell lymphoma. Nat Commun 2021; 12:2877. [PMID: 34001881 PMCID: PMC8128874 DOI: 10.1038/s41467-021-22872-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanisms driving therapeutic resistance and poor outcomes of mantle cell lymphoma (MCL) are incompletely understood. We characterize the cellular and molecular heterogeneity within and across patients and delineate the dynamic evolution of tumor and immune cell compartments at single cell resolution in longitudinal specimens from ibrutinib-sensitive patients and non-responders. Temporal activation of multiple cancer hallmark pathways and acquisition of 17q are observed in a refractory MCL. Multi-platform validation is performed at genomic and cellular levels in PDX models and larger patient cohorts. We demonstrate that due to 17q gain, BIRC5/survivin expression is upregulated in resistant MCL tumor cells and targeting BIRC5 results in marked tumor inhibition in preclinical models. In addition, we discover notable differences in the tumor microenvironment including progressive dampening of CD8+ T cells and aberrant cell-to-cell communication networks in refractory MCLs. This study reveals diverse and dynamic tumor and immune programs underlying therapy resistance in MCL.
Collapse
Affiliation(s)
- Shaojun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivian Changying Jiang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junwei Lian
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Liu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingsong Cai
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rongjia Zhang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph McIntosh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minghao Dang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanxin Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Santos
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Badillo
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Angela Leeming
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhihong Chen
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kimberly Hartig
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Bigcal
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hun Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alma Rodriquez
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepathology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolaus Wagner-Bartak
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Holly Hill
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krystle Nomie
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Mehta GA, Angus SP, Khella CA, Tong K, Khanna P, Dixon SAH, Verzi MP, Johnson GL, Gatza ML. SOX4 and SMARCA4 cooperatively regulate PI3k signaling through transcriptional activation of TGFBR2. NPJ Breast Cancer 2021; 7:40. [PMID: 33837205 PMCID: PMC8035213 DOI: 10.1038/s41523-021-00248-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of PI3K/Akt signaling is a dominant feature in basal-like or triple-negative breast cancers (TNBC). However, the mechanisms regulating this pathway are largely unknown in this subset of aggressive tumors. Here we demonstrate that the transcription factor SOX4 is a key regulator of PI3K signaling in TNBC. Genomic and proteomic analyses coupled with mechanistic studies identified TGFBR2 as a direct transcriptional target of SOX4 and demonstrated that TGFBR2 is required to mediate SOX4-dependent PI3K signaling. We further report that SOX4 and the SWI/SNF ATPase SMARCA4, which are uniformly overexpressed in basal-like tumors, form a previously unreported complex that is required to maintain an open chromatin conformation at the TGFBR2 regulatory regions in order to mediate TGFBR2 expression and PI3K signaling. Collectively, our findings delineate the mechanism by which SOX4 and SMARCA4 cooperatively regulate PI3K/Akt signaling and suggest that this complex may play an essential role in TNBC genesis and/or progression.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Steven P Angus
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christen A Khella
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kevin Tong
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pooja Khanna
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Shelley A H Dixon
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael P Verzi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Gary L Johnson
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michael L Gatza
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
20
|
Ghaffari S, Hanson C, Schmidt RE, Bouchonville KJ, Offer SM, Sinha S. An integrated multi-omics approach to identify regulatory mechanisms in cancer metastatic processes. Genome Biol 2021; 22:19. [PMID: 33413550 PMCID: PMC7789593 DOI: 10.1186/s13059-020-02213-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metastatic progress is the primary cause of death in most cancers, yet the regulatory dynamics driving the cellular changes necessary for metastasis remain poorly understood. Multi-omics approaches hold great promise for addressing this challenge; however, current analysis tools have limited capabilities to systematically integrate transcriptomic, epigenomic, and cistromic information to accurately define the regulatory networks critical for metastasis. RESULTS To address this limitation, we use a purposefully generated cellular model of colon cancer invasiveness to generate multi-omics data, including expression, accessibility, and selected histone modification profiles, for increasing levels of invasiveness. We then adopt a rigorous probabilistic framework for joint inference from the resulting heterogeneous data, along with transcription factor binding profiles. Our approach uses probabilistic graphical models to leverage the functional information provided by specific epigenomic changes, models the influence of multiple transcription factors simultaneously, and automatically learns the activating or repressive roles of cis-regulatory events. Global analysis of these relationships reveals key transcription factors driving invasiveness, as well as their likely target genes. Disrupting the expression of one of the highly ranked transcription factors JunD, an AP-1 complex protein, confirms functional relevance to colon cancer cell migration and invasion. Transcriptomic profiling confirms key regulatory targets of JunD, and a gene signature derived from the model demonstrates strong prognostic potential in TCGA colorectal cancer data. CONCLUSIONS Our work sheds new light into the complex molecular processes driving colon cancer metastasis and presents a statistically sound integrative approach to analyze multi-omics profiles of a dynamic biological process.
