1
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in the ventromedial prefrontal cortex. Cell 2025:S0092-8674(25)00388-5. [PMID: 40262608 DOI: 10.1016/j.cell.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/18/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
The prefrontal cortex (PFC) is crucial for economic decision-making. However, how PFC value representations facilitate flexible decisions remains unknown. We reframe economic decision-making as a navigation process through a cognitive map of choice values. We found rhesus macaques represented choices as navigation trajectories in a value space using a grid-like code. This occurred in ventromedial PFC (vmPFC) local field potential theta frequency across two datasets. vmPFC neurons deployed the same grid-like code and encoded chosen value. However, both signals depended on theta phase: occurring on theta troughs but on separate theta cycles. Finally, we found sharp-wave ripples-a key signature of planning and flexible behavior-in vmPFC. Thus, vmPFC utilizes cognitive map-based computations to organize and compare values, suggesting an alternative architecture for economic choice in PFC.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK.
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| | - Timothy E J Behrens
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK; Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London W1T 4JG, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3SR, UK; Institute of Neurology, Department of Clinical and Movement Neurosciences, University College London, London WC1N 3BG, UK
| |
Collapse
|
2
|
Dickmann F, Keil J, Korte A, Edler D, O´Meara D, Bordewieck M, Axmacher N. Improved Navigation Performance Through Memory Triggering Maps: A Neurocartographic Approach. KN - JOURNAL OF CARTOGRAPHY AND GEOGRAPHIC INFORMATION 2024; 74:251-266. [PMID: 39712551 PMCID: PMC11659358 DOI: 10.1007/s42489-024-00181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
When using navigation devices the "cognitive map" created in the user's mind is much more fragmented, incomplete and inaccurate, compared to the mental model of space created when reading a conventional printed map. As users become more dependent on digital devices that reduce orientation skills, there is an urgent need to develop more efficient navigation systems that promote orientation skills. This paper proposes to consider brain processes for creating more efficient maps that use a network of optimally located cardinal lines and landmarks organized to support and stabilize the neurocognitive structures in the brain that promote spatial orientation. This new approach combines neurocognitive insights with classical research on the efficiency of cartographic visualizations. Recent neuroscientific findings show that spatially tuned neurons could be linked to navigation processes. In particular, the activity of grid cells, which appear to be used to process metric information about space, can be influenced by environmental stimuli such as walls or boundaries. Grid cell activity could be used to create a new framework for map-based interfaces that primarily considers the brain structures associated with the encoding and retrieval of spatial information. The new framework proposed in this paper suggests to arrange map symbols in a specific way that the map design helps to stabilize grid cell firing in the brain and by this improve spatial orientation and navigational performance. Spatially oriented cells are active in humans not only when moving in space, but also when imagining moving through an area-such as when reading a map. It seems likely that the activity of grid cells can be stabilized simply by map symbols that are perceived when reading a map.
Collapse
Affiliation(s)
- Frank Dickmann
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Julian Keil
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Annika Korte
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Dennis Edler
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Denise O´Meara
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Martin Bordewieck
- Geography Department, Cartography, Ruhr University Bochum, Bochum, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Beanato E, Moon HJ, Windel F, Vassiliadis P, Wessel MJ, Popa T, Pauline M, Neufeld E, De Falco E, Gauthier B, Steiner M, Blanke O, Hummel FC. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. SCIENCE ADVANCES 2024; 10:eado4103. [PMID: 39475597 PMCID: PMC11524170 DOI: 10.1126/sciadv.ado4103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
Because of the depth of the hippocampal-entorhinal complex (HC-EC) in the brain, understanding of its role in spatial navigation via neuromodulation was limited in humans. Here, we aimed to better elucidate this relationship in healthy volunteers, using transcranial temporal interference electric stimulation (tTIS), a noninvasive technique allowing to selectively neuromodulate deep brain structures. We applied tTIS to the right HC-EC in either continuous or intermittent theta-burst stimulation patterns (cTBS or iTBS), compared to a control condition, during a virtual reality-based spatial navigation task and concomitant functional magnetic resonance imaging. iTBS improved spatial navigation performance, correlated with hippocampal activity modulation, and decreased grid cell-like activity in EC. Collectively, these data provide the evidence that human HC-EC activity can be directly and noninvasively modulated leading to changes of spatial navigation behavior. These findings suggest promising perspectives for patients suffering from cognitive impairment such as following traumatic brain injury or dementia.
