1
|
Clarke S, Da Costa S, Crottaz-Herbette S. Dual Representation of the Auditory Space. Brain Sci 2024; 14:535. [PMID: 38928534 PMCID: PMC11201621 DOI: 10.3390/brainsci14060535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Auditory spatial cues contribute to two distinct functions, of which one leads to explicit localization of sound sources and the other provides a location-linked representation of sound objects. Behavioral and imaging studies demonstrated right-hemispheric dominance for explicit sound localization. An early clinical case study documented the dissociation between the explicit sound localizations, which was heavily impaired, and fully preserved use of spatial cues for sound object segregation. The latter involves location-linked encoding of sound objects. We review here evidence pertaining to brain regions involved in location-linked representation of sound objects. Auditory evoked potential (AEP) and functional magnetic resonance imaging (fMRI) studies investigated this aspect by comparing encoding of individual sound objects, which changed their locations or remained stationary. Systematic search identified 1 AEP and 12 fMRI studies. Together with studies of anatomical correlates of impaired of spatial-cue-based sound object segregation after focal brain lesions, the present evidence indicates that the location-linked representation of sound objects involves strongly the left hemisphere and to a lesser degree the right hemisphere. Location-linked encoding of sound objects is present in several early-stage auditory areas and in the specialized temporal voice area. In these regions, emotional valence benefits from location-linked encoding as well.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Av. Pierre-Decker 5, 1011 Lausanne, Switzerland; (S.D.C.); (S.C.-H.)
| | | | | |
Collapse
|
2
|
McMullin MA, Kumar R, Higgins NC, Gygi B, Elhilali M, Snyder JS. Preliminary Evidence for Global Properties in Human Listeners During Natural Auditory Scene Perception. Open Mind (Camb) 2024; 8:333-365. [PMID: 38571530 PMCID: PMC10990578 DOI: 10.1162/opmi_a_00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/10/2024] [Indexed: 04/05/2024] Open
Abstract
Theories of auditory and visual scene analysis suggest the perception of scenes relies on the identification and segregation of objects within it, resembling a detail-oriented processing style. However, a more global process may occur while analyzing scenes, which has been evidenced in the visual domain. It is our understanding that a similar line of research has not been explored in the auditory domain; therefore, we evaluated the contributions of high-level global and low-level acoustic information to auditory scene perception. An additional aim was to increase the field's ecological validity by using and making available a new collection of high-quality auditory scenes. Participants rated scenes on 8 global properties (e.g., open vs. enclosed) and an acoustic analysis evaluated which low-level features predicted the ratings. We submitted the acoustic measures and average ratings of the global properties to separate exploratory factor analyses (EFAs). The EFA of the acoustic measures revealed a seven-factor structure explaining 57% of the variance in the data, while the EFA of the global property measures revealed a two-factor structure explaining 64% of the variance in the data. Regression analyses revealed each global property was predicted by at least one acoustic variable (R2 = 0.33-0.87). These findings were extended using deep neural network models where we examined correlations between human ratings of global properties and deep embeddings of two computational models: an object-based model and a scene-based model. The results support that participants' ratings are more strongly explained by a global analysis of the scene setting, though the relationship between scene perception and auditory perception is multifaceted, with differing correlation patterns evident between the two models. Taken together, our results provide evidence for the ability to perceive auditory scenes from a global perspective. Some of the acoustic measures predicted ratings of global scene perception, suggesting representations of auditory objects may be transformed through many stages of processing in the ventral auditory stream, similar to what has been proposed in the ventral visual stream. These findings and the open availability of our scene collection will make future studies on perception, attention, and memory for natural auditory scenes possible.