Collapse
Affiliation(s)
- Saba Ghaffari
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Casey Hanson
- Department of Genetics, Stanford University, Stanford, USA
| | - Remington E Schmidt
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Kelly J Bouchonville
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA
| | - Steven M Offer
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Gonda 19-476, 200 First St SW, Rochester, MN, 55905, USA.
| | - Saurabh Sinha
- Department of Computer Science, Carl R. Woese Institute of Genomic Biology, and Cancer Center of Illinois, University of Illinois at Urbana-Champaign, 2122, Siebel Center, 201 N. Goodwin Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Overton IM, Sims AH, Owen JA, Heale BSE, Ford MJ, Lubbock ALR, Pairo-Castineira E, Essafi A. Functional Transcription Factor Target Networks Illuminate Control of Epithelial Remodelling. Cancers (Basel) 2020; 12:cancers12102823. [PMID: 33007944 PMCID: PMC7652213 DOI: 10.3390/cancers12102823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Cell identity is governed by gene expression, regulated by transcription factor (TF) binding at cis-regulatory modules. Decoding the relationship between TF binding patterns and gene regulation is nontrivial, remaining a fundamental limitation in understanding cell decision-making. We developed the NetNC software to predict functionally active regulation of TF targets; demonstrated on nine datasets for the TFs Snail, Twist, and modENCODE Highly Occupied Target (HOT) regions. Snail and Twist are canonical drivers of epithelial to mesenchymal transition (EMT), a cell programme important in development, tumour progression and fibrosis. Predicted "neutral" (non-functional) TF binding always accounted for the majority (50% to 95%) of candidate target genes from statistically significant peaks and HOT regions had higher functional binding than most of the Snail and Twist datasets examined. Our results illuminated conserved gene networks that control epithelial plasticity in development and disease. We identified new gene functions and network modules including crosstalk with notch signalling and regulation of chromatin organisation, evidencing networks that reshape Waddington's epigenetic landscape during epithelial remodelling. Expression of orthologous functional TF targets discriminated breast cancer molecular subtypes and predicted novel tumour biology, with implications for precision medicine. Predicted invasion roles were validated using a tractable cell model, supporting our approach.
Collapse
Affiliation(s)
- Ian M. Overton
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH9 3BF, UK
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
- Correspondence:
| | - Andrew H. Sims
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Jeremy A. Owen
- Department of Systems Biology, Harvard University, Boston, MA 02115, USA;
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bret S. E. Heale
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Matthew J. Ford
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Alexander L. R. Lubbock
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Erola Pairo-Castineira
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| | - Abdelkader Essafi
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK; (A.H.S.); (B.S.E.H.); (M.J.F.); (A.L.R.L.); (E.P.-C.); (A.E.)
| |
Collapse
|
22
|
Das PK, Pillai S, Rakib MA, Khanam JA, Gopalan V, Lam AKY, Islam F. Plasticity of Cancer Stem Cell: Origin and Role in Disease Progression and Therapy Resistance. Stem Cell Rev Rep 2020; 16:397-412. [PMID: 31965409 DOI: 10.1007/s12015-019-09942-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. Graphical Abstract .