Collapse
Affiliation(s)
- Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Hyuk-June Moon
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Maximillian J. Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Menoud Pauline
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
- ZMT Zurich MedTech AG, Zurich, Switzerland
| | - Emanuela De Falco
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Baptiste Gauthier
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society (IT’IS), Zurich, Switzerland
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| | - Friedhelm C. Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Sion, Switzerland
- Department of Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
4
|
Bin Khalid I, Reifenstein ET, Auer N, Kunz L, Kempter R. Quantitative modeling of the emergence of macroscopic grid-like representations. eLife 2024; 13:e85742. [PMID: 39212203 PMCID: PMC11364436 DOI: 10.7554/elife.85742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
When subjects navigate through spatial environments, grid cells exhibit firing fields that are arranged in a triangular grid pattern. Direct recordings of grid cells from the human brain are rare. Hence, functional magnetic resonance imaging (fMRI) studies proposed an indirect measure of entorhinal grid-cell activity, quantified as hexadirectional modulation of fMRI activity as a function of the subject's movement direction. However, it remains unclear how the activity of a population of grid cells may exhibit hexadirectional modulation. Here, we use numerical simulations and analytical calculations to suggest that this hexadirectional modulation is best explained by head-direction tuning aligned to the grid axes, whereas it is not clearly supported by a bias of grid cells toward a particular phase offset. Firing-rate adaptation can result in hexadirectional modulation, but the available cellular data is insufficient to clearly support or refute this option. The magnitude of hexadirectional modulation furthermore depends considerably on the subject's navigation pattern, indicating that future fMRI studies could be designed to test which hypothesis most likely accounts for the fMRI measure of grid cells. Our findings also underline the importance of quantifying the properties of human grid cells to further elucidate how hexadirectional modulations of fMRI activity may emerge.
Collapse
Affiliation(s)
- Ikhwan Bin Khalid
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| | - Eric T Reifenstein
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Department of Mathematics and Computer Science, Freie Universität BerlinBerlinGermany
| | - Naomi Auer
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
| | - Lukas Kunz
- Department of Epileptology, University Hospital BonnBonnGermany
| | - Richard Kempter
- Bernstein Center for Computational Neuroscience BerlinBerlinGermany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu BerlinBerlinGermany
- Einstein Center for Neurosciences BerlinBerlinGermany
| |
Collapse
|
5
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
6
|
Peters-Founshtein G, Dafni-Merom A, Monsa R, Arzy S. Evidence for grid-cell-like activity in the time domain. Neuropsychologia 2024; 198:108878. [PMID: 38574806 DOI: 10.1016/j.neuropsychologia.2024.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
The relation between the processing of space and time in the brain has been an enduring cross-disciplinary question. Grid cells have been recognized as a hallmark of the mammalian navigation system, with recent studies attesting to their involvement in the organization of conceptual knowledge in humans. To determine whether grid-cell-like representations support temporal processing, we asked subjects to mentally simulate changes in age and time-of-day, each constituting "trajectory" in an age-day space, while undergoing fMRI. We found that grid-cell-like representations supported trajecting across this age-day space. Furthermore, brain regions concurrently coding past-to-future orientation positively modulated the magnitude of grid-cell-like representation in the left entorhinal cortex. Finally, our findings suggest that temporal processing may be supported by spatially modulated systems, and that innate regularities of abstract domains may interface and alter grid-cell-like representations, similarly to spatial geometry.
Collapse
Affiliation(s)
- Gregory Peters-Founshtein
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Nuclear Medicine, Sheba Medical Center, Ramat-Gan, Israel.
| | - Amnon Dafni-Merom
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rotem Monsa
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Arzy
- The Computational Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
7
|
Chen D, Axmacher N, Wang L. Grid codes underlie multiple cognitive maps in the human brain. Prog Neurobiol 2024; 233:102569. [PMID: 38232782 DOI: 10.1016/j.pneurobio.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Grid cells fire at multiple positions that organize the vertices of equilateral triangles tiling a 2D space and are well studied in rodents. The last decade witnessed rapid progress in two other research lines on grid codes-empirical studies on distributed human grid-like representations in physical and multiple non-physical spaces, and cognitive computational models addressing the function of grid cells based on principles of efficient and predictive coding. Here, we review the progress in these fields and integrate these lines into a systematic organization. We also discuss the coordinate mechanisms of grid codes in the human entorhinal cortex and medial prefrontal cortex and their role in neurological and psychiatric diseases.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801, Bochum, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
8
|
Veselic S, Muller TH, Gutierrez E, Behrens TEJ, Hunt LT, Butler JL, Kennerley SW. A cognitive map for value-guided choice in ventromedial prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571895. [PMID: 38168410 PMCID: PMC10760117 DOI: 10.1101/2023.12.15.571895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The prefrontal cortex is crucial for economic decision-making and representing the value of options. However, how such representations facilitate flexible decisions remains unknown. We reframe economic decision-making in prefrontal cortex in line with representations of structure within the medial temporal lobe because such cognitive map representations are known to facilitate flexible behaviour. Specifically, we framed choice between different options as a navigation process in value space. Here we show that choices in a 2D value space defined by reward magnitude and probability were represented with a grid-like code, analogous to that found in spatial navigation. The grid-like code was present in ventromedial prefrontal cortex (vmPFC) local field potential theta frequency and the result replicated in an independent dataset. Neurons in vmPFC similarly contained a grid-like code, in addition to encoding the linear value of the chosen option. Importantly, both signals were modulated by theta frequency - occurring at theta troughs but on separate theta cycles. Furthermore, we found sharp-wave ripples - a key neural signature of planning and flexible behaviour - in vmPFC, which were modulated by accuracy and reward. These results demonstrate that multiple cognitive map-like computations are deployed in vmPFC during economic decision-making, suggesting a new framework for the implementation of choice in prefrontal cortex.