Collapse
Affiliation(s)
| | - Rohit Kumar
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nathan C. Higgins
- Department of Communication Sciences & Disorders, University of South Florida, Tampa, FL, USA
| | - Brian Gygi
- East Bay Institute for Research and Education, Martinez, CA, USA
| | - Mounya Elhilali
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Joel S. Snyder
- Department of Psychology, University of Nevada, Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
3
|
Kim T, Chung M, Jeong E, Cho YS, Kwon OS, Kim SP. Cortical representation of musical pitch in event-related potentials. Biomed Eng Lett 2023; 13:441-454. [PMID: 37519879 PMCID: PMC10382469 DOI: 10.1007/s13534-023-00274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 08/01/2023] Open
Abstract
Neural coding of auditory stimulus frequency is well-documented; however, the cortical signals and perceptual correlates of pitch have not yet been comprehensively investigated. This study examined the temporal patterns of event-related potentials (ERP) in response to single tones of pitch chroma, with an assumption that these patterns would be more prominent in musically-trained individuals than in non-musically-trained individuals. Participants with and without musical training (N = 20) were presented with seven notes on the C major scale (C4, D4, E4, F4, G4, A4, and B4), and whole-brain activities were recorded. A linear regression analysis between the ERP amplitude and the seven notes showed that the ERP amplitude increased or decreased as the frequency of the pitch increased. Remarkably, these linear correlations were anti-symmetric between the hemispheres. Specifically, we found that ERP amplitudes of the left and right frontotemporal areas decreased and increased, respectively, as the pitch frequency increased. Although linear slopes were significant in both groups, the musically-trained group exhibited marginally steeper slope, and their ERP amplitudes were most discriminant for frequency of tone of pitch at earlier latency than in the non-musically-trained group (~ 460 ms vs ~ 630 ms after stimulus onset). Thus, the ERP amplitudes in frontotemporal areas varied according to the pitch frequency, with the musically-trained participants demonstrating a wider range of amplitudes and inter-hemispheric anti-symmetric patterns. Our findings may provide new insights on cortical processing of musical pitch, revealing anti-symmetric processing of musical pitch between hemispheres, which appears to be more pronounced in musically-trained people. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00274-y.
Collapse
Affiliation(s)
- Taehyoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Miyoung Chung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eunju Jeong
- Department of Music and Science for Clinical Practice, College of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea
| | - Yang Seok Cho
- School of Psychology, Korea University, Seoul, Republic of Korea
| | - Oh-Sang Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
4
|
Sun L, Li C, Wang S, Si Q, Lin M, Wang N, Sun J, Li H, Liang Y, Wei J, Zhang X, Zhang J. Left frontal eye field encodes sound locations during passive listening. Cereb Cortex 2023; 33:3067-3079. [PMID: 35858212 DOI: 10.1093/cercor/bhac261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies reported that auditory cortices (AC) were mostly activated by sounds coming from the contralateral hemifield. As a result, sound locations could be encoded by integrating opposite activations from both sides of AC ("opponent hemifield coding"). However, human auditory "where" pathway also includes a series of parietal and prefrontal regions. It was unknown how sound locations were represented in those high-level regions during passive listening. Here, we investigated the neural representation of sound locations in high-level regions by voxel-level tuning analysis, regions-of-interest-level (ROI-level) laterality analysis, and ROI-level multivariate pattern analysis. Functional magnetic resonance imaging data were collected while participants listened passively to sounds from various horizontal locations. We found that opponent hemifield coding of sound locations not only existed in AC, but also spanned over intraparietal sulcus, superior parietal lobule, and frontal eye field (FEF). Furthermore, multivariate pattern representation of sound locations in both hemifields could be observed in left AC, right AC, and left FEF. Overall, our results demonstrate that left FEF, a high-level region along the auditory "where" pathway, encodes sound locations during passive listening in two ways: a univariate opponent hemifield activation representation and a multivariate full-field activation pattern representation.
Collapse
Affiliation(s)
- Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Songjian Wang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Qian Si
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Meng Lin
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ningyu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Juan Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
5
|
Wright BA, Dai H. Discrimination thresholds for interaural-time differences and interaural-level differences in naïve listeners: Sex differences and learning. Hear Res 2022; 424:108599. [DOI: 10.1016/j.heares.2022.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/04/2022]
|
6
|
Luke R, Innes-Brown H, Undurraga JA, McAlpine D. Human cortical processing of interaural coherence. iScience 2022; 25:104181. [PMID: 35494228 PMCID: PMC9051632 DOI: 10.1016/j.isci.2022.104181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Sounds reach the ears as a mixture of energy generated by different sources. Listeners extract cues that distinguish different sources from one another, including how similar sounds arrive at the two ears, the interaural coherence (IAC). Here, we find listeners cannot reliably distinguish two completely interaurally coherent sounds from a single sound with reduced IAC. Pairs of sounds heard toward the front were readily confused with single sounds with high IAC, whereas those heard to the sides were confused with single sounds with low IAC. Sounds that hold supra-ethological spatial cues are perceived as more diffuse than can be accounted for by their IAC, and this is accounted for by a computational model comprising a restricted, and sound-frequency dependent, distribution of auditory-spatial detectors. We observed elevated cortical hemodynamic responses for sounds with low IAC, suggesting that the ambiguity elicited by sounds with low interaural similarity imposes elevated cortical load.