Collapse
Affiliation(s)
- Plabon Kumar Das
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Suja Pillai
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Md Abdur Rakib
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahan Ara Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Vinod Gopalan
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Alfred K Y Lam
- School of Medicine, Griffith University Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
23
|
Niu W, Luo Y, Zhou Y, Li M, Wu C, Duan Y, Wang H, Fan S, Li Z, Xiong W, Li X, Li G, Ren C, Li H, Zhou M. BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced epithelial-mesenchymal transition. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:30. [PMID: 32028981 PMCID: PMC7006413 DOI: 10.1186/s13046-019-1493-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023]
Abstract
Background BRD7 is a tumor suppressor known to inhibit cell proliferation and cell cycle progression and initiate apoptosis in breast cancer. However, the function and underlying molecular events of BRD7 in tumor invasion and metastasis in breast cancer are not fully understood. Methods BRD7 expression was assessed in two stable cell lines MDA231 and MCF7 with BRD7 overexpression and one stable cell line MDA231 with BRD7 interference using qRT-PCR and western blotting. CCK8 assay was used to examine the proliferation ability of MDA231 and MCF7 cells. Scratch wound healing assay was used to evaluate cell migration in MDA231 and MCF7 cells. Both Matrigel and three-dimensional invasion assays were performed to investigate the cell invasion ability after BRD7 overexpression or silencing or YB1 restoration in MDA231 and MCF7 cells. The potential interacting proteins of BRD7 were screened using co-immunoprecipitation combined with mass spectrometry and verified by co-immunoprecipitation in HEK293T cells. Additionally, we confirmed the specific binding region between BRD7 and YB1 in HEK293T cells by constructing a series of deletion mutants of BRD7 and YB1 respectively. Finally, xenograft and metastatic mouse models using MDA231 cells were established to confirm the effect of BRD7 on tumor growth and metastasis. Results Here, the results of a series of assays in vitro indicated that BRD7 has the ability to inhibit the mobility, migration and invasion of breast cancer cells. In addition, YB1 was identified as a novel interacting protein of BRD7, and BRD7 was found to associate with the C-terminus of YB1 via its N-terminus. BRD7 decreases the expression of YB1 through negatively regulating YB1 phosphorylation at Ser102, thereby promoting its proteasomal degradation. Furthermore, gene set enrichment analysis revealed that epithelial-mesenchymal transition (EMT) is the common change occurring with altered expression of either BRD7 or YB1 and that BRD7 represses mesenchymal genes and activates epithelial genes. Moreover, restoring the expression of YB1 antagonized the inhibitory effect of BRD7 on tumorigenicity, EMT, invasiveness and metastasis through a series of in vitro and in vivo experiments. Additionally, BRD7 expression was negatively correlated with the level of YB1 in breast cancer patients. The combination of low BRD7 and high YB1 expression was significantly associated with poor prognosis, distant metastasis and advanced TNM stage. Conclusions Collectively, these findings uncover that BRD7 blocks tumor growth, migration and metastasis by negatively regulating YB1-induced EMT, providing new insights into the mechanism by which BRD7 contributes to the progression and metastasis of breast cancer.
Collapse
Affiliation(s)
- Weihong Niu
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yanwei Luo
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yao Zhou
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Mengna Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Chunchun Wu
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Yumei Duan
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Heran Wang
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Songqing Fan
- The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Zheng Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.,High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Xiong
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Xiaoling Li
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Guiyuan Li
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Caiping Ren
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| | - Hui Li
- The Second Xiang-Ya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| | - Ming Zhou
- The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410078, People's Republic of China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410078, People's Republic of China.
| |
Collapse
|
24
|
Hasan N, Ahuja N. The Emerging Roles of ATP-Dependent Chromatin Remodeling Complexes in Pancreatic Cancer. Cancers (Basel) 2019; 11:E1859. [PMID: 31769422 PMCID: PMC6966483 DOI: 10.3390/cancers11121859] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with low survival rates. Genetic and epigenetic dysregulation has been associated with the initiation and progression of pancreatic tumors. Multiple studies have pointed to the involvement of aberrant chromatin modifications in driving tumor behavior. ATP-dependent chromatin remodeling complexes regulate chromatin structure and have critical roles in stem cell maintenance, development, and cancer. Frequent mutations and chromosomal aberrations in the genes associated with subunits of the ATP-dependent chromatin remodeling complexes have been detected in different cancer types. In this review, we summarize the current literature on the genomic alterations and mechanistic studies of the ATP-dependent chromatin remodeling complexes in pancreatic cancer. Our review is focused on the four main subfamilies: SWItch/sucrose non-fermentable (SWI/SNF), imitation SWI (ISWI), chromodomain-helicase DNA-binding protein (CHD), and INOsitol-requiring mutant 80 (INO80). Finally, we discuss potential novel treatment options that use small molecules to target these complexes.