Collapse
Affiliation(s)
- Sebastijan Veselic
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy H Muller
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Elena Gutierrez
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| | - Timothy E J Behrens
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour College, University College London, London, UK
| | - Laurence T Hunt
- Department of Experimental Psychology, University of Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - James L Butler
- Department of Experimental Psychology, University of Oxford, UK
| | - Steven W Kennerley
- Department of Experimental Psychology, University of Oxford, UK
- Clinical and Movement Neurosciences, Department of Motor Neuroscience, University College London, London, UK
| |
Collapse
|
9
|
Moon HJ, Wu HP, De Falco E, Blanke O. Physical Body Orientation Impacts Virtual Navigation Experience and Performance. eNeuro 2023; 10:ENEURO.0218-23.2023. [PMID: 37932043 PMCID: PMC10683533 DOI: 10.1523/eneuro.0218-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Most human navigation studies in MRI rely on virtual navigation. However, the necessary supine position in MRI makes it fundamentally different from daily ecological navigation. Nonetheless, until now, no study has assessed whether differences in physical body orientation (BO) affect participants' experienced BO during virtual navigation. Here, combining an immersive virtual reality navigation task with subjective BO measures and implicit behavioral measures, we demonstrate that physical BO (either standing or supine) modulates experienced BO. Also, we show that standing upright BO is preferred during spatial navigation: participants were more likely to experience a standing BO and were better at spatial navigation when standing upright. Importantly, we report that showing a supine virtual agent reduces the conflict between the preferred BO and physical supine BO. Our study provides critical, but missing, information regarding experienced BO during virtual navigation, which should be considered cautiously when designing navigation studies, especially in MRI.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hsin-Ping Wu
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Emanuela De Falco
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
| | - Olaf Blanke
- Neuro-X Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), CH-1202 Geneva, Switzerland
- Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
- Department of Clinical Neurosciences, University Hospital Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
10
|
Orloff MA, Boorman ED. Cognitive maps: Constructing a route with your snout. Curr Biol 2023; 33:R963-R965. [PMID: 37751711 DOI: 10.1016/j.cub.2023.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Humans construct cognitive maps of the physical, imagined, and abstract world around us based on visually sampled information. A new study shows how the human brain can also use olfactory cues to form and use cognitive maps.
Collapse
Affiliation(s)
- Mark A Orloff
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Erie D Boorman
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA; Department of Psychology, University of California, Davis, 135 Young Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Alexander AS, Robinson JC, Stern CE, Hasselmo ME. Gated transformations from egocentric to allocentric reference frames involving retrosplenial cortex, entorhinal cortex, and hippocampus. Hippocampus 2023; 33:465-487. [PMID: 36861201 PMCID: PMC10403145 DOI: 10.1002/hipo.23513] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 03/03/2023]
Abstract
This paper reviews the recent experimental finding that neurons in behaving rodents show egocentric coding of the environment in a number of structures associated with the hippocampus. Many animals generating behavior on the basis of sensory input must deal with the transformation of coordinates from the egocentric position of sensory input relative to the animal, into an allocentric framework concerning the position of multiple goals and objects relative to each other in the environment. Neurons in retrosplenial cortex show egocentric coding of the position of boundaries in relation to an animal. These neuronal responses are discussed in relation to existing models of the transformation from egocentric to allocentric coordinates using gain fields and a new model proposing transformations of phase coding that differ from current models. The same type of transformations could allow hierarchical representations of complex scenes. The responses in rodents are also discussed in comparison to work on coordinate transformations in humans and non-human primates.
Collapse
Affiliation(s)
- Andrew S Alexander
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Jennifer C Robinson
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Chantal E Stern
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Entorhinal grid-like codes and time-locked network dynamics track others navigating through space. Nat Commun 2023; 14:231. [PMID: 36720865 PMCID: PMC9889810 DOI: 10.1038/s41467-023-35819-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Navigating through crowded, dynamically changing environments requires the ability to keep track of other individuals. Grid cells in the entorhinal cortex are a central component of self-related navigation but whether they also track others' movement is unclear. Here, we propose that entorhinal grid-like codes make an essential contribution to socio-spatial navigation. Sixty human participants underwent functional magnetic resonance imaging (fMRI) while observing and re-tracing different paths of a demonstrator that navigated a virtual reality environment. Results revealed that grid-like codes in the entorhinal cortex tracked the other individual navigating through space. The activity of grid-like codes was time-locked to increases in co-activation and entorhinal-cortical connectivity that included the striatum, the hippocampus, parahippocampal and right posterior parietal cortices. Surprisingly, the grid-related effects during observation were stronger the worse participants performed when subsequently re-tracing the demonstrator's paths. Our findings suggests that network dynamics time-locked to entorhinal grid-cell-related activity might serve to distribute information about the location of others throughout the brain.
