1
|
Ruiz-Gutierrez N, Dupas J, Auquier E, Barbarin-Bocahu I, Gaudon-Plesse C, Saveanu C, Graille M, Le Hir H. RNA anchoring of Upf1 facilitates recruitment of Dcp2 in the NMD decapping complex. Nucleic Acids Res 2025; 53:gkaf160. [PMID: 40071934 PMCID: PMC11897886 DOI: 10.1093/nar/gkaf160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Upf1 RNA helicase is a pivotal factor in the conserved nonsense-mediated mRNA decay (NMD) process. Upf1 is responsible for coordinating the recognition of premature termination codons (PTCs) in a translation-dependent manner and subsequently triggering mRNA degradation. Multiple factors assist Upf1 during these two consecutive steps. In Saccharomyces cerevisiae, Upf2 and Upf3 associated with Upf1 (Upf1-2/3) contribute to PTC recognition but are absent from the Upf1-decapping complex that includes Nmd4, Ebs1, Dcp1, and Dcp2. Despite their importance for NMD, the organization and dynamics of these Upf1-containing complexes remain unclear. Using recombinant proteins, here we show how distinct domains of Upf1 make direct contacts with Dcp1/Dcp2, Nmd4, and Ebs1. These proteins also bind to each other, forming an extended network of interactions within the Upf1-decapping complex. Dcp2 and Upf2 compete for the same binding site on the N-terminal CH domain of Upf1, which explains the presence of two mutually exclusive Upf1-containing complexes in cells. Our data demonstrate that Nmd4-assisted recruitment of Upf1 promotes anchoring of the decapping enzyme to NMD targets.
Collapse
Affiliation(s)
- Nadia Ruiz-Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Jeanne Dupas
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Elvire Auquier
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| | - Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM, U1258, Université de Strasbourg, Illkirch, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité de Biologie des ARN des Pathogènes Fongiques, 75015 Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 46 rue d’Ulm, 75005 Paris, France
| |
Collapse
|
2
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
3
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024; 43:6525-6554. [PMID: 39394354 PMCID: PMC11649921 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Chen TW, Liao HW, Noble M, Siao JY, Cheng YH, Chiang WC, Lo YT, Chang CT. Human DCP1 is crucial for mRNA decapping and possesses paralog-specific gene regulating functions. eLife 2024; 13:RP94811. [PMID: 39485278 PMCID: PMC11530239 DOI: 10.7554/elife.94811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Michelle Noble
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Jing-Yi Siao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu-Hsuan Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi-Tzu Lo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
5
|
Kumar R, Zhang F, Niphadkar S, Onu C, Vijjamarri AK, Greenberg ML, Laxman S, Hinnebusch AG. Decapping activators Edc3 and Scd6 act redundantly with Dhh1 in post-transcriptional repression of starvation-induced pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610059. [PMID: 39257769 PMCID: PMC11383670 DOI: 10.1101/2024.08.28.610059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Degradation of many yeast mRNAs involves decapping by the Dcp1:Dcp2 complex. Previous studies on decapping activators Edc3 and Scd6 suggested their limited roles in mRNA decay. RNA-seq analysis of mutants lacking one or both proteins revealed that Scd6 and Edc3 have largely redundant activities in targeting numerous mRNAs for degradation that are masked in the single mutants. These transcripts also are frequently targeted by decapping activators Dhh1 and Pat1, and the collective evidence suggests that Scd6/Edc3 act interchangeably to recruit Dhh1 to Dcp2. Ribosome profiling shows that redundancy between Scd6 and Edc3 and their functional interactions with Dhh1 and Pat1 extend to translational repression of particular transcripts, including a cohort of poorly translated mRNAs displaying interdependent regulation by all four factors. Scd6/Edc3 also participate with Dhh1/Pat1 in post-transcriptional repression of proteins required for respiration and catabolism of alternative carbon sources, which are normally expressed only in limiting glucose. Simultaneously eliminating Scd6/Edc3 increases mitochondrial membrane potential and elevates metabolites of the tricarboxylic acid and glyoxylate cycles typically observed only during growth in low glucose. Thus, Scd6/Edc3 act redundantly, in parallel with Dhh1 and in cooperation with Pat1, to adjust gene expression to nutrient availability by controlling mRNA decapping and decay.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Shreyas Niphadkar
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) GKVK Post Bellary Road Bangalore 560065
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) GKVK Post Bellary Road Bangalore 560065
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Pérez-Ortín JE, Jordán-Pla A, Zhang Y, Moreno-García J, Bassot C, Barba-Aliaga M, de Campos-Mata L, Choder M, Díez J, Piazza I, Pelechano V, García-Martínez J. Comparison of Xrn1 and Rat1 5' → 3' exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay. Yeast 2024; 41:458-472. [PMID: 38874348 DOI: 10.1002/yea.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jorge Moreno-García
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Leire de Campos-Mata
- Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mordechai Choder
