1
|
Posner MI. Orienting of attention and spatial cognition. Cogn Process 2024; 25:55-59. [PMID: 39123061 DOI: 10.1007/s10339-024-01216-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Humans orient to their sensory world through foveation of target location or through covert shifts of attention. Orienting provides primacy to the selected location and in humans improves the precision of discrimination. Covert orienting appears to arise separately from the mechanisms involved in saccadic eye movements. Covert orienting can serve to prioritize processing the target even increasing its subjective intensity and its acuity. However, this network does not appear to be involved in the operations related to binding and segmentation. Cells exist in the early visual cortex that are activated by both color and form features without attention, however, color and form appear to remain independent even when oriented to the target that is required to be reported. An understanding of the pathways that connect attention networks to memory networks may allow us to understand more complex aspects of spatial cognition and enhance orienting and thus improve spatial cognition.
Collapse
|
2
|
Caldwell M, Mendoza JC, Jiang XYZ, Alarcon C, Ayo-Jibunoh V, Louis S, Maronna D, Darwish R, Tomaio J, Mingote S, Yetnikoff L. Reorganization of dopamine circuitry in the anterior corpus callosum between early adolescence and adulthood in the mouse. Eur J Neurosci 2024; 59:2535-2548. [PMID: 38720367 DOI: 10.1111/ejn.16385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Shelby Louis
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Daniel Maronna
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Rania Darwish
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| | - Jaquelyn Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, New York, NY, USA
- Department of Psychology, College of Staten Island, City University of New York, Staten Island, NY, USA
| |
Collapse
|
3
|
Torres-Ruiz M, Suárez OJ, López V, Marina P, Sanchis A, Liste I, de Alba M, Ramos V. Effects of 700 and 3500 MHz 5G radiofrequency exposure on developing zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169475. [PMID: 38199355 DOI: 10.1016/j.scitotenv.2023.169475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
Telecommunications industries are rapidly deploying the fifth generation (5G) spectrum and there is public concern about the safety and health impacts of this type of Radio Frequency Radiation (RFR), in part because of the lack of comparable scientific evidence. In this study we have used a validated commercially available setting producing a uniform field to expose zebrafish embryos (ZFe) to unmodulated 700 and 3500 MHz frequencies. We have combined a battery of toxicity, developmental and behavioral assays to further explore potential RFR effects. Our neurobehavioral profiles include a tail coiling assay, a light/dark activity assay, two thigmotaxis anxiety assays (auditory and visual stimuli), and a startle response - habituation assay in response to auditory stimuli. ZFe were exposed for 1 and 4 h during the blastula period of development and endpoints evaluated up to 120 hours post fertilization (hpf). Our results show no effects on mortality, hatching or body length. However, we have demonstrated specific organ morphological effects, and behavioral effects in activity, anxiety-like behavior, and habituation that lasted in larvae exposed during the early embryonic period. A decrease in acetylcholinesterase activity was also observed and could explain some of the observed behavioral alterations. Interestingly, effects were more pronounced in ZFe exposed to the 700 MHz frequency, and especially for the 4 h exposure period. In addition, we have demonstrated that our exposure setup is robust, flexible with regard to frequency and power testing, and highly comparable. Future work will include exposure of ZFe to 5G modulated signals for different time periods to better understand the potential health effects of novel 5G RFR.
Collapse
Affiliation(s)
- Monica Torres-Ruiz
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Oscar J Suárez
- Radio Frequency Laboratory, Telecommunications General Secretary and Audiovisual Communication Services Ordenation, Madrid, Spain
| | - Victoria López
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Pablo Marina
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain
| | - Aránzazu Sanchis
- Non-Ionizing Radiation Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Isabel Liste
- Chronical Diseases Research Functional Unit (UFIEC), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Mercedes de Alba
- Environmental Toxicology Unit, Centro Nacional de Sanidad Ambiental (CNSA), Instituto de Salud Carlos III (ISCIII), Ctra. Majadahonda-Pozuelo Km. 2,2., Majadahonda, Madrid 28220, Spain
| | - Victoria Ramos
- Telemedicine and eHealth Research Unit, Instituto de Salud Carlos III (ISCIII), Avda. Monforte de Lemos, 5, Madrid 28029, Spain.
| |
Collapse
|
4
|
Upton S, Brown AA, Ithman M, Newman-Norlund R, Sahlem G, Prisciandaro JJ, McClure EA, Froeliger B. Effects of Hyperdirect Pathway Theta Burst Transcranial Magnetic Stimulation on Inhibitory Control, Craving, and Smoking in Adults With Nicotine Dependence: A Double-Blind, Randomized Crossover Trial. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1156-1165. [PMID: 37567363 PMCID: PMC10840958 DOI: 10.1016/j.bpsc.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Nicotine dependence is associated with dysregulated hyperdirect pathway (HDP)-mediated inhibitory control (IC). However, there are currently no evidence-based treatments that have been shown to target the HDP to improve IC and reduce cigarette cravings and smoking. METHODS Following a baseline nonstimulation control session, this study (N = 37; female: n = 17) used a double-blind, randomized crossover design to examine the behavioral and neural effects of intermittent theta burst stimulation (iTBS) and continuous TBS (cTBS) to the right inferior frontal gyrus (rIFG)-a key cortical node of the HDP. Associations between treatment effects were also explored. RESULTS At baseline, HDP IC task-state functional connectivity was positively associated with IC task performance, which confirmed the association between HDP circuit function and IC. Compared with iTBS, rIFG cTBS improved IC task performance. Compared with the baseline nonstimulation control session, both TBS conditions reduced cigarette craving and smoking; however, although craving and smoking were lower for cTBS, no differences were found between the two active conditions. In addition, although HDP IC task-state functional connectivity was greater following cTBS than iTBS, there was no significant difference between conditions. Finally, cTBS-induced improvement in IC task performance was associated with reduced craving, and cTBS-induced reduction in craving was associated with reduced smoking. CONCLUSIONS These findings warrant further investigation into the effects of rIFG cTBS for increasing IC and reducing craving and smoking among individuals with nicotine dependence. Future sham-controlled cTBS studies may help further elucidate the mechanisms by which rIFG cTBS mediates IC and smoking behavior.