Collapse
|
13
|
Moon HJ, Gauthier B, Park HD, Faivre N, Blanke O. Sense of self impacts spatial navigation and hexadirectional coding in human entorhinal cortex. Commun Biol 2022; 5:406. [PMID: 35501331 PMCID: PMC9061856 DOI: 10.1038/s42003-022-03361-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/12/2022] [Indexed: 11/09/2022] Open
Abstract
Grid cells in entorhinal cortex (EC) encode an individual's location in space and rely on environmental cues and self-motion cues derived from the individual's body. Body-derived signals are also primary signals for the sense of self and based on integrated sensorimotor signals (proprioceptive, tactile, visual, motor) that have been shown to enhance self-centered processing. However, it is currently unknown whether such sensorimotor signals that modulate self-centered processing impact grid cells and spatial navigation. Integrating the online manipulation of bodily signals, to modulate self-centered processing, with a spatial navigation task and an fMRI measure to detect grid cell-like representation (GCLR) in humans, we report improved performance in spatial navigation and decreased GCLR in EC. This decrease in entorhinal GCLR was associated with an increase in retrosplenial cortex activity, which was correlated with participants' navigation performance. These data link self-centered processes during spatial navigation to entorhinal and retrosplenial activity and highlight the role of different bodily factors at play when navigating in VR.
Collapse
Affiliation(s)
- Hyuk-June Moon
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,Center for Bionics, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Baptiste Gauthier
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland
| | - Hyeong-Dong Park
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Shuang-Ho Hospital, New Taipei City, Taiwan
| | - Nathan Faivre
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland.,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Olaf Blanke
- Center of Neuroprosthetics, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Geneva, Switzerland. .,Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (École Polytechnique Fédérale de Lausanne, EPFL), Lausanne, Switzerland. .,Department of Neurology, University Hospital Geneva, Geneva, Switzerland.
| |
Collapse
|
14
|
Wang W, Wang W. Effect of reward on electrophysiological signatures of grid cell population activity in human spatial navigation. Sci Rep 2021; 11:23577. [PMID: 34880356 PMCID: PMC8654941 DOI: 10.1038/s41598-021-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
The regular equilateral triangular periodic firing pattern of grid cells in the entorhinal cortex is considered a regular metric for the spatial world, and the grid-like representation correlates with hexadirectional modulation of theta (4-8 Hz) power in the entorhinal cortex relative to the moving direction. However, researchers have not clearly determined whether grid cells provide only simple spatial measures in human behavior-related navigation strategies or include other factors such as goal rewards to encode information in multiple patterns. By analysing the hexadirectional modulation of EEG signals in the theta band in the entorhinal cortex of patients with epilepsy performing spatial target navigation tasks, we found that this modulation presents a grid pattern that carries target-related reward information. This grid-like representation is influenced by explicit goals and is related to the local characteristics of the environment. This study provides evidence that human grid cell population activity is influenced by reward information at the level of neural oscillations.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China.
| | - Wenxu Wang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
15
|
Chen D, Kunz L, Lv P, Zhang H, Zhou W, Liang S, Axmacher N, Wang L. Theta oscillations coordinate grid-like representations between ventromedial prefrontal and entorhinal cortex. SCIENCE ADVANCES 2021; 7:eabj0200. [PMID: 34705507 PMCID: PMC8550230 DOI: 10.1126/sciadv.abj0200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Grid cells and theta oscillations are fundamental constituents of the brain’s navigation system and have been described in the entorhinal cortex (EC). Recent fMRI studies reveal that the ventromedial prefrontal cortex (vmPFC) contains grid-like representations. However, the neural mechanisms underlying human vmPFC grid-like representations and their interactions with EC grid activity have remained unknown. We conducted intracranial electroencephalography (iEEG) recordings from epilepsy patients during a virtual spatial navigation task. Oscillatory theta power in the vmPFC exhibited a sixfold rotational symmetry that was coordinated with grid-like representations in the EC. We found that synchronous theta oscillations occurred between these regions that predicted navigational performance. Analysis of information transfer revealed a unidirectional signal from vmPFC to EC during memory retrieval. Together, this study provides insights into the previously unknown neural signature and functional role of grid-like representations outside the EC and their synchronization with the entorhinal grid during human spatial navigation.
Collapse
Affiliation(s)
- Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lukas Kunz
- Epilepsy Center, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Pengcheng Lv
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author.
| |
Collapse
|
16
|
Park SA, Miller DS, Boorman ED. Inferences on a multidimensional social hierarchy use a grid-like code. Nat Neurosci 2021; 24:1292-1301. [PMID: 34465915 PMCID: PMC8759596 DOI: 10.1038/s41593-021-00916-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/21/2021] [Indexed: 02/06/2023]
Abstract
Generalizing experiences to guide decision-making in novel situations is a hallmark of flexible behavior. Cognitive maps of an environment or task can theoretically afford such flexibility, but direct evidence has proven elusive. In this study, we found that discretely sampled abstract relationships between entities in an unseen two-dimensional social hierarchy are reconstructed into a unitary two-dimensional cognitive map in the hippocampus and entorhinal cortex. We further show that humans use a grid-like code in entorhinal cortex and medial prefrontal cortex for inferred direct trajectories between entities in the reconstructed abstract space during discrete decisions. These grid-like representations in the entorhinal cortex are associated with decision value computations in the medial prefrontal cortex and temporoparietal junction. Collectively, these findings show that grid-like representations are used by the human brain to infer novel solutions, even in abstract and discrete problems, and suggest a general mechanism underpinning flexible decision-making and generalization.