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa, Israel
| | - Juana Díez
- Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - José García-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| |
Collapse
|
7
|
Zuo Z, Roux ME, Dagdas YF, Rodriguez E, Petersen M. PAT mRNA decapping factors are required for proper development in Arabidopsis. FEBS Lett 2024; 598:1008-1021. [PMID: 38605280 DOI: 10.1002/1873-3468.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/10/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Evolutionarily conserved protein associated with topoisomerase II (PAT1) proteins activate mRNA decay through binding mRNA and recruiting decapping factors to optimize posttranscriptional reprogramming. Here, we generated multiple mutants of pat1, pat1 homolog 1 (path1), and pat1 homolog 2 (path2) and discovered that pat triple mutants exhibit extremely stunted growth and all mutants with pat1 exhibit leaf serration while mutants with pat1 and path1 display short petioles. All three PATs can be found localized to processing bodies and all PATs can target ASYMMETRIC LEAVES 2-LIKE 9 transcripts for decay to finely regulate apical hook and lateral root development. In conclusion, PATs exhibit both specific and redundant functions during different plant growth stages and our observations underpin the selective regulation of the mRNA decay machinery for proper development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Austria
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
8
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
He F, Jacobson A. Eukaryotic mRNA decapping factors: molecular mechanisms and activity. FEBS J 2023; 290:5057-5085. [PMID: 36098474 PMCID: PMC10008757 DOI: 10.1111/febs.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022]
Abstract
Decapping is the enzymatic removal of 5' cap structures from mRNAs in eukaryotic cells. Cap structures normally enhance mRNA translation and stability, and their excision commits an mRNA to complete 5'-3' exoribonucleolytic digestion and generally ends the physical and functional cellular presence of the mRNA. Decapping plays a pivotal role in eukaryotic cytoplasmic mRNA turnover and is a critical and highly regulated event in multiple 5'-3' mRNA decay pathways, including general 5'-3' decay, nonsense-mediated mRNA decay (NMD), AU-rich element-mediated mRNA decay, microRNA-mediated gene silencing, and targeted transcript-specific mRNA decay. In the yeast Saccharomyces cerevisiae, mRNA decapping is carried out by a single Dcp1-Dcp2 decapping enzyme in concert with the accessory activities of specific regulators commonly known as decapping activators or enhancers. These regulatory proteins include the general decapping activators Edc1, 2, and 3, Dhh1, Scd6, Pat1, and the Lsm1-7 complex, as well as the NMD-specific factors, Upf1, 2, and 3. Here, we focus on in vivo mRNA decapping regulation in yeast. We summarize recently uncovered molecular mechanisms that control selective targeting of the yeast decapping enzyme and discuss new roles for specific decapping activators in controlling decapping enzyme targeting, assembly of target-specific decapping complexes, and the monitoring of mRNA translation. Further, we discuss the kinetic contribution of mRNA decapping for overall decay of different substrate mRNAs and highlight experimental evidence pointing to the functional coordination and physical coupling between events in mRNA deadenylation, decapping, and 5'-3' exoribonucleolytic decay.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, 368 Plantation Street, Worcester, MA 01655
| |
Collapse
|
10
|
Krempl C, Lazzaretti D, Sprangers R. A structural biology view on the enzymes involved in eukaryotic mRNA turnover. Biol Chem 2023; 404:1101-1121. [PMID: 37709756 DOI: 10.1515/hsz-2023-0182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.
Collapse
Affiliation(s)
- Christina Krempl
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Daniela Lazzaretti
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
11
|
Zhao Q, Pavanello L, Bartlam M, Winkler GS. Structure and function of molecular machines involved in deadenylation-dependent 5'-3' mRNA degradation. Front Genet 2023; 14:1233842. [PMID: 37876592 PMCID: PMC10590902 DOI: 10.3389/fgene.2023.1233842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
In eukaryotic cells, the synthesis, processing, and degradation of mRNA are important processes required for the accurate execution of gene expression programmes. Fully processed cytoplasmic mRNA is characterised by the presence of a 5'cap structure and 3'poly(A) tail. These elements promote translation and prevent non-specific degradation. Degradation via the deadenylation-dependent 5'-3' degradation pathway can be induced by trans-acting factors binding the mRNA, such as RNA-binding proteins recognising sequence elements and the miRNA-induced repression complex. These factors recruit the core mRNA degradation machinery that carries out the following steps: i) shortening of the poly(A) tail by the Ccr4-Not and Pan2-Pan3 poly (A)-specific nucleases (deadenylases); ii) removal of the 5'cap structure by the Dcp1-Dcp2 decapping complex that is recruited by the Lsm1-7-Pat1 complex; and iii) degradation of the mRNA body by the 5'-3' exoribonuclease Xrn1. In this review, the biochemical function of the nucleases and accessory proteins involved in deadenylation-dependent mRNA degradation will be reviewed with a particular focus on structural aspects of the proteins and enzymes involved.