Collapse
Affiliation(s)
| | - Nita Ahuja
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|
25
|
Li Z, Tan H, Yu H, Deng Z, Zhou X, Wang M. DNA methylation and gene expression profiles characterize epigenetic regulation of lncRNAs in colon adenocarcinoma. J Cell Biochem 2019; 121:2406-2415. [PMID: 31692079 DOI: 10.1002/jcb.29463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
The long noncoding RNAs (lncRNAs) are associated with tumorigenesis and progression of cancer. While DNA methylation is a common epigenetic regulator of gene expression, the methylation of lncRNAs was rarely studied. To address this gap, we integrated DNA methylation and RNA-seq data to characterize the landscape of lncRNA methylation in colon adenocarcinoma (COAD). We collected and analyzed the lncRNA expression and methylation data from The Cancer Genome Atlas and Cancer Cell Line Encyclopedia to identify the epigenetically regulated lncRNAs. We further investigated the biological and clinical relevance of the identified lncRNAs via bioinformatics analysis. We identified 20 epigenetically upregulated lncRNAs in COAD, including several well-studied lncRNAs whose methylation regulation were poorly investigated, such as PVT1 and UCA1. We also revealed several novel tumor-associated lncRNAs in COAD, including GATA2-As1 and CYTOR. Next, we explored their biology function using gene set enrichment analysis and competitive endogenous RNA analysis. We characterized the methylation landscape of lncRNA in COAD and identified 20 epigenetically upregulated lncRNAs. Our findings will shed new light on the epigenetic regulation of lncRNA expression by DNA methylation.
Collapse
Affiliation(s)
- Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Tan
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas
| | - Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaobo Zhou
- Center for Computational Systems Medicine, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas.,Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas.,School of Dentistry, The University of Texas Health Science Center, Houston, Texas
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
26
|
Liu H, Zhao YR, Chen B, Ge Z, Huang JS. High expression of SMARCE1 predicts poor prognosis and promotes cell growth and metastasis in gastric cancer. Cancer Manag Res 2019; 11:3493-3509. [PMID: 31118775 PMCID: PMC6498956 DOI: 10.2147/cmar.s195137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Gastric cancer (GC) is one of the most lethal cancers worldwide with a high risk for recurrence and metastasis. Therefore, further understanding of the metastatic mechanism and the development of treatment strategies are required. Although increasing evidence suggests that SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily E, Member 1 (SMARCE1) promotes cancer metastasis, its role in GC remains unclear. Materials and methods: GC samples (n=122) were used to investigate the association between SMARCE1 expression, patient clinicopathological features, and prognosis. The expression of SMARCE1 in GC tissues was measured using real-time polymerase chain reaction, western blotting, and immunohistochemistry. MGC-803 and AGS cells were transfected with lentivirus to upregulate or downregulate SMARCE1 expression. The roles of SMARCE1 in GC cell proliferation, migration, and invasion were determined using Cell Counting Kit-8 assay, colony formation assay, wound healing, transwell migration, and invasion assay. Nude mice models were established to observe tumorigenesis. The specific mitogen-activated protein kinase (MAPK) inhibitor U0126 was utilized to verify the involved pathway. Results: SMARCE1 was highly expressed in GC tissues and cell lines. High expression of SMARCE1 was correlated with the malignant clinicopathological characteristics of GC patients, including tumor size, depth of invasion, degree of differentiation, lymph node involvement, and TNM stage (all P<0.05). Kaplan–Meier survival analysis revealed that high SMARCE1 expression predicted poor prognosis in GC patients (P<0.01). Moreover, SMARCE1 was an independent risk factor of poor prognosis (P<0.01). Functional study revealed that overexpression of SMARCE1 markedly promoted the proliferation, migration, and invasion of GC cells in vitro and tumorigenesis in vivo. Furthermore, SMARCE1 activated the MAPK/ERK signaling pathway. U0126 significantly inhibited the SMARCE1-induced proliferation and mobility of GC cells. Conclusion: SMARCE1 promoted growth and metastasis of GC, indicating its potential usefulness as a prognostic biomarker and target for therapeutic intervention against this disease.