Collapse
Affiliation(s)
| | - Douglas S. Miller
- Center for Mind and Brain, University of California, Davis, USA,Center for Neuroscience, University of California, Davis, USA
| | - Erie D. Boorman
- Center for Mind and Brain, University of California, Davis, USA,Department of Psychology, University of California, Davis, USA
| |
Collapse
|
17
|
Abstract
Spatial navigation is a complex cognitive process based on multiple senses that are integrated and processed by a wide network of brain areas. Previous studies have revealed the retrosplenial complex (RSC) to be modulated in a task-related manner during navigation. However, these studies restricted participants' movement to stationary setups, which might have impacted heading computations due to the absence of vestibular and proprioceptive inputs. Here, we present evidence of human RSC theta oscillation (4-8 Hz) in an active spatial navigation task where participants actively ambulated from one location to several other points while the position of a landmark and the starting location were updated. The results revealed theta power in the RSC to be pronounced during heading changes but not during translational movements, indicating that physical rotations induce human RSC theta activity. This finding provides a potential evidence of head-direction computation in RSC in healthy humans during active spatial navigation.
Collapse
|
18
|
Long X, Zhang SJ. A novel somatosensory spatial navigation system outside the hippocampal formation. Cell Res 2021; 31:649-663. [PMID: 33462427 PMCID: PMC8169756 DOI: 10.1038/s41422-020-00448-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Spatially selective firing of place cells, grid cells, boundary vector/border cells and head direction cells constitutes the basic building blocks of a canonical spatial navigation system centered on the hippocampal-entorhinal complex. While head direction cells can be found throughout the brain, spatial tuning outside the hippocampal formation is often non-specific or conjunctive to other representations such as a reward. Although the precise mechanism of spatially selective firing activity is not understood, various studies show sensory inputs, particularly vision, heavily modulate spatial representation in the hippocampal-entorhinal circuit. To better understand the contribution of other sensory inputs in shaping spatial representation in the brain, we performed recording from the primary somatosensory cortex in foraging rats. To our surprise, we were able to detect the full complement of spatially selective firing patterns similar to that reported in the hippocampal-entorhinal network, namely, place cells, head direction cells, boundary vector/border cells, grid cells and conjunctive cells, in the somatosensory cortex. These newly identified somatosensory spatial cells form a spatial map outside the hippocampal formation and support the hypothesis that location information modulates body representation in the somatosensory cortex. Our findings provide transformative insights into our understanding of how spatial information is processed and integrated in the brain, as well as functional operations of the somatosensory cortex in the context of rehabilitation with brain-machine interfaces.
Collapse
Affiliation(s)
- Xiaoyang Long
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| | - Sheng-Jia Zhang
- grid.410570.70000 0004 1760 6682Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037 China
| |
Collapse
|
19
|
Drane DL, Pedersen NP, Sabsevitz DS, Block C, Dickey AS, Alwaki A, Kheder A. Cognitive and Emotional Mapping With SEEG. Front Neurol 2021; 12:627981. [PMID: 33912122 PMCID: PMC8072290 DOI: 10.3389/fneur.2021.627981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
Mapping of cortical functions is critical for the best clinical care of patients undergoing epilepsy and tumor surgery, but also to better understand human brain function and connectivity. The purpose of this review is to explore existing and potential means of mapping higher cortical functions, including stimulation mapping, passive mapping, and connectivity analyses. We examine the history of mapping, differences between subdural and stereoelectroencephalographic approaches, and some risks and safety aspects, before examining different types of functional mapping. Much of this review explores the prospects for new mapping approaches to better understand other components of language, memory, spatial skills, executive, and socio-emotional functions. We also touch on brain-machine interfaces, philosophical aspects of aligning tasks to brain circuits, and the study of consciousness. We end by discussing multi-modal testing and virtual reality approaches to mapping higher cortical functions.
Collapse
Affiliation(s)
- Daniel L. Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Nigel P. Pedersen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Emory Epilepsy Center, Atlanta, GA, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - David S. Sabsevitz
- Department of Psychology and Psychiatry, Mayo Clinic, Jacksonville, FL, United States
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Cady Block
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Adam S. Dickey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Abdulrahman Alwaki
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ammar Kheder
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
20
|
Peer M, Brunec IK, Newcombe NS, Epstein RA. Structuring Knowledge with Cognitive Maps and Cognitive Graphs. Trends Cogn Sci 2021; 25:37-54. [PMID: 33248898 PMCID: PMC7746605 DOI: 10.1016/j.tics.2020.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
Abstract
Humans and animals use mental representations of the spatial structure of the world to navigate. The classical view is that these representations take the form of Euclidean cognitive maps, but alternative theories suggest that they are cognitive graphs consisting of locations connected by paths. We review evidence suggesting that both map-like and graph-like representations exist in the mind/brain that rely on partially overlapping neural systems. Maps and graphs can operate simultaneously or separately, and they may be applied to both spatial and nonspatial knowledge. By providing structural frameworks for complex information, cognitive maps and cognitive graphs may provide fundamental organizing schemata that allow us to navigate in physical, social, and conceptual spaces.