Collapse
Affiliation(s)
- Robert Luke
- Macquarie University, Sydney, NSW, Australia
- The Bionics Institute, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
7
|
Lertpoompunya A, Ozmeral EJ, Higgins NC, Eddins AC, Eddins DA. Large group differences in binaural sensitivity are represented in preattentive responses from auditory cortex. J Neurophysiol 2022; 127:660-672. [PMID: 35108112 PMCID: PMC8896993 DOI: 10.1152/jn.00360.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
Correlated sounds presented to two ears are perceived as compact and centrally lateralized, whereas decorrelation between ears leads to intracranial image widening. Though most listeners have fine resolution for perceptual changes in interaural correlation (IAC), some investigators have reported large variability in IAC thresholds, and some normal-hearing listeners even exhibit seemingly debilitating IAC thresholds. It is unknown whether or not this variability across individuals and outlier manifestations are a product of task difficulty, poor training, or a neural deficit in the binaural auditory system. The purpose of this study was first to identify listeners with normal and abnormal IAC resolution, second to evaluate the neural responses elicited by IAC changes, and third to use a well-established model of binaural processing to determine a potential explanation for observed individual variability. Nineteen subjects were enrolled in the study, eight of whom were identified as poor performers in the IAC-threshold task. Global scalp responses (N1 and P2 amplitudes of an auditory change complex) in the individuals with poor IAC behavioral thresholds were significantly smaller than for listeners with better IAC resolution. Source-localized evoked responses confirmed this group effect in multiple subdivisions of the auditory cortex, including Heschl's gyrus, planum temporale, and the temporal sulcus. In combination with binaural modeling results, this study provides objective electrophysiological evidence of a binaural processing deficit linked to internal noise, that corresponds to very poor IAC thresholds in listeners that otherwise have normal audiometric profiles and lack spatial hearing complaints.NEW & NOTEWORTHY Group differences in the perception of interaural correlation (IAC) were observed in human adults with normal audiometric sensitivity. These differences were reflected in cortical-evoked activity measured via electroencephalography (EEG). For some participants, weak representation of the binaural cue at the cortical level in preattentive N1-P2 cortical responses may be indicative of a potential processing deficit. Such a deficit may be related to a poorly understood condition known as hidden hearing loss.
Collapse
Affiliation(s)
- Angkana Lertpoompunya
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| | - Erol J Ozmeral
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Nathan C Higgins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - Ann C Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
- Department of Communication Sciences and Disorders, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Tian X, Liu Y, Guo Z, Cai J, Tang J, Chen F, Zhang H. Cerebral Representation of Sound Localization Using Functional Near-Infrared Spectroscopy. Front Neurosci 2022; 15:739706. [PMID: 34970110 PMCID: PMC8712652 DOI: 10.3389/fnins.2021.739706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
Sound localization is an essential part of auditory processing. However, the cortical representation of identifying the direction of sound sources presented in the sound field using functional near-infrared spectroscopy (fNIRS) is currently unknown. Therefore, in this study, we used fNIRS to investigate the cerebral representation of different sound sources. Twenty-five normal-hearing subjects (aged 26 ± 2.7, male 11, female 14) were included and actively took part in a block design task. The test setup for sound localization was composed of a seven-speaker array spanning a horizontal arc of 180° in front of the participants. Pink noise bursts with two intensity levels (48 dB/58 dB) were randomly applied via five loudspeakers (–90°/–30°/–0°/+30°/+90°). Sound localization task performances were collected, and simultaneous signals from auditory processing cortical fields were recorded for analysis by using a support vector machine (SVM). The results showed a classification accuracy of 73.60, 75.60, and 77.40% on average at –90°/0°, 0°/+90°, and –90°/+90° with high intensity, and 70.60, 73.6, and 78.6% with low intensity. The increase of oxyhemoglobin was observed in the bilateral non-primary auditory cortex (AC) and dorsolateral prefrontal cortex (dlPFC). In conclusion, the oxyhemoglobin (oxy-Hb) response showed different neural activity patterns between the lateral and front sources in the AC and dlPFC. Our results may serve as a basic contribution for further research on the use of fNIRS in spatial auditory studies.