Collapse
Affiliation(s)
- Qi Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | - Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
| | | |
Collapse
|
12
|
Vijjamarri AK, Gupta N, Onu C, Niu X, Zhang F, Kumar R, Lin Z, Greenberg M, Hinnebusch AG. mRNA decapping activators Pat1 and Dhh1 regulate transcript abundance and translation to tune cellular responses to nutrient availability. Nucleic Acids Res 2023; 51:9314-9336. [PMID: 37439347 PMCID: PMC10516646 DOI: 10.1093/nar/gkad584] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
We have examined the roles of yeast mRNA decapping-activators Pat1 and Dhh1 in repressing the translation and abundance of specific mRNAs in nutrient-replete cells using ribosome profiling, RNA-Seq, CAGE analysis of capped mRNAs, RNA Polymerase II ChIP-Seq, and TMT-mass spectrometry of mutants lacking one or both factors. Although the Environmental Stress Response (ESR) is activated in dhh1Δ and pat1Δ mutants, hundreds of non-ESR transcripts are elevated in a manner indicating cumulative repression by Pat1 and Dhh1 in wild-type cells. These mRNAs show both reduced decapping and diminished transcription in the mutants, indicating that impaired mRNA turnover drives transcript derepression in cells lacking Dhh1 or Pat1. mRNA degradation stimulated by Dhh1/Pat1 is not dictated by poor translation nor enrichment for suboptimal codons. Pat1 and Dhh1 also collaborate to reduce translation and protein production from many mRNAs. Transcripts showing concerted translational repression by Pat1/Dhh1 include mRNAs involved in cell adhesion or utilization of the poor nitrogen source allantoin. Pat1/Dhh1 also repress numerous transcripts involved in respiration, catabolism of non-preferred carbon or nitrogen sources, or autophagy; and we obtained evidence for elevated respiration and autophagy in the mutants. Thus, Pat1 and Dhh1 function as post-transcriptional repressors of multiple pathways normally activated only during nutrient limitation.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Xiao Niu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rakesh Kumar
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Zuo Z, Roux ME, Chevalier JR, Dagdas YF, Yamashino T, Højgaard SD, Knight E, Østergaard L, Rodriguez E, Petersen M. The mRNA decapping machinery targets LBD3/ASL9 to mediate apical hook and lateral root development. Life Sci Alliance 2023; 6:e202302090. [PMID: 37385753 PMCID: PMC10310928 DOI: 10.26508/lsa.202302090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Multicellular organisms perceive and transduce multiple cues to optimize development. Key transcription factors drive developmental changes, but RNA processing also contributes to tissue development. Here, we report that multiple decapping deficient mutants share developmental defects in apical hook, primary and lateral root growth. More specifically, LATERAL ORGAN BOUNDARIES DOMAIN 3 (LBD3)/ASYMMETRIC LEAVES 2-LIKE 9 (ASL9) transcripts accumulate in decapping deficient plants and can be found in complexes with decapping components. Accumulation of ASL9 inhibits apical hook and lateral root formation. Interestingly, exogenous auxin application restores lateral roots formation in both ASL9 over-expressors and mRNA decay-deficient mutants. Likewise, mutations in the cytokinin transcription factors type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs) ARR10 and ARR12 restore the developmental defects caused by over-accumulation of capped ASL9 transcript upon ASL9 overexpression. Most importantly, loss-of-function of asl9 partially restores apical hook and lateral root formation in both dcp5-1 and pat triple decapping deficient mutants. Thus, the mRNA decay machinery directly targets ASL9 transcripts for decay, possibly to interfere with cytokinin/auxin responses, during development.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena E Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan R Chevalier
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Yasin F Dagdas
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Takafumi Yamashino
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan
| | - Søren D Højgaard
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Knight
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lars Østergaard
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Kramer S, Karolak NK, Odenwald J, Gabiatti B, Castañeda Londoño P, Zavřelová A, Freire E, Almeida K, Braune S, Moreira C, Eder A, Goos C, Field M, Carrington M, Holetz F, Górna M, Zoltner M. A unique mRNA decapping complex in trypanosomes. Nucleic Acids Res 2023; 51:7520-7540. [PMID: 37309887 PMCID: PMC10415143 DOI: 10.1093/nar/gkad497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.
Collapse
Affiliation(s)
| | - Natalia Katarzyna Karolak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Bernardo Gabiatti
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | | | - Anna Zavřelová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | | | | | - Silke Braune
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Claudia Moreira
- Biocenter, University of Würzburg, Würzburg, Germany
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Amelie Eder
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Carina Goos
- Biocenter, University of Würzburg, Würzburg, Germany
| | - Mark Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Fabiola Holetz
- Carlos Chagas Institute (ICC), FIOCRUZ/PR, Curitiba, Brazil
| | - Maria Wiktoria Górna
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Warsaw, Poland
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| |
Collapse
|
15
|
Vijjamarri AK, Niu X, Vandermeulen MD, Onu C, Zhang F, Qiu H, Gupta N, Gaikwad S, Greenberg ML, Cullen PJ, Lin Z, Hinnebusch AG. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. eLife 2023; 12:e85545. [PMID: 37266577 PMCID: PMC10287164 DOI: 10.7554/elife.85545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/01/2023] [Indexed: 06/03/2023] Open
Abstract
Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3, or Scd6; whereas most of the remaining transcripts utilize nonsense-mediated mRNA decay factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are upregulated, and both mitochondrial function and cell filamentation are elevated in dcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Xiao Niu
- Department of Biology, Saint Louis UniversitySt. LouisUnited States
| | | | - Chisom Onu
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Hongfang Qiu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State UniversityDetroitUnited States
| | - Paul J Cullen
- Department of Biological Sciences, State University of New YorkBuffaloUnited States
| | - Zhenguo Lin
- Department of Biology, Saint Louis UniversitySt. LouisUnited States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaUnited States
| |
Collapse
|
16
|
Vijjamarri AK, Niu X, Vandermeulen MD, Onu C, Zhang F, Qiu H, Gupta N, Gaikwad S, Greenberg ML, Cullen PJ, Lin Z, Hinnebusch AG. Decapping factor Dcp2 controls mRNA abundance and translation to adjust metabolism and filamentation to nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522830. [PMID: 36711592 PMCID: PMC9881900 DOI: 10.1101/2023.01.05.522830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2 Δ cells that appears to result directly from impaired decapping rather than elevated transcription, which was confirmed by ChIP-Seq analysis of RNA Polymerase II occupancies genome-wide. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Lsm2, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2 Δ confers widespread changes in relative TEs that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2 Δ, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2 Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are derepressed, and both mitochondrial function and cell filamentation (a strategy for nutrient foraging) are elevated by dcp2 Δ, suggesting that mRNA decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.