Collapse
Affiliation(s)
- Hao Liu
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yan-Rong Zhao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bo Chen
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zheng Ge
- Department of General Surgery, Huaihe Hospital, Henan University, Kaifeng, Henan, People's Republic of China
| | - Jiang-Sheng Huang
- Department of Minimally Invasive Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
27
|
Guo Q, Li VZ, Nichol JN, Huang F, Yang W, Preston SEJ, Talat Z, Lefrère H, Yu H, Zhang G, Basik M, Gonçalves C, Zhan Y, Plourde D, Su J, Torres J, Marques M, Habyan SA, Bijian K, Amant F, Witcher M, Behbod F, McCaffrey L, Alaoui-Jamali M, Giannakopoulos NV, Brackstone M, Postovit LM, Del Rincón SV, Miller WH. MNK1/NODAL Signaling Promotes Invasive Progression of Breast Ductal Carcinoma In Situ. Cancer Res 2019; 79:1646-1657. [PMID: 30659022 PMCID: PMC6513674 DOI: 10.1158/0008-5472.can-18-1602] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/02/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms by which breast cancers progress from relatively indolent ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) are not well understood. However, this process is critical to the acquisition of metastatic potential. MAPK-interacting serine/threonine-protein kinase 1 (MNK1) signaling can promote cell invasion. NODAL, a morphogen essential for embryogenic patterning, is often reexpressed in breast cancer. Here we describe a MNK1/NODAL signaling axis that promotes DCIS progression to IDC. We generated MNK1 knockout (KO) or constitutively active MNK1 (caMNK1)-expressing human MCF-10A-derived DCIS cell lines, which were orthotopically injected into the mammary glands of mice. Loss of MNK1 repressed NODAL expression, inhibited DCIS to IDC conversion, and decreased tumor relapse and metastasis. Conversely, caMNK1 induced NODAL expression and promoted IDC. The MNK1/NODAL axis promoted cancer stem cell properties and invasion in vitro. The MNK1/2 inhibitor SEL201 blocked DCIS progression to invasive disease in vivo. In clinical samples, IDC and DCIS with microinvasion expressed higher levels of phospho-MNK1 and NODAL versus low-grade (invasion-free) DCIS. Cumulatively, our data support further development of MNK1 inhibitors as therapeutics for preventing invasive disease. SIGNIFICANCE: These findings provide new mechanistic insight into progression of ductal carcinoma and support clinical application of MNK1 inhibitors to delay progression of indolent ductal carcinoma in situ to invasive ductal carcinoma.
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Vivian Z Li
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jessica N Nichol
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fan Huang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - William Yang
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Samuel E J Preston
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Zahra Talat
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Hanne Lefrère
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Henry Yu
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Guihua Zhang
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Mark Basik
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Christophe Gonçalves
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Yao Zhan
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Dany Plourde
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jie Su
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Jose Torres
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Maud Marques
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Sara Al Habyan
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Krikor Bijian
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Frédéric Amant
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Witcher
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Centre, Kansas City, Kansas
| | - Luke McCaffrey
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Goodman Cancer Centre, McGill University, Montréal, Québec, Canada
| | - Moulay Alaoui-Jamali
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Nadia V Giannakopoulos
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Muriel Brackstone
- Departments of Surgery and Oncology, Western University, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Cancer Research Institute of Northern Alberta, Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.
- Department of Oncology, Segal Cancer Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Rossy Cancer Network, McGill University, Montréal, Québec, Canada
| |
Collapse
|
28
|
ILF2 Directly Binds and Stabilizes CREB to Stimulate Malignant Phenotypes of Liver Cancer Cells. Anal Cell Pathol (Amst) 2019; 2019:1575031. [PMID: 30881868 PMCID: PMC6387701 DOI: 10.1155/2019/1575031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/12/2018] [Accepted: 10/20/2018] [Indexed: 12/14/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) is overexpressed and has an oncogenic role in hepatocellular carcinoma (HCC). Interleukin enhancer binding factor 2 (ILF2) has become research hotspot in liver cancer recently. However, it is still unclear whether and how CREB and ILF2 interact with each other. And how this interaction exerts its role in occurrence and development of liver cancer is still unclear. Here, we found that ILF2 directly bound with CREB, and this binding was essential for the malignant phenotypes of liver cancer cells. Moreover, we found that ILF2 acted as one of the upstream proteins of CREB and promoted CREB only in the protein level, whereas ILF2 expression was not regulated by CREB. Mechanistically, ILF2 bound to the pKID domain of CREB and stimulated its phosphorylation at Ser133. Taken together, our study finds a novel interaction between CREB and ILF2 in liver cancer, and this interaction might play a role in the diagnosis and remedy of liver cancer.