Collapse
Affiliation(s)
- Xuexin Tian
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yimeng Liu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zengzhi Guo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jieqing Cai
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Moore TM, Picou EM, Hornsby BWY, Gallun FJ, Stecker GC. Binaural spatial adaptation as a mechanism for asymmetric trading of interaural time and level differences. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 148:526. [PMID: 32873000 PMCID: PMC7402707 DOI: 10.1121/10.0001622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 05/25/2023]
Abstract
A classic paradigm used to quantify the perceptual weighting of binaural spatial cues requires a listener to adjust the value of one cue, while the complementary cue is held constant. Adjustments are made until the auditory percept appears centered in the head, and the values of both cues are recorded as a trading relation (TR), most commonly in μs interaural time difference per dB interaural level difference. Interestingly, existing literature has shown that TRs differ according to the cue being adjusted. The current study investigated whether cue-specific adaptation, which might arise due to the continuous, alternating presentation of signals during adjustment tasks, could account for this poorly understood phenomenon. Three experiments measured TRs via adjustment and via lateralization of single targets in virtual reality (VR). Targets were 500 Hz pure tones preceded by silence or by adapting trains that held one of the cues constant. VR removed visual anchors and provided an intuitive response technique during lateralization. The pattern of results suggests that adaptation can account for cue-dependent TRs. In addition, VR seems to be a viable tool for psychophysical tasks.
Collapse
Affiliation(s)
- Travis M Moore
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Erin M Picou
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Benjamin W Y Hornsby
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Frederick J Gallun
- Veterans Affairs Rehabilitation Research and Development National Center for Rehabilitative Auditory Research, Portland Veterans Affairs Medical Center, 3710 Southwest U.S. Veterans Hospital Road, Portland, Oregon 97239, USA
| | - G Christopher Stecker
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
10
|
Kopco N, Doreswamy KK, Huang S, Rossi S, Ahveninen J. Cortical auditory distance representation based on direct-to-reverberant energy ratio. Neuroimage 2020; 208:116436. [PMID: 31809885 PMCID: PMC6997045 DOI: 10.1016/j.neuroimage.2019.116436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 11/26/2022] Open
Abstract
Auditory distance perception and its neuronal mechanisms are poorly understood, mainly because 1) it is difficult to separate distance processing from intensity processing, 2) multiple intensity-independent distance cues are often available, and 3) the cues are combined in a context-dependent way. A recent fMRI study identified human auditory cortical area representing intensity-independent distance for sources presented along the interaural axis (Kopco et al. PNAS, 109, 11019-11024). For these sources, two intensity-independent cues are available, interaural level difference (ILD) and direct-to-reverberant energy ratio (DRR). Thus, the observed activations may have been contributed by not only distance-related, but also direction-encoding neuron populations sensitive to ILD. Here, the paradigm from the previous study was used to examine DRR-based distance representation for sounds originating in front of the listener, where ILD is not available. In a virtual environment, we performed behavioral and fMRI experiments, combined with computational analyses to identify the neural representation of distance based on DRR. The stimuli varied in distance (15-100 cm) while their received intensity was varied randomly and independently of distance. Behavioral performance showed that intensity-independent distance discrimination is accurate for frontal stimuli, even though it is worse than for lateral stimuli. fMRI activations for sounds varying in frontal distance, as compared to varying only in intensity, increased bilaterally in the posterior banks of Heschl's gyri, the planum temporale, and posterior superior temporal gyrus regions. Taken together, these results suggest that posterior human auditory cortex areas contain neuron populations that are sensitive to distance independent of intensity and of binaural cues relevant for directional hearing.