Collapse
Affiliation(s)
- Anil Kumar Vijjamarri
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Xiao Niu
- Department of Biology, Saint Louis University, St. Louis, MO
| | | | - Chisom Onu
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Fan Zhang
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Hongfang Qiu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Neha Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | | | - Paul J Cullen
- Department of Biological Sciences, State University of Buffalo, Buffalo, NY
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
He F, Wu C, Jacobson A. Dcp2 C-terminal cis-binding elements control selective targeting of the decapping enzyme by forming distinct decapping complexes. eLife 2022; 11:74410. [PMID: 35604319 PMCID: PMC9170289 DOI: 10.7554/elife.74410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
A single Dcp1-Dcp2 decapping enzyme targets diverse classes of yeast mRNAs for decapping-dependent 5' to 3' decay, but the molecular mechanisms controlling mRNA selectivity by the enzyme remain elusive. Through extensive genetic analyses we reveal that Dcp2 C-terminal domain cis-regulatory elements control decapping enzyme target specificity by orchestrating formation of distinct decapping complexes. Two Upf1-binding motifs direct the decapping enzyme to NMD substrates, a single Edc3-binding motif targets both Edc3 and Dhh1 substrates, and Pat1-binding leucine-rich motifs target Edc3 and Dhh1 substrates under selective conditions. Although it functions as a unique targeting component of specific complexes, Edc3 is a common component of multiple complexes. Scd6 and Xrn1 also have specific binding sites on Dcp2, allowing them to be directly recruited to decapping complexes. Collectively, our results demonstrate that Upf1, Edc3, Scd6, and Pat1 function as regulatory subunits of the holo-decapping enzyme, controlling both its substrate specificity and enzymatic activation.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, United States
| |
Collapse
|
18
|
Abstract
The 5'-terminal cap is a fundamental determinant of eukaryotic gene expression which facilitates cap-dependent translation and protects mRNAs from exonucleolytic degradation. Enzyme-directed hydrolysis of the cap (decapping) decisively affects mRNA expression and turnover, and is a heavily regulated event. Following the identification of the decapping holoenzyme (Dcp1/2) over two decades ago, numerous studies revealed the complexity of decapping regulation across species and cell types. A conserved set of Dcp1/2-associated proteins, implicated in decapping activation and molecular scaffolding, were identified through genetic and molecular interaction studies, and yet their exact mechanisms of action are only emerging. In this review, we discuss the prevailing models on the roles and assembly of decapping co-factors, with considerations of conservation across species and comparison across physiological contexts. We next discuss the functional convergences of decapping machineries with other RNA-protein complexes in cytoplasmic P bodies and compare current views on their impact on mRNA stability and translation. Lastly, we review the current models of decapping activation and highlight important gaps in our current understanding.
Collapse
Affiliation(s)
- Elva Vidya
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Thomas F. Duchaine
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
19
|
Zuo Z, Roux M, Rodriguez E, Petersen M. mRNA Decapping Factors LSM1 and PAT Paralogs Are Involved in Turnip Mosaic Virus Viral Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:125-130. [PMID: 35100808 DOI: 10.1094/mpmi-09-21-0220-sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Turnip mosaic virus is a devastating potyvirus infecting many economically important brassica crops. In response to this, the plant host engages its RNA silencing machinery, involving AGO proteins, as a prominent strategy to restrain turnip mosaic virus (TuMV) infection. It has also been shown that the mRNA decay components DCP2 and VCS partake in viral infection suppression. Here, we report that the mRNA decapping components LSM1, PAT1, PATH1, and PATH2 are essential for TuMV infection. More specifically, lsm1a/lsm1b double mutants and pat1/path1/path2 triple mutants in summ2 background exhibit resistance to TuMV. Concurrently, we observed that TuMV interferes with the decapping function of LSM1 and PAT proteins as the mRNA-decay target genes UGT87A2 and ASL9 accumulate during TuMV infection. Moreover, as TuMV coat protein can be specifically found in complexes with PAT proteins but not LSM1, this suggests that TuMV "hijacks" decapping components via PAT proteins to support viral infection.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Milena Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Eleazar Rodriguez
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Barraza CE, Solari CA, Rinaldi J, Ojeda L, Rossi S, Ashe MP, Portela P. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2021; 1868:118884. [PMID: 33039554 DOI: 10.1016/j.bbamcr.2020.118884] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 01/19/2023]
Abstract
Low complexity regions are involved in the assembly and disassembly of P-bodies (PBs). Saccharomyces cerevisiae contains three genes encoding the protein kinase A (PKA) catalytic subunit: TPK1, TPK2 and TPK3. Tpk2 and Tpk3 isoforms localize to PBs upon glucose starvation showing different mechanisms and kinetics of accumulation. In contrast to the other two isoforms, Tpk2 harbors a glutamine-rich prion-like domain (PrLD) at the N-terminus. Here we show that the appearance of Tpk2 foci in response to glucose starvation, heat stress or stationary phase was dependent on its PrLD. Moreover, the PrLD of Tpk2 was necessary for efficient PB and stress granule aggregation during stress conditions and in quiescent cells. Deletion of PrLD does not affect the in vitro and in vivo kinase activity of Tpk2 or its interaction with the regulatory subunit Bcy1. We present evidence that the PrLD of Tpk2 serves as a scaffold domain for PB assembly in a manner that is independent of Pat1 phosphorylation by PKA. In addition, a mutant strain where Tpk2 lacks PrLD showed a decrease of turnover of mRNA during glucose starvation. This work therefore provides new insight into the mechanism of stress-induced cytoplasmic mRNP assembly, and the role of isoform specific domains in the regulation of PKA catalytic subunit specificity and dynamic localization to cytoplasmic RNPs granules.
Collapse
Affiliation(s)
- Carla E Barraza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Clara A Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.
| | - Lucas Ojeda
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| | - Mark P Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK.