Collapse
Affiliation(s)
- Spencer Upton
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Alexander A Brown
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri
| | - Muaid Ithman
- Department of Psychiatry, University of Missouri, Columbia, Missouri
| | - Roger Newman-Norlund
- Department of Psychology, University of South Carolina, Columbia, South Carolina
| | - Greg Sahlem
- Department of Psychiatry, Stanford University Medical Center, Palo Alto, California
| | - Jim J Prisciandaro
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Erin A McClure
- Department of Psychiatry, Medical University of South Carolina, Charleston, South Carolina
| | - Brett Froeliger
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri; Department of Psychiatry, University of Missouri, Columbia, Missouri; Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, Missouri.
| |
Collapse
|
5
|
Caldwell M, Ayo-Jibunoh V, Mendoza JC, Brimblecombe KR, Reynolds LM, Zhu Jiang XY, Alarcon C, Fiore E, N Tomaio J, Phillips GR, Mingote S, Flores C, Casaccia P, Liu J, Cragg SJ, McCloskey DP, Yetnikoff L. Axo-glial interactions between midbrain dopamine neurons and oligodendrocyte lineage cells in the anterior corpus callosum. Brain Struct Funct 2023; 228:1993-2006. [PMID: 37668732 PMCID: PMC10516790 DOI: 10.1007/s00429-023-02695-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Oligodendrocyte progenitor cells (OPCs) receive synaptic innervation from glutamatergic and GABAergic axons and can be dynamically regulated by neural activity, resulting in activity-dependent changes in patterns of axon myelination. However, it remains unclear to what extent other types of neurons may innervate OPCs. Here, we provide evidence implicating midbrain dopamine neurons in the innervation of oligodendrocyte lineage cells in the anterior corpus callosum and nearby white matter tracts of male and female adult mice. Dopaminergic axon terminals were identified in the corpus callosum of DAT-Cre mice after injection of an eYFP reporter virus into the midbrain. Furthermore, fast-scan cyclic voltammetry revealed monoaminergic transients in the anterior corpus callosum, consistent with the anatomical findings. Using RNAscope, we further demonstrate that ~ 40% of Olig2 + /Pdfgra + cells and ~ 20% of Olig2 + /Pdgfra- cells in the anterior corpus callosum express Drd1 and Drd2 transcripts. These results suggest that oligodendrocyte lineage cells may respond to dopamine released from midbrain dopamine axons, which could affect myelination. Together, this work broadens our understanding of neuron-glia interactions with important implications for myelin plasticity by identifying midbrain dopamine axons as a potential regulator of corpus callosal oligodendrocyte lineage cells.
Collapse
Affiliation(s)
- Megan Caldwell
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Vanessa Ayo-Jibunoh
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Josue Criollo Mendoza
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Katherine R Brimblecombe
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Lauren M Reynolds
- Plasticité du Cerveau, CNRS UMR8249, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | - Xin Yan Zhu Jiang
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Colin Alarcon
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Elizabeth Fiore
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Jacquelyn N Tomaio
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Greg R Phillips
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Biology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
- Center for Developmental Neuroscience, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Susana Mingote
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Cecilia Flores
- Department of Psychiatry and of Neurology and Neuroscience, McGill University, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
- Department of Neuroscience and Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, Graduate Center of The City University of New York, New York, NY, USA
| | - Stephanie J Cragg
- Centre for Integrative Neuroscience, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, OX1 3PT, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Dan P McCloskey
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA
| | - Leora Yetnikoff
- CUNY Neuroscience Collaborative, The Graduate Center, City University of New York, 365 5Th Ave, New York, NY, 10016, USA.
- Department of Psychology, College of Staten Island, City University of New York, 2800 Victory Boulevard, Staten Island, NY, 10314, USA.
| |
Collapse
|
6
|
Kondiles B, Murphy R, Widman A, Perlmutter S, Horner P. Cortical stimulation leads to shortened myelin sheaths and increased axonal branching in spared axons after cervical spinal cord injury. Glia 2023; 71:1947-1959. [PMID: 37096399 PMCID: PMC10649492 DOI: 10.1002/glia.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/26/2023]
Abstract
Neural activity and learning lead to myelin sheath plasticity in the intact central nervous system (CNS), but this plasticity has not been well-studied after CNS injury. In the context of spinal cord injury (SCI), demyelination occurs at the lesion site and natural remyelination of surviving axons can take months. To determine if neural activity modulates myelin and axon plasticity in the injured, adult CNS, we electrically stimulated the contralesional motor cortex at 10 Hz to drive neural activity in the corticospinal tract of rats with sub-chronic spinal contusion injuries. We quantified myelin and axonal characteristics by tracing corticospinal axons rostral to and at the lesion epicenter and identifying nodes of Ranvier by immunohistochemistry. Three weeks of daily stimulation induced very short myelin sheaths, axon branching, and thinner axons outside of the lesion zone, where remodeling has not previously been reported. Surprisingly, remodeling was particularly robust rostral to the injury which suggests that electrical stimulation can promote white matter plasticity even in areas not directly demyelinated by the contusion. Stimulation did not alter myelin or axons at the lesion site, which suggests that neuronal activity does not contribute to myelin remodeling near the injury in the sub-chronic period. These data are the first to demonstrate wide-scale remodeling of nodal and myelin structures of a mature, long-tract motor pathway in response to electrical stimulation. This finding suggests that neuromodulation promotes white matter plasticity in intact regions of pathways after injury and raises intriguing questions regarding the interplay between axonal and myelin plasticity.