Collapse
Affiliation(s)
- Norbert Kopco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, 02129, USA; Institute of Computer Science, P. J. Šafárik University, Košice, 04001, Slovakia; Hearing Research Center, Boston University, Boston, MA, 02215, USA.
| | - Keerthi Kumar Doreswamy
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, 02129, USA; Institute of Computer Science, P. J. Šafárik University, Košice, 04001, Slovakia
| | - Samantha Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Stephanie Rossi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jyrki Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, 02129, USA
| |
Collapse
|
11
|
Fu D, Weber C, Yang G, Kerzel M, Nan W, Barros P, Wu H, Liu X, Wermter S. What Can Computational Models Learn From Human Selective Attention? A Review From an Audiovisual Unimodal and Crossmodal Perspective. Front Integr Neurosci 2020; 14:10. [PMID: 32174816 PMCID: PMC7056875 DOI: 10.3389/fnint.2020.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
Selective attention plays an essential role in information acquisition and utilization from the environment. In the past 50 years, research on selective attention has been a central topic in cognitive science. Compared with unimodal studies, crossmodal studies are more complex but necessary to solve real-world challenges in both human experiments and computational modeling. Although an increasing number of findings on crossmodal selective attention have shed light on humans' behavioral patterns and neural underpinnings, a much better understanding is still necessary to yield the same benefit for intelligent computational agents. This article reviews studies of selective attention in unimodal visual and auditory and crossmodal audiovisual setups from the multidisciplinary perspectives of psychology and cognitive neuroscience, and evaluates different ways to simulate analogous mechanisms in computational models and robotics. We discuss the gaps between these fields in this interdisciplinary review and provide insights about how to use psychological findings and theories in artificial intelligence from different perspectives.
Collapse
Affiliation(s)
- Di Fu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Cornelius Weber
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Guochun Yang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Matthias Kerzel
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Weizhi Nan
- Department of Psychology, Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China
| | - Pablo Barros
- Department of Informatics, University of Hamburg, Hamburg, Germany
| | - Haiyan Wu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Stefan Wermter
- Department of Informatics, University of Hamburg, Hamburg, Germany
| |
Collapse
|
12
|
Deng Y, Choi I, Shinn-Cunningham B, Baumgartner R. Impoverished auditory cues limit engagement of brain networks controlling spatial selective attention. Neuroimage 2019; 202:116151. [PMID: 31493531 DOI: 10.1016/j.neuroimage.2019.116151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/02/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022] Open
Abstract
Spatial selective attention enables listeners to process a signal of interest in natural settings. However, most past studies on auditory spatial attention used impoverished spatial cues: presenting competing sounds to different ears, using only interaural differences in time (ITDs) and/or intensity (IIDs), or using non-individualized head-related transfer functions (HRTFs). Here we tested the hypothesis that impoverished spatial cues impair spatial auditory attention by only weakly engaging relevant cortical networks. Eighteen normal-hearing listeners reported the content of one of two competing syllable streams simulated at roughly +30° and -30° azimuth. The competing streams consisted of syllables from two different-sex talkers. Spatialization was based on natural spatial cues (individualized HRTFs), individualized IIDs, or generic ITDs. We measured behavioral performance as well as electroencephalographic markers of selective attention. Behaviorally, subjects recalled target streams most accurately with natural cues. Neurally, spatial attention significantly modulated early evoked sensory response magnitudes only for natural cues, not in conditions using only ITDs or IIDs. Consistent with this, parietal oscillatory power in the alpha band (8-14 Hz; associated with filtering out distracting events from unattended directions) showed significantly less attentional modulation with isolated spatial cues than with natural cues. Our findings support the hypothesis that spatial selective attention networks are only partially engaged by impoverished spatial auditory cues. These results not only suggest that studies using unnatural spatial cues underestimate the neural effects of spatial auditory attention, they also illustrate the importance of preserving natural spatial cues in assistive listening devices to support robust attentional control.