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET). Buenos Aires, Argentina.
| |
Collapse
|
21
|
Zuo Z, Roux ME, Saemundsson HP, Müller M, Munne Bosch S, Petersen M. The Arabidopsis thaliana mRNA decay factor PAT1 functions in osmotic stress responses and decaps ABA-responsive genes. FEBS Lett 2020; 595:253-263. [PMID: 33124072 DOI: 10.1002/1873-3468.13977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
Abstract
mRNA decapping plays essential roles in regulating gene expression during cellular reprogramming in response to developmental and environmental cues. The evolutionarily conserved PAT1 proteins activate decapping by binding mRNA, recruiting other decapping components, and promoting processing body (PB) assembly. Arabidopsis encodes 3 PAT proteins: PAT1, PATH1, and PATH2. Here, we report that only pat1 mutants exhibit hypersensitivity to ABA and that transcripts of ABA-responsive genes, but not those of ABA biosynthesis genes, persist longer in these mutants. The pat1 mutants also exhibit increased resistance to drought stress and resistance to Pythium irregulare. This is supported by assays showing that PAT1 functions specifically in decapping of the canonical ABA-responsive gene COR15A. In summary, PAT1 protein mediates decay of ABA-responsive genes and, thus, regulates stress responses.
Collapse
Affiliation(s)
- Zhangli Zuo
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| | - Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark.,Novo Nordisk, Regulatory Affairs Durable Devices and Needles, Søborg, Denmark
| | | | - Maren Müller
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Sergi Munne Bosch
- Department of Evolutionary Biology, Ecology & Environmental Sciences, Faculty of Biology, University of Barcelona, Spain
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Lobel JH, Gross JD. Pdc2/Pat1 increases the range of decay factors and RNA bound by the Lsm1-7 complex. RNA (NEW YORK, N.Y.) 2020; 26:1380-1388. [PMID: 32513655 PMCID: PMC7491320 DOI: 10.1261/rna.075812.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 05/31/2023]
Abstract
Pat1, known as Pdc2 in fission yeast, promotes the activation and assembly of multiple proteins during mRNA decay. After deadenylation, the Pat1/Lsm1-7 complex binds to transcripts containing oligo(A) tails, which can be modified by the addition of several terminal uridine residues. Pat1 enhances Lsm1-7 binding to the 3' end, but it is unknown how this interaction is influenced by nucleotide composition. Here we examine Pat1/Lsm1-7 binding to a series of oligoribonucleotides containing different A/U contents using recombinant purified proteins from fission yeast. We observe a positive correlation between fractional uridine content and Lsm1-7 binding affinity. Addition of Pat1 broadens RNA specificity of Lsm1-7 by enhancing binding to A-rich RNAs and increases cooperativity on all oligonucleotides tested. Consistent with increased cooperativity, Pat1 promotes multimerization of the Lsm1-7 complex, which is potentiated by RNA binding. Furthermore, the inherent ability of Pat1 to multimerize drives liquid-liquid phase separation with multivalent decapping enzyme complexes of Dcp1/Dcp2. Our results uncover how Pat1 regulates RNA binding and higher order assembly by mRNA decay factors.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
23
|
Fernandes N, Buchan JR. RPS28B mRNA acts as a scaffold promoting cis-translational interaction of proteins driving P-body assembly. Nucleic Acids Res 2020; 48:6265-6279. [PMID: 32396167 PMCID: PMC7293044 DOI: 10.1093/nar/gkaa352] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
P-bodies (PBs) are cytoplasmic mRNA-protein (mRNP) granules conserved throughout eukaryotes which are implicated in the repression, storage and degradation of mRNAs. PB assembly is driven by proteins with self-interacting and low-complexity domains. Non-translating mRNA also stimulates PB assembly, however no studies to date have explored whether particular mRNA transcripts are more critical than others in facilitating PB assembly. Previous work revealed that rps28bΔ (small ribosomal subunit-28B) mutants do not form PBs under normal growth conditions. Here, we demonstrate that the RPS28B 3′UTR is important for PB assembly, consistent with it harboring a binding site for the PB assembly protein Edc3. However, expression of the RPS28B 3′UTR alone is insufficient to drive PB assembly. Intriguingly, chimeric mRNA studies revealed that Rps28 protein, translated in cis from an mRNA bearing the RPS28B 3′UTR, physically interacts more strongly with Edc3 than Rps28 protein synthesized in trans. This Edc3-Rps28 interaction in turn facilitates PB assembly. Our work indicates that PB assembly may be nucleated by specific RNA ‘scaffolds’. Furthermore, this is the first description in yeast to our knowledge of a cis-translated protein interacting with another protein in the 3′UTR of the mRNA which encoded it, which in turn stimulates assembly of cellular structures.