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iva K Brunec
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Wang W. The broadband power shifts in entorhinal EEG are related to the firing of grid cells. Heliyon 2021; 7:e06087. [PMID: 33553754 PMCID: PMC7846926 DOI: 10.1016/j.heliyon.2021.e06087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 11/04/2022] Open
Abstract
The relationship between the firing of the grid cell and mesoscopic neural oscillations is one of the key issues to understand the neural mechanism of grid cells. Previous studies have focused more on the correspondence between neuronal firing and phases of oscillations, such as phase precession. There are also some conclusions about the relationship between the activity of grid cells and the intensity of neural oscillations, such as the disappearance of grid pattern caused by the blocking of theta rhythm, but the correlation between the firing rates of grid cells and the narrowband power of neural oscillations or the broadband LFP power is still scarce. Through analyzing the records of spike times of grid cells and local entorhinal EEG obtained by Hafting et al., in the spatial navigation experiment, we find that grid cells are, to a large proportion, a kind of broadband-shift neurons, and the positive correlation between grid cell activity and power of low theta and gamma bands was observed. These results have well verified, promoted, and connected many scattered research conclusions, such as the broadband shift phenomenon of hippocampal neurons, the influence of low theta activity on the firing pattern of grid cells, and the positive correlation between single-cell activity and gamma-band activity. This work is of great significance for the study of the neural mechanism of grid cells at the micro and mesoscopic levels, and may also inspire the use of indicators such as broadband power as markers for grid cell activity.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
22
|
Kaya Z, Soltanipour M, Treves A. Non-hexagonal neural dynamics in vowel space. AIMS Neurosci 2020; 7:275-298. [PMID: 32995486 PMCID: PMC7519971 DOI: 10.3934/neuroscience.2020015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 12/02/2022] Open
Abstract
Are the grid cells discovered in rodents relevant to human cognition? Following up on two seminal studies by others, we aimed to check whether an approximate 6-fold, grid-like symmetry shows up in the cortical activity of humans who "navigate" between vowels, given that vowel space can be approximated with a continuous trapezoidal 2D manifold, spanned by the first and second formant frequencies. We created 30 vowel trajectories in the assumedly flat central portion of the trapezoid. Each of these trajectories had a duration of 240 milliseconds, with a steady start and end point on the perimeter of a "wheel". We hypothesized that if the neural representation of this "box" is similar to that of rodent grid units, there should be an at least partial hexagonal (6-fold) symmetry in the EEG response of participants who navigate it. We have not found any dominant n-fold symmetry, however, but instead, using PCAs, we find indications that the vowel representation may reflect phonetic features, as positioned on the vowel manifold. The suggestion, therefore, is that vowels are encoded in relation to their salient sensory-perceptual variables, and are not assigned to arbitrary grid-like abstract maps. Finally, we explored the relationship between the first PCA eigenvector and putative vowel attractors for native Italian speakers, who served as the subjects in our study.
Collapse
Affiliation(s)
- Zeynep Kaya
- SISSA–Cognitive Neuroscience, via Bonomea 265, 34136 Trieste, Italy
| | | | - Alessandro Treves
- SISSA–Cognitive Neuroscience, via Bonomea 265, 34136 Trieste, Italy
- NTNU–Centre for Neural Computation, Trondheim, Norway
| |
Collapse
|
23
|
Theta oscillations support the interface between language and memory. Neuroimage 2020; 215:116782. [PMID: 32276054 DOI: 10.1016/j.neuroimage.2020.116782] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/12/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022] Open
Abstract
Recent evidence shows that hippocampal theta oscillations, usually linked to memory and navigation, are also observed during online language processing, suggesting a shared neurophysiological mechanism between language and memory. However, it remains to be established what specific roles hippocampal theta oscillations may play in language, and whether and how theta mediates the communication between the hippocampus and the perisylvian cortical areas, generally thought to support language processing. With whole-head magnetoencephalographic (MEG) recordings, the present study investigated these questions with two experiments. Using a violation paradigm, extensively used for studying neural underpinnings of different aspects of linguistic processing, we found increased theta power (4-8 Hz) in the hippocampal formation, when participants read a semantically incorrect vs. correct sentence ending. Such a pattern of results was replicated using different sentence stimuli in another cohort of participants. Importantly, no significant hippocampal theta power increase was found when participants read a semantically correct but syntactically incorrect sentence ending vs. a correct sentence ending. These findings may suggest that hippocampal theta oscillations are specifically linked to lexical-semantic related processing, and not general information processing in sentence reading. Furthermore, we found significantly transient theta phase coupling between the hippocampus and the left superior temporal gyrus, a hub area of the cortical network for language comprehension. This transient theta phase coupling may provide an important channel that links the memory and language systems for the generation of sentence meaning. Overall, these findings help specify the role of hippocampal theta in language, and provide a novel neurophysiological mechanism at the network level that may support the interface between memory and language.