Collapse
Affiliation(s)
- B.R. Kondiles
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
- Center for Neuroregeneration, Dept. of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner, Houston, TX, 77030, USA
| | - R.L. Murphy
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - A.J. Widman
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - S.I. Perlmutter
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St. Seattle, WA, 98105, USA
| | - P.J. Horner
- Center for Neuroregeneration, Dept. of Neurosurgery, Houston Methodist Research Institute, 6670 Bertner, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Posner MI, Rothbart MK. How understanding and strengthening brain networks can contribute to elementary education. Front Public Health 2023; 11:1199571. [PMID: 37427273 PMCID: PMC10328089 DOI: 10.3389/fpubh.2023.1199571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2023] [Indexed: 07/11/2023] Open
Abstract
Imaging the human brain during the last 35 years offers potential for improving education. What is needed is knowledge on the part of educators of all types of how this potential can be realized in practical terms. This paper briefly reviews the current level of understanding of brain networks that underlie aspects of elementary education and its preparation for later learning. This includes the acquisition of reading, writing and number processing, improving attention and increasing the motivation to learn. This knowledge can enhance assessment devices, improve child behavior and motivation and lead to immediate and lasting improvements in educational systems.
Collapse
|
8
|
Berger A, Posner MI. Beyond Infant's Looking: The Neural Basis for Infant Prediction Errors. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:664-674. [PMID: 36269781 DOI: 10.1177/17456916221112918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contemporary conceptualizations on infant cognitive development focus on predictive processes; the basic idea is that the brain continuously creates predictions about what is expected and that the divergence between predicted and actual perceived data yields a prediction error. This prediction error updates the model from which the predictions are generated and therefore is a basic mechanism for learning and adaptation to the dynamics of the ever-changing environment. In this article, we review the types of available empirical evidence supporting the idea that predictive processes can be found in infancy, especially emphasizing the contribution of electrophysiology as a potential method for testing the similarity of the brain mechanisms for processing prediction errors in infants to those of adults. In infants, as with older children, adolescents, and adults, predictions involve synchronization bursts of middle-central theta reflecting brain activity in the anterior cingulate cortex. We discuss how early in development such brain mechanisms develop and open questions that still remain to be empirically investigated.
Collapse
Affiliation(s)
- Andrea Berger
- Department of Psychology, Ben-Gurion University of the Negev.,Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev
| | | |
Collapse
|
9
|
Liu Y, Yue W, Yu S, Zhou T, Zhang Y, Zhu R, Song B, Guo T, Liu F, Huang Y, Wu T, Wang H. A physical perspective to understand myelin II: The physical origin of myelin development. Front Neurosci 2022; 16:951998. [PMID: 36263368 PMCID: PMC9574017 DOI: 10.3389/fnins.2022.951998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
The physical principle of myelin development is obtained from our previous study by explaining Peter's quadrant mystery: an externally applied negative and positive E-field can promote and inhibit the growth of the inner tongue of the myelin sheath, respectively. In this study, this principle is considered as a fundamental hypothesis, named Hypothesis-E, to explain more phenomena about myelin development systematically. Specifically, the g-ratio and the fate of the Schwann cell's differentiation are explained in terms of the E-field. Moreover, an experiment is proposed to validate this theory.
Collapse
Affiliation(s)
- Yonghong Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wenji Yue
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Shoujun Yu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tian Zhou
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yapeng Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Ran Zhu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianruo Guo
- Key Laboratory of Health Bioinformatics, Chinese Academy of Sciences, Shenzhen, China
| | - Fenglin Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Yubin Huang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Tianzhun Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Hao Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
10
|
Effortless training of attention and self-control: mechanisms and applications. Trends Cogn Sci 2022; 26:567-577. [DOI: 10.1016/j.tics.2022.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 12/22/2022]
|
11
|
Vanicek T, Reed MB, Unterholzner J, Klöbl M, Godbersen GM, Handschuh PA, Spurny-Dworak B, Ritter V, Gryglewski G, Kraus C, Winkler D, Lanzenberger R, Seiger R. Escitalopram administration, relearning, and neuroplastic effects: A diffusion tensor imaging study in healthy individuals. J Affect Disord 2022; 301:426-432. [PMID: 35016914 DOI: 10.1016/j.jad.2021.12.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/10/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Neuroplastic processes are influenced by serotonergic agents, which reportedly alter white matter microstructure in humans in conjunction with learning. The goal of this double-blind, placebo-controlled imaging study was to investigate the neuroplastic properties of escitalopram and cognitive training on white matter plasticity during (re)learning as a model for antidepressant treatment and environmental factors. METHODS Seventy-one healthy individuals (age=25.6 ± 5.0, 43 females) underwent three diffusion magnetic resonance imaging scans: at baseline, after 3 weeks of associative learning (emotional/non-emotional content), and after relearning shuffled associations for an additional 3 weeks. During the relearning phase, participants received a daily dose of 10 mg escitalopram or placebo orally. Fractional anisotropy (FA), and mean (MD), axial (AD), and radial diffusivity (RD) were calculated within the FMRIB software library and analyzed using tract-based spatial statistics. RESULTS In a three-way repeated-measures marginal model with sandwich estimator standard errors, we found no significant effects of escitalopram and content on AD, FA, MD, and RD during both learning and relearning periods (pFDR>0.05). When testing for escitalopram or content effects separately, we also demonstrated no significant findings (pFDR>0.05) for any of the diffusion tensor imaging metrics. LIMITATIONS The intensity of the study interventions might have been too brief to induce detectable white matter changes. DISCUSSION Previous studies examining the effects of SSRIs on white matter tracts in humans have yielded inconclusive outcomes. Our results indicate that relearning under escitalopram does not affect the white matter microstructures in healthy individuals when administered for 3 weeks.