Collapse
Affiliation(s)
- Yuqi Deng
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Inyong Choi
- Communication Sciences & Disorders, University of Iowa, Iowa City, IA, 52242, USA
| | - Barbara Shinn-Cunningham
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Robert Baumgartner
- Biomedical Engineering, Boston University, Boston, MA, 02215, USA; Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
13
|
Abstract
Humans and other animals use spatial hearing to rapidly localize events in the environment. However, neural encoding of sound location is a complex process involving the computation and integration of multiple spatial cues that are not represented directly in the sensory organ (the cochlea). Our understanding of these mechanisms has increased enormously in the past few years. Current research is focused on the contribution of animal models for understanding human spatial audition, the effects of behavioural demands on neural sound location encoding, the emergence of a cue-independent location representation in the auditory cortex, and the relationship between single-source and concurrent location encoding in complex auditory scenes. Furthermore, computational modelling seeks to unravel how neural representations of sound source locations are derived from the complex binaural waveforms of real-life sounds. In this article, we review and integrate the latest insights from neurophysiological, neuroimaging and computational modelling studies of mammalian spatial hearing. We propose that the cortical representation of sound location emerges from recurrent processing taking place in a dynamic, adaptive network of early (primary) and higher-order (posterior-dorsal and dorsolateral prefrontal) auditory regions. This cortical network accommodates changing behavioural requirements and is especially relevant for processing the location of real-life, complex sounds and complex auditory scenes.
Collapse
|
14
|
Neurons in primary auditory cortex represent sound source location in a cue-invariant manner. Nat Commun 2019; 10:3019. [PMID: 31289272 PMCID: PMC6616358 DOI: 10.1038/s41467-019-10868-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
Auditory cortex is required for sound localisation, but how neural firing in auditory cortex underlies our perception of sound sources in space remains unclear. Specifically, whether neurons in auditory cortex represent spatial cues or an integrated representation of auditory space across cues is not known. Here, we measured the spatial receptive fields of neurons in primary auditory cortex (A1) while ferrets performed a relative localisation task. Manipulating the availability of binaural and spectral localisation cues had little impact on ferrets’ performance, or on neural spatial tuning. A subpopulation of neurons encoded spatial position consistently across localisation cue type. Furthermore, neural firing pattern decoders outperformed two-channel model decoders using population activity. Together, these observations suggest that A1 encodes the location of sound sources, as opposed to spatial cue values. The brain's auditory cortex is involved not just in detection of sounds, but also in localizing them. Here, the authors show that neurons in ferret primary auditory cortex (A1) encode the location of sound sources, as opposed to merely reflecting spatial cues.
Collapse
|
15
|
Ozmeral EJ, Eddins DA, Eddins AC. Electrophysiological responses to lateral shifts are not consistent with opponent-channel processing of interaural level differences. J Neurophysiol 2019; 122:737-748. [PMID: 31242052 DOI: 10.1152/jn.00090.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical encoding of auditory space relies on two major peripheral cues, interaural time difference (ITD) and interaural level difference (ILD) of the sounds arriving at a listener's ears. In much of the precortical auditory pathway, ITD and ILD cues are processed independently, and it is assumed that cue integration is a higher order process. However, there remains debate on how ITDs and ILDs are encoded in the cortex and whether they share a common mechanism. The present study used electroencephalography (EEG) to measure evoked cortical potentials from narrowband noise stimuli with imposed binaural cue changes. Previous studies have similarly tested ITD shifts to demonstrate that neural populations broadly favor one spatial hemifield over the other, which is consistent with an opponent-channel model that computes the relative activity between broadly tuned neural populations. However, it is still a matter of debate whether the same coding scheme applies to ILDs and, if so, whether processing the two binaural cues is distributed across similar regions of the cortex. The results indicate that ITD and ILD cues have similar neural signatures with respect to the monotonic responses to shift magnitude; however, the direction of the shift did not elicit responses equally across cues. Specifically, ITD shifts evoked greater responses for outward than inward shifts, independently of the spatial hemifield of the shift, whereas ILD-shift responses were dependent on the hemifield in which the shift occurred. Active cortical structures showed only minor overlap between responses to cues, suggesting the two are not represented by the same pathway.NEW & NOTEWORTHY Interaural time differences (ITDs) and interaural level differences (ILDs) are critical to locating auditory sources in the horizontal plane. The higher order perceptual feature of auditory space is thought to be encoded together by these binaural differences, yet evidence of their integration in cortex remains elusive. Although present results show some common effects between the two cues, key differences were observed that are not consistent with an ITD-like opponent-channel process for ILD encoding.