Collapse
Affiliation(s)
- Nikita Fernandes
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - J Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Charenton C, Gaudon-Plesse C, Back R, Ulryck N, Cosson L, Séraphin B, Graille M. Pby1 is a direct partner of the Dcp2 decapping enzyme. Nucleic Acids Res 2020; 48:6353-6366. [PMID: 32396195 PMCID: PMC7293026 DOI: 10.1093/nar/gkaa337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Most eukaryotic mRNAs harbor a characteristic 5′ m7GpppN cap that promotes pre-mRNA splicing, mRNA nucleocytoplasmic transport and translation while also protecting mRNAs from exonucleolytic attacks. mRNA caps are eliminated by Dcp2 during mRNA decay, allowing 5′-3′ exonucleases to degrade mRNA bodies. However, the Dcp2 decapping enzyme is poorly active on its own and requires binding to stable or transient protein partners to sever the cap of target mRNAs. Here, we analyse the role of one of these partners, the yeast Pby1 factor, which is known to co-localize into P-bodies together with decapping factors. We report that Pby1 uses its C-terminal domain to directly bind to the decapping enzyme. We solved the structure of this Pby1 domain alone and bound to the Dcp1–Dcp2–Edc3 decapping complex. Structure-based mutant analyses reveal that Pby1 binding to the decapping enzyme is required for its recruitment into P-bodies. Moreover, Pby1 binding to the decapping enzyme stimulates growth in conditions in which decapping activation is compromised. Our results point towards a direct connection of Pby1 with decapping and P-body formation, both stemming from its interaction with the Dcp1–Dcp2 holoenzyme.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Claudine Gaudon-Plesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Régis Back
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Loreline Cosson
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Centre National de Recherche Scientifique (CNRS) UMR 7104, Illkirch, France.,Institut National de Santé et de Recherche Médicale (INSERM) U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, IP Paris, 91128 Palaiseau, France
| |
Collapse
|
25
|
Ermolenko DN, Mathews DH. Making ends meet: New functions of mRNA secondary structure. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1611. [PMID: 32597020 DOI: 10.1002/wrna.1611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/10/2022]
Abstract
The 5' cap and 3' poly(A) tail of mRNA are known to synergistically regulate mRNA translation and stability. Recent computational and experimental studies revealed that both protein-coding and non-coding RNAs will fold with extensive intramolecular secondary structure, which will result in close distances between the sequence ends. This proximity of the ends is a sequence-independent, universal property of most RNAs. Only low-complexity sequences without guanosines are without secondary structure and exhibit end-to-end distances expected for RNA random coils. The innate proximity of RNA ends might have important biological implications that remain unexplored. In particular, the inherent compactness of mRNA might regulate translation initiation by facilitating the formation of protein complexes that bridge mRNA 5' and 3' ends. Additionally, the proximity of mRNA ends might mediate coupling of 3' deadenylation to 5' end mRNA decay. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems Translation > Translation Regulation.
Collapse
Affiliation(s)
- Dmitri N Ermolenko
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| |
Collapse
|
26
|
Kluge F, Götze M, Wahle E. Establishment of 5'-3' interactions in mRNA independent of a continuous ribose-phosphate backbone. RNA (NEW YORK, N.Y.) 2020; 26:613-628. [PMID: 32111664 PMCID: PMC7161349 DOI: 10.1261/rna.073759.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Functions of eukaryotic mRNAs are characterized by intramolecular interactions between their ends. We have addressed the question whether 5' and 3' ends meet by diffusion-controlled encounter "through solution" or by a mechanism involving the RNA backbone. For this purpose, we used a translation system derived from Drosophila embryos that displays two types of 5'-3' interactions: Cap-dependent translation initiation is stimulated by the poly(A) tail and inhibited by Smaug recognition elements (SREs) in the 3' UTR. Chimeric RNAs were made consisting of one RNA molecule carrying a luciferase coding sequence and a second molecule containing SREs and a poly(A) tail; the two were connected via a protein linker. The poly(A) tail stimulated translation of such chimeras even when disruption of the RNA backbone was combined with an inversion of the 5'-3' polarity between the open reading frame and poly(A) segment. Stimulation by the poly(A) tail also decreased with increasing RNA length. Both observations suggest that contacts between the poly(A) tail and the 5' end are established through solution, independently of the RNA backbone. In the same chimeric constructs, SRE-dependent inhibition of translation was also insensitive to disruption of the RNA backbone. Thus, tracking of the backbone is not involved in the repression of cap-dependent initiation. However, SRE-dependent repression was insensitive to mRNA length, suggesting that the contact between the SREs in the 3' UTR and the 5' end of the RNA might be established in a manner that differs from the contact between the poly(A) tail and the cap.
Collapse
Affiliation(s)
- Florian Kluge
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Michael Götze
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology and Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
27
|
Nagarajan VK, Kukulich PM, von Hagel B, Green PJ. RNA degradomes reveal substrates and importance for dark and nitrogen stress responses of Arabidopsis XRN4. Nucleic Acids Res 2019; 47:9216-9230. [PMID: 31428786 PMCID: PMC6755094 DOI: 10.1093/nar/gkz712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
XRN4, the plant cytoplasmic homolog of yeast and metazoan XRN1, catalyzes exoribonucleolytic degradation of uncapped mRNAs from the 5' end. Most studies of cytoplasmic XRN substrates have focused on polyadenylated transcripts, although many substrates are likely first deadenylated. Here, we report the global investigation of XRN4 substrates in both polyadenylated and nonpolyadenylated RNA to better understand the impact of the enzyme in Arabidopsis. RNA degradome analysis demonstrated that xrn4 mutants overaccumulate many more decapped deadenylated intermediates than those that are polyadenylated. Among these XRN4 substrates that have 5' ends precisely at cap sites, those associated with photosynthesis, nitrogen responses and auxin responses were enriched. Moreover, xrn4 was found to be defective in the dark stress response and lateral root growth during N resupply, demonstrating that XRN4 is required during both processes. XRN4 also contributes to nonsense-mediated decay (NMD) and xrn4 accumulates 3' fragments of select NMD targets, despite the lack of the metazoan endoribonuclease SMG6 in plants. Beyond demonstrating that XRN4 is a major player in multiple decay pathways, this study identified intriguing molecular impacts of the enzyme, including those that led to new insights about mRNA decay and discovery of functional contributions at the whole-plant level.