Collapse
Affiliation(s)
- T Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - P A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - B Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - V Ritter
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - C Kraus
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| | - R Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
12
|
Posner MI, Weible AP, Voelker P, Rothbart MK, Niell CM. Decision Making as a Learned Skill in Mice and Humans. Front Neurosci 2022; 16:834701. [PMID: 35360159 PMCID: PMC8963179 DOI: 10.3389/fnins.2022.834701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Attention is a necessary component in many forms of human and animal learning. Numerous studies have described how attention and memory interact when confronted with a choice point during skill learning. In both animal and human studies, pathways have been found that connect the executive and orienting networks of attention to the hippocampus. The anterior cingulate cortex, part of the executive attention network, is linked to the hippocampus via the nucleus reuniens of the thalamus. The parietal cortex, part of the orienting attention network, accesses the hippocampus via the entorhinal cortex. These studies have led to specific predictions concerning the functional role of each pathway in connecting the cortex to the hippocampus. Here, we review some of the predictions arising from these studies. We then discuss potential methods for manipulating the two pathways and assessing the directionality of their functional connection using viral expression techniques in mice. New studies may allow testing of a behavioral model specifying how the two pathways work together during skill learning.
Collapse
Affiliation(s)
- Michael I. Posner
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Psychology, University of Oregon, Eugene, OR, United States
- *Correspondence: Michael I. Posner,
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Biology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
13
|
Hudak J, Hanley AW, Marchand WR, Nakamura Y, Yabko B, Garland EL. Endogenous theta stimulation during meditation predicts reduced opioid dosing following treatment with Mindfulness-Oriented Recovery Enhancement. Neuropsychopharmacology 2021; 46:836-843. [PMID: 32919401 PMCID: PMC8026958 DOI: 10.1038/s41386-020-00831-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022]
Abstract
Veterans experience chronic pain at greater rates than the rest of society and are more likely to receive long-term opioid therapy (LTOT), which, at high doses, is theorized to induce maladaptive neuroplastic changes that attenuate self-regulatory capacity and exacerbate opioid dose escalation. Mindfulness meditation has been shown to modulate frontal midline theta (FMT) and alpha oscillations that are linked with marked alterations in self-referential processing. These adaptive neural oscillatory changes may promote reduced opioid use and remediate the neural dysfunction occasioned by LTOT. In this study, we used electroencephalography (EEG) to assess the effects of a mindfulness-based, cognitive training intervention for opioid misuse, Mindfulness-Oriented Recovery Enhancement (MORE), on alpha and theta power and FMT coherence during meditation. We then examined whether these neural effects were associated with reduced opioid dosing and changes in self-referential processing. Before and after 8 weeks of MORE or a supportive psychotherapy control, veterans receiving LTOT (N = 62) practiced mindfulness meditation while EEG was recorded. Participants treated with MORE demonstrated significantly increased alpha and theta power (with larger theta power effect sizes) as well as increased FMT coherence relative to those in the control condition-neural changes that were associated with altered self-referential processing. Crucially, MORE significantly reduced opioid dose over time, and this dose reduction was partially statistically mediated by changes in frontal theta power. Study results suggest that mindfulness meditation practice may produce endogenous theta stimulation in the prefrontal cortex, thereby enhancing inhibitory control over opioid dose escalation behaviors.
Collapse
Affiliation(s)
- Justin Hudak
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
- College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - Adam W Hanley
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
- College of Social Work, University of Utah, Salt Lake City, UT, USA
| | - William R Marchand
- Veterans Health Care Administration VISN 19 Whole Health Flagship site located at the VA Salt Lake City Health Care System, 500 Foothill, Salt Lake City, UT, 84148, USA
- Department of Psychiatry, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Yoshio Nakamura
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA
- Department of Anesthesiology, Division of Pain Medicine, Pain Research Center, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Brandon Yabko
- Veterans Health Care Administration VISN 19 Whole Health Flagship site located at the VA Salt Lake City Health Care System, 500 Foothill, Salt Lake City, UT, 84148, USA
- Department of Psychiatry, University of Utah School of Medicine, 501 Chipeta Way, Salt Lake City, UT, 84108, USA
| | - Eric L Garland
- Center on Mindfulness and Integrative Health Intervention Development, University of Utah, Salt Lake City, UT, USA.
- College of Social Work, University of Utah, Salt Lake City, UT, USA.