Collapse
Affiliation(s)
- Erol J Ozmeral
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| | - David A Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida.,Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Ann Clock Eddins
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, Florida
| |
Collapse
|
16
|
Representation of Auditory Motion Directions and Sound Source Locations in the Human Planum Temporale. J Neurosci 2019; 39:2208-2220. [PMID: 30651333 DOI: 10.1523/jneurosci.2289-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 11/21/2022] Open
Abstract
The ability to compute the location and direction of sounds is a crucial perceptual skill to efficiently interact with dynamic environments. How the human brain implements spatial hearing is, however, poorly understood. In our study, we used fMRI to characterize the brain activity of male and female humans listening to sounds moving left, right, up, and down as well as static sounds. Whole-brain univariate results contrasting moving and static sounds varying in their location revealed a robust functional preference for auditory motion in bilateral human planum temporale (hPT). Using independently localized hPT, we show that this region contains information about auditory motion directions and, to a lesser extent, sound source locations. Moreover, hPT showed an axis of motion organization reminiscent of the functional organization of the middle-temporal cortex (hMT+/V5) for vision. Importantly, whereas motion direction and location rely on partially shared pattern geometries in hPT, as demonstrated by successful cross-condition decoding, the responses elicited by static and moving sounds were, however, significantly distinct. Altogether, our results demonstrate that the hPT codes for auditory motion and location but that the underlying neural computation linked to motion processing is more reliable and partially distinct from the one supporting sound source location.SIGNIFICANCE STATEMENT Compared with what we know about visual motion, little is known about how the brain implements spatial hearing. Our study reveals that motion directions and sound source locations can be reliably decoded in the human planum temporale (hPT) and that they rely on partially shared pattern geometries. Our study, therefore, sheds important new light on how computing the location or direction of sounds is implemented in the human auditory cortex by showing that those two computations rely on partially shared neural codes. Furthermore, our results show that the neural representation of moving sounds in hPT follows a "preferred axis of motion" organization, reminiscent of the coding mechanisms typically observed in the occipital middle-temporal cortex (hMT+/V5) region for computing visual motion.
Collapse
|
17
|
Active Sound Localization Sharpens Spatial Tuning in Human Primary Auditory Cortex. J Neurosci 2018; 38:8574-8587. [PMID: 30126968 DOI: 10.1523/jneurosci.0587-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/09/2018] [Accepted: 07/19/2018] [Indexed: 11/21/2022] Open
Abstract
Spatial hearing sensitivity in humans is dynamic and task-dependent, but the mechanisms in human auditory cortex that enable dynamic sound location encoding remain unclear. Using functional magnetic resonance imaging (fMRI), we assessed how active behavior affects encoding of sound location (azimuth) in primary auditory cortical areas and planum temporale (PT). According to the hierarchical model of auditory processing and cortical functional specialization, PT is implicated in sound location ("where") processing. Yet, our results show that spatial tuning profiles in primary auditory cortical areas (left primary core and right caudo-medial belt) sharpened during a sound localization ("where") task compared with a sound identification ("what") task. In contrast, spatial tuning in PT was sharp but did not vary with task performance. We further applied a population pattern decoder to the measured fMRI activity patterns, which confirmed the task-dependent effects in the left core: sound location estimates from fMRI patterns measured during active sound localization were most accurate. In PT, decoding accuracy was not modulated by task performance. These results indicate that changes of population activity in human primary auditory areas reflect dynamic and task-dependent processing of sound location. As such, our findings suggest that the hierarchical model of auditory processing may need to be revised to include an interaction between primary and functionally specialized areas depending on behavioral requirements.SIGNIFICANCE STATEMENT According to a purely hierarchical view, cortical auditory processing consists of a series of analysis stages from sensory (acoustic) processing in primary auditory cortex to specialized processing in higher-order areas. Posterior-dorsal cortical auditory areas, planum temporale (PT) in humans, are considered to be functionally specialized for spatial processing. However, this model is based mostly on passive listening studies. Our results provide compelling evidence that active behavior (sound localization) sharpens spatial selectivity in primary auditory cortex, whereas spatial tuning in functionally specialized areas (PT) is narrow but task-invariant. These findings suggest that the hierarchical view of cortical functional specialization needs to be extended: our data indicate that active behavior involves feedback projections from higher-order regions to primary auditory cortex.