Collapse
Affiliation(s)
- Vinay K Nagarajan
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Patrick M Kukulich
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Bryan von Hagel
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| | - Pamela J Green
- Delaware Biotechnology Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
28
|
Lobel JH, Tibble RW, Gross JD. Pat1 activates late steps in mRNA decay by multiple mechanisms. Proc Natl Acad Sci U S A 2019; 116:23512-23517. [PMID: 31690658 PMCID: PMC6876151 DOI: 10.1073/pnas.1905455116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pat1 is a hub for mRNA metabolism, acting in pre-mRNA splicing, translation repression, and mRNA decay. A critical step in all 5'-3' mRNA decay pathways is removal of the 5' cap structure, which precedes and permits digestion of the RNA body by conserved exonucleases. During bulk 5'-3' decay, the Pat1/Lsm1-7 complex engages mRNA at the 3' end and promotes hydrolysis of the cap structure by Dcp1/Dcp2 at the 5' end through an unknown mechanism. We reconstitute Pat1 with 5' and 3' decay factors and show how it activates multiple steps in late mRNA decay. First, we find that Pat1 stabilizes binding of the Lsm1-7 complex to RNA using two conserved short-linear interaction motifs. Second, Pat1 directly activates decapping by binding elements in the disordered C-terminal extension of Dcp2, alleviating autoinhibition and promoting substrate binding. Our results uncover the molecular mechanism of how separate domains of Pat1 coordinate the assembly and activation of a decapping messenger ribonucleoprotein (mRNP) that promotes 5'-3' mRNA degradation.
Collapse
Affiliation(s)
- Joseph H Lobel
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - Ryan W Tibble
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94158
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158
| |
Collapse
|
29
|
Chang CT, Muthukumar S, Weber R, Levdansky Y, Chen Y, Bhandari D, Igreja C, Wohlbold L, Valkov E, Izaurralde E. A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5'-3' messenger RNA decay. Nucleic Acids Res 2019; 47:9282-9295. [PMID: 31340047 PMCID: PMC6753473 DOI: 10.1093/nar/gkz633] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 12/27/2022] Open
Abstract
XRN1 is the major cytoplasmic exoribonuclease in eukaryotes, which degrades deadenylated and decapped mRNAs in the last step of the 5'-3' mRNA decay pathway. Metazoan XRN1 interacts with decapping factors coupling the final stages of decay. Here, we reveal a direct interaction between XRN1 and the CCR4-NOT deadenylase complex mediated by a low-complexity region in XRN1, which we term the 'C-terminal interacting region' or CIR. The CIR represses reporter mRNA deadenylation in human cells when overexpressed and inhibits CCR4-NOT and isolated CAF1 deadenylase activity in vitro. Through complementation studies in an XRN1-null cell line, we dissect the specific contributions of XRN1 domains and regions toward decay of an mRNA reporter. We observe that XRN1 binding to the decapping activator EDC4 counteracts the dominant negative effect of CIR overexpression on decay. Another decapping activator PatL1 directly interacts with CIR and alleviates the CIR-mediated inhibition of CCR4-NOT activity in vitro. Ribosome profiling revealed that XRN1 loss impacts not only on mRNA levels but also on the translational efficiency of many cellular transcripts likely as a consequence of incomplete decay. Our findings reveal an additional layer of direct interactions in a tightly integrated network of factors mediating deadenylation, decapping and 5'-3' exonucleolytic decay.
Collapse
Affiliation(s)
- Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Sowndarya Muthukumar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Catia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lara Wohlbold
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Leipheimer J, Bloom ALM, Panepinto JC. Protein Kinases at the Intersection of Translation and Virulence. Front Cell Infect Microbiol 2019; 9:318. [PMID: 31572689 PMCID: PMC6749009 DOI: 10.3389/fcimb.2019.00318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
As free living organisms, fungi are challenged with a variety of environmental insults that threaten their cellular processes. In some cases, these challenges mimic conditions present within mammals, resulting in the accidental selection of virulence factors over evolutionary time. Be it within a host or the soil, fungi must contend with environmental challenges through the production of stress effector proteins while maintaining factors required for viability in any condition. Initiation and upkeep of this balancing act is mainly under the control of kinases that affect the propensity and selectivity of protein translation. This review will focus on kinases in pathogenic fungi that facilitate a virulence phenotype through translational control.
Collapse
Affiliation(s)
- Jay Leipheimer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Amanda L M Bloom
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - John C Panepinto
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
31
|
Wurm JP, Sprangers R. Dcp2: an mRNA decapping enzyme that adopts many different shapes and forms. Curr Opin Struct Biol 2019; 59:115-123. [PMID: 31473440 PMCID: PMC6900585 DOI: 10.1016/j.sbi.2019.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 02/01/2023]
Abstract
Structure of the active state of the Dcp2 decapping enzyme. Insights into the structural states that are sampled in solution. Details regarding the intermolecular network that Dcp2 is embedded in.
Eukaryotic mRNAs contain a 5’ cap structure that protects the transcript against rapid exonucleolytic degradation. The regulation of cellular mRNA levels therefore depends on a precise control of the mRNA decapping pathways. The major mRNA decapping enzyme in eukaryotic cells is Dcp2. It is regulated by interactions with several activators, including Dcp1, Edc1, and Edc3, as well as by an autoinhibition mechanism. The structural and mechanistical characterization of Dcp2 complexes has long been impeded by the high flexibility and dynamic nature of the enzyme. Here we review recent insights into the catalytically active conformation of the mRNA decapping complex, the mode of action of decapping activators and the large interactions network that Dcp2 is embedded in.