- Veterans Health Care Administration VISN 19 Whole Health Flagship site located at the VA Salt Lake City Health Care System, 500 Foothill, Salt Lake City, UT, 84148, USA.
| |
Collapse
|
14
|
Maas DA, Angulo MC. Can Enhancing Neuronal Activity Improve Myelin Repair in Multiple Sclerosis? Front Cell Neurosci 2021; 15:645240. [PMID: 33708075 PMCID: PMC7940692 DOI: 10.3389/fncel.2021.645240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Enhanced neuronal activity in the healthy brain can induce de novo myelination and behavioral changes. As neuronal activity can be achieved using non-invasive measures, it may be of interest to utilize the innate ability of neuronal activity to instruct myelination as a novel strategy for myelin repair in demyelinating disorders such as multiple sclerosis (MS). Preclinical studies indicate that stimulation of neuronal activity in demyelinated lesions indeed has the potential to improve remyelination and that the stimulation paradigm is an important determinant of success. However, future studies will need to reveal the most efficient stimulation protocols as well as the biological mechanisms implicated. Nonetheless, clinical studies have already explored non-invasive brain stimulation as an attractive therapeutic approach that ameliorates MS symptomatology. However, whether symptom improvement is due to improved myelin repair remains unclear. In this mini-review, we discuss the neurobiological basis and potential of enhancing neuronal activity as a novel therapeutic approach in MS.
Collapse
Affiliation(s)
- Dorien A Maas
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | - María Cecilia Angulo
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.,GHU PARIS Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
15
|
Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 2021; 10:e1234. [PMID: 33489124 PMCID: PMC7811802 DOI: 10.1002/cti2.1234] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side-effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side-effect profile. METHODS Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non-immune demyelination. RESULTS Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor-BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR-dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. CONCLUSIONS Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.
Collapse
Affiliation(s)
- Lisa Denny
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| | - Afnan Al Abadey
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| | - Katharina Robichon
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| | - Nikki Templeton
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical SciencesUniversity of KentuckyLexingtonKY 40536USA
| | - Bronwyn M Kivell
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
| | - Anne C La Flamme
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Centre for BiodiscoveryVictoria University of WellingtonWellingtonNew Zealand
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| |
Collapse
|
16
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
17
|
Deli E, Peters J, Kisvárday Z. The thermodynamics of cognition: A mathematical treatment. Comput Struct Biotechnol J 2021; 19:784-793. [PMID: 33552449 PMCID: PMC7843413 DOI: 10.1016/j.csbj.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 10/26/2022] Open
Abstract
There is a general expectation that the laws of classical physics must apply to biology, particularly the neural system. The evoked cycle represents the brain's energy/information exchange with the physical environment through stimulus. Therefore, the thermodynamics of emotions might elucidate the neurological origin of intellectual evolution, and explain the psychological and health consequences of positive and negative emotional states based on their energy profiles. We utilized the Carnot cycle and Landauer's principle to analyze the energetic consequences of the brain's resting and evoked states during and after various cognitive states. Namely, positive emotional states can be represented by the reversed Carnot cycle, whereas negative emotional reactions trigger the Carnot cycle. The two conditions have contrasting energetic and entropic aftereffects with consequences for mental energy. The mathematics of the Carnot and reversed Carnot cycles, which can explain recent findings in human psychology, might be constructive in the scientific endeavor in turning psychology into hard science.
Collapse
Affiliation(s)
- Eva Deli
- Institute for Consciousness Studies (ICS), Benczur ter 9, Nyiregyhaza 4400, Hungary
| | - James Peters
- Department of Electrical and Computer Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB R3T 5V6, Canada
- Department of Mathematics Faculty of Arts and Sciences, Adiyaman University, Adiyaman, Turkey
| | - Zoltán Kisvárday
- MTA-Debreceni Egyetem, Neuroscience Research Group, 4032 Debrecen, Nagyerdei krt.98., Hungary
| |
Collapse
|
18
|
Weng HY, Feldman JL, Leggio L, Napadow V, Park J, Price CJ. Interventions and Manipulations of Interoception. Trends Neurosci 2021; 44:52-62. [PMID: 33378657 PMCID: PMC7805576 DOI: 10.1016/j.tins.2020.09.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 12/15/2022]
Abstract
Interoceptive pathways may be manipulated at various levels to develop interventions to improve symptoms in a range of disorders. Primarily through the lens of the respiratory system, we outline various pathways that can be manipulated at neural, behavioral, and psychological levels to change the representation of and attention to interoceptive signals, which can alter interconnected physiological systems and improve functioning and adaptive behavior. Interventions can alter interoception via neuromodulation of the vagus nerve, slow breathing to change respiratory rate and depth, or awareness processes such as mindfulness-based interventions. Aspects of this framework may be applied to other physiological systems and future research may integrate interventions across multiple levels of manipulation or bodily systems.