Collapse
|
24
|
Ekstrom AD, Harootonian SK, Huffman DJ. Grid coding, spatial representation, and navigation: Should we assume an isomorphism? Hippocampus 2020; 30:422-432. [PMID: 31742364 PMCID: PMC7409510 DOI: 10.1002/hipo.23175] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Grid cells provide a compelling example of a link between cellular activity and an abstract and difficult to define concept like space. Accordingly, a representational perspective on grid coding argues that neural grid coding underlies a fundamentally spatial metric. Recently, some theoretical proposals have suggested extending such a framework to nonspatial cognition as well, such as category learning. Here, we provide a critique of the frequently employed assumption of an isomorphism between patterns of neural activity (e.g., grid cells), mental representation, and behavior (e.g., navigation). Specifically, we question the strict isomorphism between these three levels and suggest that human spatial navigation is perhaps best characterized by a wide variety of both metric and nonmetric strategies. We offer an alternative perspective on how grid coding might relate to human spatial navigation, arguing that grid coding is part of a much larger conglomeration of neural activity patterns that dynamically tune to accomplish specific behavioral outputs.
Collapse
Affiliation(s)
- Arne D Ekstrom
- Department of Psychology, University of Arizona, Tucson, Arizona
| | | | - Derek J Huffman
- Center for Neuroscience, University of California, Davis, California
| |
Collapse
|
25
|
Solomon EA, Lega BC, Sperling MR, Kahana MJ. Hippocampal theta codes for distances in semantic and temporal spaces. Proc Natl Acad Sci U S A 2019; 116:24343-24352. [PMID: 31723043 PMCID: PMC6883851 DOI: 10.1073/pnas.1906729116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The medial temporal lobe (MTL) is known to support episodic memory and spatial navigation, raising the possibility that its true function is to form "cognitive maps" of any kind of information. Studies in humans and animals support the idea that the hippocampal theta rhythm (4 to 8 Hz) is key to this mapping function, as it has been repeatedly observed during spatial navigation tasks. If episodic memory and spatial navigation are 2 sides of the same coin, we hypothesized that theta oscillations might reflect relations between explicitly nonspatial items, such as words. We asked 189 neurosurgical patients to perform a verbal free-recall task, of which 96 had indwelling electrodes placed in the MTL. Subjects were instructed to remember short lists of sequentially presented nouns. We found that hippocampal theta power and connectivity during item retrieval coded for semantic distances between words, as measured using word2vec-derived subspaces. Additionally, hippocampal theta indexed temporal distances between words after filtering lists on recall performance, to ensure adequate dynamic range in time. Theta effects were noted only for semantic subspaces of 1 dimension, indicating a substantial compression of the possible semantic feature space. These results lend further support to our growing confidence that the MTL forms cognitive maps of arbitrary representational spaces, helping to reconcile longstanding differences between the spatial and episodic memory literatures.
Collapse
Affiliation(s)
- Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
26
|
Memory retrieval modulates spatial tuning of single neurons in the human entorhinal cortex. Nat Neurosci 2019; 22:2078-2086. [PMID: 31712776 PMCID: PMC6897360 DOI: 10.1038/s41593-019-0523-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 09/23/2019] [Indexed: 01/18/2023]
Abstract
The medial temporal lobe is critical for both spatial navigation and memory. Although single neurons in the medial temporal lobe activate to represent locations in the environment during navigation, how this spatial tuning relates to memory for events involving those locations remains unclear. We examined memory-related changes in spatial tuning by recording single-neuron activity from neurosurgical patients performing a virtual-reality object-location memory task. We identified 'memory-trace cells' with activity that was spatially tuned to the retrieved location of the specific object that participants were cued to remember. Memory-trace cells in the entorhinal cortex, in particular, encoded discriminable representations of different memories through a memory-specific rate code. These findings indicate that single neurons in the human entorhinal cortex change their spatial tuning to target relevant memories for retrieval.
Collapse
|
27
|
He Q, Brown TI. Environmental Barriers Disrupt Grid-like Representations in Humans during Navigation. Curr Biol 2019; 29:2718-2722.e3. [PMID: 31378608 DOI: 10.1016/j.cub.2019.06.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023]
Abstract
Environmental barriers fundamentally shape our behavior and conceptualization of space [1-5]. Evidence from rodents suggests that, in contrast to an open-field environment, where grid cells exhibit firing patterns with a 6-fold rotational symmetry [5, 6], barriers within the field abolish the 6-fold symmetry and fragment the grid firing fields into compartmentalized repeating "submaps" [5]. These results suggest that barriers may exert their influence on the cognitive map through organization of the metric representation of space provided by entorhinal neurons. We directly tested this hypothesis in humans, combining functional MRI with a virtual navigation paradigm in which we manipulated the local barrier structure. When participants performed a fixed-route foraging task in an open field, the functional MRI signal in right entorhinal cortex exhibited a 6-fold periodic modulation by movement direction associated with conjunctive grid cell firing [7]. However, when environments were compartmentalized by barriers, the grid-like 6-fold spatial metric was abolished. Instead, a 4-fold modulation of the entorhinal signal was observed, consistent with a vectorized organization of spatial metrics predicted by rodent models of navigation [5]. Collectively, these results provide mechanistic insight into why barriers compartmentalize our cognitive map, indicating that boundaries exert a powerful influence on the way environments are represented in human entorhinal cortex. Given that our daily environments are rarely wide open and are often segmented by barriers (e.g., the buildings of our home city), our findings have implications for applying models of cognitive mapping based on grid-like metrics [8] to naturalistic circumstances.