Collapse
|
29
|
Gupta PB, Pastushenko I, Skibinski A, Blanpain C, Kuperwasser C. Phenotypic Plasticity: Driver of Cancer Initiation, Progression, and Therapy Resistance. Cell Stem Cell 2019; 24:65-78. [PMID: 30554963 PMCID: PMC7297507 DOI: 10.1016/j.stem.2018.11.011] [Citation(s) in RCA: 403] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our traditional understanding of phenotypic plasticity in adult somatic cells comprises dedifferentiation and transdifferentiation in the context of tissue regeneration or wound healing. Although dedifferentiation is central to tissue repair and stemness, this process inherently carries the risk of cancer initiation. Consequently, recent research suggests phenotypic plasticity as a new paradigm for understanding cancer initiation, progression, and resistance to therapy. Here, we discuss how cells acquire plasticity and the role of plasticity in initiating cancer, cancer progression, and metastasis and in developing therapy resistance. We also highlight the epithelial-to-mesenchymal transition (EMT) and known molecular mechanisms underlying plasticity and we consider potential therapeutic avenues.
Collapse
Affiliation(s)
- Piyush B Gupta
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Ievgenia Pastushenko
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium
| | - Adam Skibinski
- Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Molecular Oncology Research Institute, Tufts Medical Center, 800 Washington St., Boston, MA 02111, USA
| | - Cedric Blanpain
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium; WELBIO, Université Libre de Bruxelles, Brussels 1070, Belgium.
| | - Charlotte Kuperwasser
- Université Libre de Bruxelles, Laboratory of Stem Cells and Cancer, Brussels 1070, Belgium; Department of Developmental, Chemical and Molecular Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA; Raymond and Beverly Sackler Convergence Laboratory, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111, USA.
| |
Collapse
|
30
|
Shee K, Muller KE, Marotti J, Miller TW, Wells WA, Tsongalis GJ. Ductal Carcinoma in Situ Biomarkers in a Precision Medicine Era: Current and Future Molecular-Based Testing. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:956-965. [PMID: 30385093 DOI: 10.1016/j.ajpath.2018.08.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/09/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Historically, ductal carcinoma in situ (DCIS) of the breast has been managed aggressively with surgery and radiotherapy because of a risk of progression to invasive ductal carcinoma. However, this treatment paradigm has been challenged by overtreatment concerns and evidence that suggests that DCIS can be stratified according to risk of recurrence or risk of progression to invasive disease. Traditional methods of risk stratification include histologic grade and hormone receptor status. Recent technological advancements have enabled an era of precision medicine, where DCIS can be molecularly analyzed by tools, such as next-generation DNA and RNA sequencing, to identify molecular biomarkers for risk stratification. These findings have led to the development of tools such as the Oncotype DX Breast DCIS Score, a gene expression-based assay with the potential to prevent overtreatment in low-risk disease.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon
| | - Kristen E Muller
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jonathan Marotti
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Todd W Miller
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon
| | - Wendy A Wells
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Gregory J Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire.
| |
Collapse
|
31
|
Mao C, Wang M, Qian B, Ouyang L, Shi Y, Liu N, Chen L, Xiao D, Wang X, Cao Y, Liu S, Tao Y, Liu W. Aryl hydrocarbon receptor activated by benzo (a) pyrene promotes SMARCA6 expression in NSCLC. Am J Cancer Res 2018; 8:1214-1227. [PMID: 30094095 PMCID: PMC6079155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023] Open
Abstract
Recent studies suggest that individual subunits of chromatin-remodeling complexes generate epigenetically specific signaling in tumorigenicity. The impact of environmental factors on the chromatin-remodeling factor has not been thoroughly elucidated to date. We detected the expression level of SMARCA6 (SWI/SNF2-Related, Matrix-Associated, Actin-Dependent Regulator of Chromatin, Subfamily A, Member 6) in NSCLC (Non-small-cell lung carcinoma) and measured it through quantitative real-time PCR (qRT-PCR) and immunohistochemistry. The effects of BaP on proliferation and cell cycle progression were evaluated using MTT, colony formation and FACS analyses. Tumor growth in vivo was observed in a xenograft model. ChIP and qPCR were performed to validate that SMARCA6 was a potential target of AhR in NSCLC. As a result, BaP increased SMARCA6 expression. Smoking was linked with elevated SMARCA6 expression in NSCLC. BaP promoted cancer progression in vitro and in vivo. ChIP assay confirmed that BaP increases SMARCA6 expression via recruitment of AhR and induces SMARCA6 expression by facilitating AhR translocation to the nucleus. Furthermore, inhibition of AhR expression decreases SMARCA6 expression in NSCLC. Finally, knockdown of SMARCA6 attenuates BaP-induced cancer progression. This study demonstrates that BaP promotes proliferation by activation of AhR, which promotes SMARCA6 expression, and may identify new diagnostic and therapeutic targets in lung cancer.