Collapse
Affiliation(s)
- Jan Philip Wurm
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany.
| | - Remco Sprangers
- Department of Biophysics I, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
32
|
Paquette DR, Tibble RW, Daifuku TS, Gross JD. Control of mRNA decapping by autoinhibition. Nucleic Acids Res 2019; 46:6318-6329. [PMID: 29618050 PMCID: PMC6158755 DOI: 10.1093/nar/gky233] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
5′ mediated cytoplasmic RNA decay is a conserved cellular process in eukaryotes. While the functions of the structured core domains in this pathway are well-studied, the role of abundant intrinsically disordered regions (IDRs) is lacking. Here we reconstitute the Dcp1:Dcp2 complex containing a portion of the disordered C-terminus and show its activity is autoinhibited by linear interaction motifs. Enhancers of decapping (Edc) 1 and 3 cooperate to activate decapping by different mechanisms: Edc3 alleviates autoinhibition by binding IDRs and destabilizing an inactive form of the enzyme, whereas Edc1 stabilizes the transition state for catalysis. Both activators are required to fully stimulate an autoinhibited Dcp1:Dcp2 as Edc1 alone cannot overcome the decrease in activity attributed to the C-terminal extension. Our data provide a mechanistic framework for combinatorial control of decapping by protein cofactors, a principle that is likely conserved in multiple 5′ mRNA decay pathways.
Collapse
Affiliation(s)
- David R Paquette
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Ryan W Tibble
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.,Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94158, USA
| | - Tristan S Daifuku
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - John D Gross
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, CA 94158, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA.,Program in Chemistry and Chemical Biology, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
33
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Sachdev R, Hondele M, Linsenmeier M, Vallotton P, Mugler CF, Arosio P, Weis K. Pat1 promotes processing body assembly by enhancing the phase separation of the DEAD-box ATPase Dhh1 and RNA. eLife 2019; 8:41415. [PMID: 30648970 PMCID: PMC6366900 DOI: 10.7554/elife.41415] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/24/2022] Open
Abstract
Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.
Collapse
Affiliation(s)
| | | | | | | | - Christopher F Mugler
- ETH Zurich, Zurich, Switzerland.,University of California, Berkeley, Berkeley, United States
| | | | | |
Collapse
|
35
|
He F, Celik A, Wu C, Jacobson A. General decapping activators target different subsets of inefficiently translated mRNAs. eLife 2018; 7:34409. [PMID: 30520724 PMCID: PMC6300357 DOI: 10.7554/elife.34409] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
The Dcp1-Dcp2 decapping enzyme and the decapping activators Pat1, Dhh1, and Lsm1 regulate mRNA decapping, but their mechanistic integration is unknown. We analyzed the gene expression consequences of deleting PAT1, LSM1, or DHH1, or the DCP2 C-terminal domain, and found that: i) the Dcp2 C-terminal domain is an effector of both negative and positive regulation; ii) rather than being global activators of decapping, Pat1, Lsm1, and Dhh1 directly target specific subsets of yeast mRNAs and loss of the functions of each of these factors has substantial indirect consequences for genome-wide mRNA expression; and iii) transcripts targeted by Pat1, Lsm1, and Dhh1 exhibit only partial overlap, are generally translated inefficiently, and, as expected, are targeted to decapping-dependent decay. Our results define the roles of Pat1, Lsm1, and Dhh1 in decapping of general mRNAs and suggest that these factors may monitor mRNA translation and target unique features of individual mRNAs.
Collapse
Affiliation(s)
- Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Alper Celik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Chan Wu
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Massachusetts, United States
| |
Collapse
|
36
|
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5'-3' mRNA decay. Nat Struct Mol Biol 2018; 25:1077-1085. [PMID: 30518847 DOI: 10.1038/s41594-018-0164-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Abstract
5'-3' RNA decay pathways are critical for quality control and regulation of gene expression. Structural and biochemical studies have provided insights into the key nucleases that carry out deadenylation, decapping, and exonucleolysis during 5'-3' decay, but detailed understanding of how these activities are coordinated is only beginning to emerge. Here we review recent mechanistic insights into the control of 5'-3' RNA decay, including coupling between translation and decay, coordination between the complexes and activities that process 5' and 3' RNA termini, conformational control of enzymatic activity, liquid phase separation, and RNA modifications.
Collapse
Affiliation(s)
- Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeff Coller
- The Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, USA
| | - John D Gross
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Charenton C, Graille M. mRNA decapping: finding the right structures. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0164. [PMID: 30397101 DOI: 10.1098/rstb.2018.0164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2018] [Indexed: 12/14/2022] Open
Abstract
In eukaryotes, the elimination of the m7GpppN mRNA cap, a process known as decapping, is a critical, largely irreversible and highly regulated step of mRNA decay that withdraws the targeted mRNAs from the pool of translatable templates. The decapping reaction is catalysed by a multi-protein complex formed by the Dcp2 catalytic subunit and its Dcp1 cofactor, a holoenzyme that is poorly active on its own and needs several accessory proteins (Lsm1-7 complex, Pat1, Edc1-2, Edc3 and/or EDC4) to be fully efficient. Here, we discuss the several crystal structures of Dcp2 domains bound to various partners (proteins or small molecules) determined in the last couple of years that have considerably improved our current understanding of how Dcp2, assisted by its various activators, is recruited to its mRNA targets and adopts its active conformation upon substrate recognition. We also describe how, over the years, elegant integrative structural biology approaches combined to biochemistry and genetics led to the identification of the correct structure of the active Dcp1-Dcp2 holoenzyme among the many available conformations trapped by X-ray crystallography.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Clément Charenton
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| | - Marc Graille
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, F-91128 Palaiseau cedex, France
| |
Collapse
|