Collapse
Affiliation(s)
- Helen Y Weng
- Osher Center for Integrative Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Jack L Feldman
- Department of Neurobiology, David Geffen School of Medicine, Center for Health Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Anesthesiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeanie Park
- Renal Division, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA; Research Service Line, Department of Veterans Affairs Medical Center, Decatur, GA, USA
| | - Cynthia J Price
- School of Nursing, University of Washington, Seattle, WA, USA; Osher Center for Integrative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Cullen CL, Pepper RE, Clutterbuck MT, Pitman KA, Oorschot V, Auderset L, Tang AD, Ramm G, Emery B, Rodger J, Jolivet RB, Young KM. Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Rep 2021; 34:108641. [PMID: 33472075 DOI: 10.1016/j.celrep.2020.108641] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/18/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022] Open
Abstract
Central nervous system myelination increases action potential conduction velocity. However, it is unclear how myelination is coordinated to ensure the temporally precise arrival of action potentials and facilitate information processing within cortical and associative circuits. Here, we show that myelin sheaths, supported by mature oligodendrocytes, remain plastic in the adult mouse brain and undergo subtle structural modifications to influence action potential conduction velocity. Repetitive transcranial magnetic stimulation and spatial learning, two stimuli that modify neuronal activity, alter the length of the nodes of Ranvier and the size of the periaxonal space within active brain regions. This change in the axon-glial configuration is independent of oligodendrogenesis and robustly alters action potential conduction velocity. Because aptitude in the spatial learning task was found to correlate with action potential conduction velocity in the fimbria-fornix pathway, modifying the axon-glial configuration may be a mechanism that facilitates learning in the adult mouse brain.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | | | - Kimberley A Pitman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Viola Oorschot
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC 3800, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neuroscience, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Georg Ramm
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Melbourne, VIC 3800, Australia
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, Portland, OR 97239-3098, USA
| | - Jennifer Rodger
- Experimental and Regenerative Neuroscience, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; Perron Institute for Neurological and Translational Research, Perth, WA 6009, Australia
| | - Renaud B Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, 1211 Geneva 4, Switzerland
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia.
| |
Collapse
|
20
|
Tomorsky J, Parker PRL, Doe CQ, Niell CM. Precise levels of nectin-3 are required for proper synapse formation in postnatal visual cortex. Neural Dev 2020; 15:13. [PMID: 33160402 PMCID: PMC7648993 DOI: 10.1186/s13064-020-00150-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Developing cortical neurons express a tightly choreographed sequence of cytoskeletal and transmembrane proteins to form and strengthen specific synaptic connections during circuit formation. Nectin-3 is a cell-adhesion molecule with previously described roles in synapse formation and maintenance. This protein and its binding partner, nectin-1, are selectively expressed in upper-layer neurons of mouse visual cortex, but their role in the development of cortical circuits is unknown. METHODS Here we block nectin-3 expression (via shRNA) or overexpress nectin-3 in developing layer 2/3 visual cortical neurons using in utero electroporation. We then assay dendritic spine densities at three developmental time points: eye opening (postnatal day (P)14), one week following eye opening after a period of heightened synaptogenesis (P21), and at the close of the critical period for ocular dominance plasticity (P35). RESULTS Knockdown of nectin-3 beginning at E15.5 or ~ P19 increased dendritic spine densities at P21 or P35, respectively. Conversely, overexpressing full length nectin-3 at E15.5 decreased dendritic spine densities when all ages were considered together. The effects of nectin-3 knockdown and overexpression on dendritic spine densities were most significant on proximal secondary apical dendrites. Interestingly, an even greater decrease in dendritic spine densities, particularly on basal dendrites at P21, was observed when we overexpressed nectin-3 lacking its afadin binding domain. CONCLUSION These data collectively suggest that the proper levels and functioning of nectin-3 facilitate normal synapse formation after eye opening on apical and basal dendrites in layer 2/3 of visual cortex.
Collapse
Affiliation(s)
- Johanna Tomorsky
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
- Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA.
| | - Philip R L Parker
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
- Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Cristopher M Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR, 97403, USA.
- Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
21
|
Voelker P, Parker AN, Luu P, Davey C, Rothbart MK, Posner MI. Increasing the amplitude of intrinsic theta in the human brain. AIMS Neurosci 2020; 7:418-437. [PMID: 33263079 PMCID: PMC7701373 DOI: 10.3934/neuroscience.2020026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
In a mouse study we found increased myelination of pathways surrounding the anterior cingulate cortex (ACC) following stimulation near the theta rhythm (4-8 Hz), and evidence that this change in connectivity reduced behavioral anxiety. We cannot use the optogenetic methods with humans that were used in our mouse studies. This paper examines whether it is possible to enhance intrinsic theta amplitudes in humans using less invasive methods. The first experiment compares electrical, auditory and biofeedback as methods for increasing intrinsic theta rhythm amplitudes in the Anterior Cingulate Cortex (ACC). These methods are used alone or in conjunction with a task designed to activate the same area. The results favor using electrical stimulation in conjunction with a task targeting this region. Stimulating the ACC increases intrinsic theta more in this area than in a control area distant from the site of stimulation, suggesting some degree of localization of the stimulation. In Experiment 2, we employed electrical stimulation with the electrodes common to each person, or with electrodes selected from an individual head model. We targeted the ACC or Motor Cortex (PMC). At baseline, intrinsic theta is higher in the ACC than the PMC. In both areas, theta can be increased in amplitude by electrical stimulation plus task. In the PMC, theta levels during stimulation plus task are not significantly higher than during task alone. There is no significant difference between generic and individual electrodes. We discuss steps needed to determine whether we can use the electrical stimulation + task to improve the connectivity of white matter in different brain areas.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene OR, USA
| | - Ashley N Parker
- Department of Psychology, University of Oregon, Eugene OR, USA
| | - Phan Luu
- Department of Psychology, University of Oregon, Eugene OR, USA
- BelCo Eugene OR, USA
| | | | - Mary K Rothbart
- Department of Psychology, University of Oregon, Eugene OR, USA
| | | |
Collapse
|
22
|
Déli E, Kisvárday Z. The thermodynamic brain and the evolution of intellect: the role of mental energy. Cogn Neurodyn 2020; 14:743-756. [PMID: 33101528 DOI: 10.1007/s11571-020-09637-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
The living state is low entropy, highly complex organization, yet it is part of the energy cycle of the environment. Due to the recurring presence of the resting state, stimulus and its response form a thermodynamic cycle of perception that can be modeled by the Carnot engine. The endothermic reversed Carnot engine relies on energy from the environment to increase entropy (i.e., the synaptic complexity of the resting state). High entropy relies on mental energy, which represents intrinsic motivation and focuses on the future. It increases freedom of action. The Carnot engine can model exothermic, negative emotional states, which direct the focus on the past. The organism dumps entropy and energy to its environment, in the form of aggravation, anxiety, criticism, and physical violence. The loss of mental energy curtails freedom of action, forming apathy, depression, mental diseases, and immune problems. Our improving intuition about the brain's intelligent computations will allow the development of new treatments for mental disease and novel find applications in robotics and artificial intelligence.