Collapse
Affiliation(s)
- Qiliang He
- School of Psychology, Georgia Institute of Technology, 648 Cherry Street NW, Atlanta, GA 30332, USA.
| | - Thackery I Brown
- School of Psychology, Georgia Institute of Technology, 648 Cherry Street NW, Atlanta, GA 30332, USA.
| |
Collapse
|
28
|
Kunz L, Maidenbaum S, Chen D, Wang L, Jacobs J, Axmacher N. Mesoscopic Neural Representations in Spatial Navigation. Trends Cogn Sci 2019; 23:615-630. [PMID: 31130396 PMCID: PMC6601347 DOI: 10.1016/j.tics.2019.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 01/21/2023]
Abstract
Recent evidence suggests that mesoscopic neural oscillations measured via intracranial electroencephalography exhibit spatial representations, which were previously only observed at the micro- and macroscopic level of brain organization. Specifically, theta (and gamma) oscillations correlate with movement, speed, distance, specific locations, and goal proximity to boundaries. In entorhinal cortex (EC), they exhibit hexadirectional modulation, which is putatively linked to grid cell activity. Understanding this mesoscopic neural code is crucial because information represented by oscillatory power and phase may complement the information content at other levels of brain organization. Mesoscopic neural oscillations help bridge the gap between single-neuron and macroscopic brain signals of spatial navigation and may provide a mechanistic basis for novel biomarkers and therapeutic targets to treat diseases causing spatial disorientation.
Collapse
Affiliation(s)
- Lukas Kunz
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Shachar Maidenbaum
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
29
|
Kunz L, Wang L, Lachner-Piza D, Zhang H, Brandt A, Dümpelmann M, Reinacher PC, Coenen VA, Chen D, Wang WX, Zhou W, Liang S, Grewe P, Bien CG, Bierbrauer A, Navarro Schröder T, Schulze-Bonhage A, Axmacher N. Hippocampal theta phases organize the reactivation of large-scale electrophysiological representations during goal-directed navigation. SCIENCE ADVANCES 2019; 5:eaav8192. [PMID: 31281882 PMCID: PMC6609163 DOI: 10.1126/sciadv.aav8192] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/24/2019] [Indexed: 05/11/2023]
Abstract
Humans are adept in simultaneously following multiple goals, but the neural mechanisms for maintaining specific goals and distinguishing them from other goals are incompletely understood. For short time scales, working memory studies suggest that multiple mental contents are maintained by theta-coupled reactivation, but evidence for similar mechanisms during complex behaviors such as goal-directed navigation is scarce. We examined intracranial electroencephalography recordings of epilepsy patients performing an object-location memory task in a virtual environment. We report that large-scale electrophysiological representations of objects that cue for specific goal locations are dynamically reactivated during goal-directed navigation. Reactivation of different cue representations occurred at stimulus-specific hippocampal theta phases. Locking to more distinct theta phases predicted better memory performance, identifying hippocampal theta phase coding as a mechanism for separating competing goals. Our findings suggest shared neural mechanisms between working memory and goal-directed navigation and provide new insights into the functions of the hippocampal theta rhythm.
Collapse
Affiliation(s)
- Lukas Kunz
- Epilepsy Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Corresponding author. (L.K.); (N.A.)
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Daniel Lachner-Piza
- Epilepsy Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C. Reinacher
- University Medical Center, Stereotactic and Functional Neurosurgery, Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- University Medical Center, Stereotactic and Functional Neurosurgery, Freiburg im Breisgau, Germany
| | - Dong Chen
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Wen-Xu Wang
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, Beijing, China
| | - Shuli Liang
- Department of Neurosurgery, First Affiliated Hospital of General Hospital of PLA, Beijing, China
| | - Philip Grewe
- Bethel Epilepsy Centre, Krankenhaus Mara, Bielefeld, Germany
| | | | - Anne Bierbrauer
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Tobias Navarro Schröder
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Corresponding author. (L.K.); (N.A.)
| |
Collapse
|
30
|
Bellmund JLS, Gärdenfors P, Moser EI, Doeller CF. Navigating cognition: Spatial codes for human thinking. Science 2019; 362:362/6415/eaat6766. [PMID: 30409861 DOI: 10.1126/science.aat6766] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.
Collapse
Affiliation(s)
- Jacob L S Bellmund
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Gärdenfors
- Department of Philosophy and Cognitive Science, Lund University, Lund, Sweden.,Centre for Artificial Intelligence, University of Technology Sydney, Sydney, Australia
| | - Edvard I Moser
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, NTNU, Norwegian University of Science and Technology, Trondheim, Norway. .,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|