Collapse
Affiliation(s)
- Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Min Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
- Department of Histology and Embryology, School of Basic Medicine, Central South UniversityChangsha 410013, Hunan, China
| | - Banglun Qian
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Lianlian Ouyang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South UniversityChangsha 410078, Hunan, China
- Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, Central South UniversityChangsha 410078, Hunan, China
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
- Institute of Medical Sciences, Xiangya Hospital, Central South UniversityChangsha 410008, Hunan, China
| | - Wenliang Liu
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
32
|
Cigarette smoke and chewing tobacco alter expression of different sets of miRNAs in oral keratinocytes. Sci Rep 2018; 8:7040. [PMID: 29728663 PMCID: PMC5935709 DOI: 10.1038/s41598-018-25498-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/23/2018] [Indexed: 12/17/2022] Open
Abstract
Carcinogenic effect of tobacco in oral cancer is through chewing and/or smoking. Significant differences exist in development of oral cancer between tobacco users and non-users. However, molecular alterations induced by different forms of tobacco are yet to be fully elucidated. We developed cellular models of chronic exposure to chewing tobacco and cigarette smoke using immortalized oral keratinocytes. Chronic exposure to tobacco resulted in increased cell scattering and invasiveness in immortalized oral keratinocytes. miRNA sequencing using Illumina HiSeq 2500 resulted in the identification of 10 significantly dysregulated miRNAs (4 fold; p ≤ 0.05) in chewing tobacco treated cells and 6 in cigarette smoke exposed cells. We integrated this data with global proteomic data and identified 36 protein targets that showed inverse expression pattern in chewing tobacco treated cells and 16 protein targets that showed inverse expression in smoke exposed cells. In addition, we identified 6 novel miRNAs in chewing tobacco treated cells and 18 novel miRNAs in smoke exposed cells. Integrative analysis of dysregulated miRNAs and their targets indicates that signaling mechanisms leading to oncogenic transformation are distinct between both forms of tobacco. Our study demonstrates alterations in miRNA expression in oral cells in response to two frequently used forms of tobacco.
Collapse
|
33
|
BPIFB1 (LPLUNC1) inhibits migration and invasion of nasopharyngeal carcinoma by interacting with VTN and VIM. Br J Cancer 2017; 118:233-247. [PMID: 29123267 PMCID: PMC5785741 DOI: 10.1038/bjc.2017.385] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/21/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Bactericidal/Permeability-increasing-fold-containing family B member 1 (BPIFB1, previously termed LPLUNC1) is highly expressed in the nasopharynx, significantly downregulated in nasopharyngeal carcinoma (NPC), and associated with prognosis in NPC patients. Because metastasis represents the primary cause of NPC-related death, we explored the role of BPIFB1 in NPC migration and invasion. Methods: The role of BPIFB1 in NPC metastasis was investigated in vitro and in vivo. A co-immunoprecipitation assay coupled with mass spectrometry was used to identify BPIFB1-binding proteins. Additionally, western blotting, immunofluorescence, and immunohistochemistry allowed assessment of the molecular mechanisms associated with BPIFB1-specific metastatic inhibition via vitronectin (VTN) and vimentin (VIM) interactions. Results: Our results showed that BPIFB1 expression markedly inhibited NPC cell migration, invasion, and lung-metastatic abilities. Additionally, identification of two BPIFB1-interacting proteins, VTN and VIM, showed that BPIFB1 reduced VTN expression and the formation of a VTN-integrin αV complex in NPC cells, leading to inhibition of the FAK/Src/ERK signalling pathway. Moreover, BPIFB1 attenuated NPC cell migration and invasion by inhibiting VTN- or VIM-induced epithelial–mesenchymal transition. Conclusions: This study represents the first demonstration of BPIFB1 function in NPC migration, invasion, and lung metastasis. Our findings indicate that re-expression of BPIFB1 might represent a useful strategy for preventing and treating NPC.
Collapse
|