Collapse
Affiliation(s)
| | - Zoltán Kisvárday
- MTA-DE Neuroscience Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Posner MI, Rothbart MK, Ghassemzadeh H. Developing attention in typical children related to disabilities. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:215-223. [PMID: 32958175 DOI: 10.1016/b978-0-444-64150-2.00019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We define attention by three basic functions. The first is obtaining and maintaining the alert state. The second is orienting overtly or covertly to sensory stimuli. The third is selection among competing responses. These three functions correspond to three separable brain networks. Control of the alert state develops in infancy but continues to change till adulthood. During childhood, the orienting network provides a means of controlling affective responses, e.g., by looking away from negative events and toward positive or novel events. The executive network mediates between competing voluntary responses by resolving conflicts. Executive control improves rapidly over the first 7 years of life. Autistic spectrum disorders and attention deficit hyperactivity disorder are two disorders that have been shown to involve deficits in attention networks. We examine connections between developing attention networks and these disorders.
Collapse
Affiliation(s)
- Michael I Posner
- Department of Psychology, University of Oregon, Eugene, OR, United States.
| | - Mary K Rothbart
- Department of Psychology, University of Oregon, Eugene, OR, United States
| | | |
Collapse
|
24
|
Sampaio-Baptista C, Vallès A, Khrapitchev AA, Akkermans G, Winkler AM, Foxley S, Sibson NR, Roberts M, Miller K, Diamond ME, Martens GJM, De Weerd P, Johansen-Berg H. White matter structure and myelin-related gene expression alterations with experience in adult rats. Prog Neurobiol 2020; 187:101770. [PMID: 32001310 PMCID: PMC7086231 DOI: 10.1016/j.pneurobio.2020.101770] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/19/2019] [Accepted: 01/24/2020] [Indexed: 11/30/2022]
Abstract
White matter (WM) plasticity during adulthood is a recently described phenomenon by which experience can shape brain structure. It has been observed in humans using diffusion tensor imaging (DTI) and myelination has been suggested as a possible mechanism. Here, we set out to identify molecular and cellular changes associated with WM plasticity measured by DTI. We combined DTI, immunohistochemistry and mRNA expression analysis and examined the effects of somatosensory experience in adult rats. First, we observed experience-induced DTI differences in WM and in grey matter structure. C-Fos mRNA expression, a marker of cortical activity, in the barrel cortex correlated with the MRI WM metrics, indicating that molecular correlates of cortical activity relate to macroscale measures of WM structure. Analysis of myelin-related genes revealed higher myelin basic protein (MBP) mRNA expression. Higher MBP protein expression was also found via immunohistochemistry in WM. Finally, unbiased RNA sequencing analysis identified 134 differentially expressed genes encoding proteins involved in functions related to cell proliferation and differentiation, regulation of myelination and neuronal activity modulation. In conclusion, macroscale measures of WM plasticity are supported by both molecular and cellular evidence and confirm that myelination is one of the underlying mechanisms.
Collapse
Affiliation(s)
- Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
| | - Astrid Vallès
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands; Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Alexandre A Khrapitchev
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Guus Akkermans
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
| | - Anderson M Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sean Foxley
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Mark Roberts
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Karla Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Mathew E Diamond
- Tactile Perception and Learning Lab, International School for Advanced Studies (SISSA), 34136 Trieste, Italy
| | - Gerard J M Martens
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, 6525 GA Nijmegen, The Netherlands
| | - Peter De Weerd
- Department of Neurocognition, Faculty of Psychology and Neurosciences, Maastricht University, 6200 MD Maastricht, The Netherlands; Department of Cognitive Neuroscience, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands; Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
25
|
|
26
|
Gilsoul M, Grisar T, Delgado-Escueta AV, de Nijs L, Lakaye B. Subtle Brain Developmental Abnormalities in the Pathogenesis of Juvenile Myoclonic Epilepsy. Front Cell Neurosci 2019; 13:433. [PMID: 31611775 PMCID: PMC6776584 DOI: 10.3389/fncel.2019.00433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/09/2019] [Indexed: 12/17/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME), a lifelong disorder that starts during adolescence, is the most common of genetic generalized epilepsy syndromes. JME is characterized by awakening myoclonic jerks and myoclonic-tonic-clonic (m-t-c) grand mal convulsions. Unfortunately, one third of JME patients have drug refractory m-t-c convulsions and these recur in 70-80% who attempt to stop antiepileptic drugs (AEDs). Behavioral studies documented impulsivity, but also impairment of executive functions relying on organization and feedback, which points to prefrontal lobe dysfunction. Quantitative voxel-based morphometry (VBM) revealed abnormalities of gray matter (GM) volumes in cortical (frontal and parietal) and subcortical structures (thalamus, putamen, and hippocampus). Proton magnetic resonance spectroscopy (MRS) found evidence of dysfunction of thalamic neurons. White matter (WM) integrity was disrupted in corpus callosum and frontal WM tracts. Magnetic resonance imaging (MRI) further unveiled anomalies in both GM and WM structures that were already present at the time of seizure onset. Aberrant growth trajectories of brain development occurred during the first 2 years of JME diagnosis. Because of genetic origin, disease causing variants were sought, first by positional cloning, and most recently, by next generation sequencing. To date, only six genes harboring pathogenic variants (GABRA1, GABRD, EFHC1, BRD2, CASR, and ICK) with Mendelian and complex inheritance and covering a limited proportion of the world population, are considered as major susceptibility alleles for JME. Evidence on the cellular role, developmental and cell-type expression profiles of these six diverse JME genes, point to their pathogenic variants driving the first steps of brain development when cell division, expansion, axial, and tangential migration of progenitor cells (including interneuron cortical progenitors) sculpture subtle alterations in brain networks and microcircuits during development. These alterations may explain "microdysgenesis" neuropathology, impulsivity, executive dysfunctions, EEG polyspike waves, and awakening m-t-c convulsions observed in JME patients.