Collapse
|
18
|
Neural tracking of auditory motion is reflected by delta phase and alpha power of EEG. Neuroimage 2018; 181:683-691. [PMID: 30053517 DOI: 10.1016/j.neuroimage.2018.07.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 12/29/2022] Open
Abstract
It is of increasing practical interest to be able to decode the spatial characteristics of an auditory scene from electrophysiological signals. However, the cortical representation of auditory space is not well characterized, and it is unclear how cortical activity reflects the time-varying location of a moving sound. Recently, we demonstrated that cortical response measures to discrete noise bursts can be decoded to determine their origin in space. Here we build on these findings to investigate the cortical representation of a continuously moving auditory stimulus using scalp recorded electroencephalography (EEG). In a first experiment, subjects listened to pink noise over headphones which was spectro-temporally modified to be perceived as randomly moving on a semi-circular trajectory in the horizontal plane. While subjects listened to the stimuli, we recorded their EEG using a 128-channel acquisition system. The data were analysed by 1) building a linear regression model (decoder) mapping the relationship between the stimulus location and a training set of EEG data, and 2) using the decoder to reconstruct an estimate of the time-varying sound source azimuth from the EEG data. The results showed that we can decode sound trajectory with a reconstruction accuracy significantly above chance level. Specifically, we found that the phase of delta (<2 Hz) and power of alpha (8-12 Hz) EEG track the dynamics of a moving auditory object. In a follow-up experiment, we replaced the noise with pulse train stimuli containing only interaural level and time differences (ILDs and ITDs respectively). This allowed us to investigate whether our trajectory decoding is sensitive to both acoustic cues. We found that the sound trajectory can be decoded for both ILD and ITD stimuli. Moreover, their neural signatures were similar and even allowed successful cross-cue classification. This supports the notion of integrated processing of ILD and ITD at the cortical level. These results are particularly relevant for application in devices such as cognitively controlled hearing aids and for the evaluation of virtual acoustic environments.
Collapse
|
19
|
Panniello M, King AJ, Dahmen JC, Walker KMM. Local and Global Spatial Organization of Interaural Level Difference and Frequency Preferences in Auditory Cortex. Cereb Cortex 2018; 28:350-369. [PMID: 29136122 PMCID: PMC5991210 DOI: 10.1093/cercor/bhx295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/10/2017] [Indexed: 12/16/2022] Open
Abstract
Despite decades of microelectrode recordings, fundamental questions remain about how auditory cortex represents sound-source location. Here, we used in vivo 2-photon calcium imaging to measure the sensitivity of layer II/III neurons in mouse primary auditory cortex (A1) to interaural level differences (ILDs), the principal spatial cue in this species. Although most ILD-sensitive neurons preferred ILDs favoring the contralateral ear, neurons with either midline or ipsilateral preferences were also present. An opponent-channel decoder accurately classified ILDs using the difference in responses between populations of neurons that preferred contralateral-ear-greater and ipsilateral-ear-greater stimuli. We also examined the spatial organization of binaural tuning properties across the imaged neurons with unprecedented resolution. Neurons driven exclusively by contralateral ear stimuli or by binaural stimulation occasionally formed local clusters, but their binaural categories and ILD preferences were not spatially organized on a more global scale. In contrast, the sound frequency preferences of most neurons within local cortical regions fell within a restricted frequency range, and a tonotopic gradient was observed across the cortical surface of individual mice. These results indicate that the representation of ILDs in mouse A1 is comparable to that of most other mammalian species, and appears to lack systematic or consistent spatial order.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Johannes C Dahmen
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kerry M M Walker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|