Collapse
Affiliation(s)
- Maxime Gilsoul
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Thierry Grisar
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Antonio V. Delgado-Escueta
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Epilepsy Genetics/Genomics Lab, Neurology and Research Services, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Laurence de Nijs
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, Netherlands
| | - Bernard Lakaye
- GIGA-Stem Cells, University of Liège, Liège, Belgium
- GIGA-Neurosciences, University of Liège, Liège, Belgium
- GENESS International Consortium, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
Abstract
Advances in the study of brain networks can be applied to our understanding of anxiety disorders (eg, generalized anxiety, obsessive-compulsive, and posttraumatic stress disorders) to enable us to create targeted treatments. These disorders have in common an inability to control thoughts, emotions, and behaviors related to a perceived threat. Here we review animal and human imaging studies that have revealed separate brain networks related to various negative emotions. Research has supported the idea that brain networks of attention serve to control emotion networks as well as the thoughts and behaviors related to them. We discuss how attention networks can modulate both positive and negative affect. Disorders arise from both abnormal activation of negative affect and a lack of attentional control. Training attention has been one way to foster improved attentional control. We review attention training studies as well as efforts to generally improve attention networks through stimulation in self-regulation.
Collapse
|
28
|
Tang YY, Tang R, Rothbart MK, Posner MI. Frontal theta activity and white matter plasticity following mindfulness meditation. Curr Opin Psychol 2019; 28:294-297. [PMID: 31082635 DOI: 10.1016/j.copsyc.2019.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Both brain alpha and theta power have been examined in the mindfulness meditation literature and suggested as key biological signatures that potentially facilitate a successful meditative state. However, the exact role of how alpha and theta waves contribute to the initiation and maintenance of a meditative state remains elusive. In this perspective paper, we discuss the role of frontal midline theta (FMθ) activity in brain white matter plasticity following mindfulness meditation. In accordance with the previous studies in humans, we propose that FMθ activity indexes the control needed to maintain the meditation state; whereas alpha activity is related to the preparation needed to achieve the meditative state. Without enough mental preparation, one often struggles with and has difficulty achieving a meditative state. Animal work provides further evidence supporting the hypothesis that mindfulness meditation induces white matter changes through increasing FMθ activity. These studies shed light on how to effectively enhance brain plasticity through mindfulness meditation.
Collapse
Affiliation(s)
- Yi-Yuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Rongxiang Tang
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Mary K Rothbart
- Department of Psychology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
29
|
Posner MI, Rothbart MK, Ghassemzadeh H. Restoring Attention Networks. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:139-143. [PMID: 30923481 PMCID: PMC6430178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The attention networks of the human brain have been under intensive study for more than twenty years and deficits of attention accompany many neurological and psychiatric conditions. There is more dispute about the centrality of attention deficits to these conditions. It appears to be time to study whether reducing deficits of attention alleviate the neurological or psychiatric disorder as a whole. In this paper we review human and animal research indicating the possibility of improving the function of brain networks underlying attention and their potential clinical role.
Collapse
|
30
|
Posner MI, Niell CM. Illuminating the Neural Circuits Underlying Orienting of Attention. Vision (Basel) 2019; 3:vision3010004. [PMID: 31735805 PMCID: PMC6802764 DOI: 10.3390/vision3010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 11/17/2022] Open
Abstract
Human neuroimaging has revealed brain networks involving frontal and parietal cortical areas as well as subcortical areas, including the superior colliculus and pulvinar, which are involved in orienting to sensory stimuli. Because accumulating evidence points to similarities between both overt and covert orienting in humans and other animals, we propose that it is now feasible, using animal models, to move beyond these large-scale networks to address the local networks and cell types that mediate orienting of attention. In this opinion piece, we discuss optogenetic and related methods for testing the pathways involved, and obstacles to carrying out such tests in rodent and monkey populations.
Collapse
Affiliation(s)
- Michael I. Posner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA
- Correspondence:
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97401, USA
- Department of Biology, University of Oregon, Eugene, OR 97401, USA
| |
Collapse
|