1
|
Guerrero JF, Lesko SL, Evans EL, Sherer NM. Studying Retroviral Life Cycles Using Visible Viruses and Live Cell Imaging. Annu Rev Virol 2024; 11:125-146. [PMID: 38876144 PMCID: PMC11697243 DOI: 10.1146/annurev-virology-100422-012608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Viruses exploit key host cell factors to accomplish each individual stage of the viral replication cycle. To understand viral pathogenesis and speed the development of new antiviral strategies, high-resolution visualization of virus-host interactions is needed to define where and when these events occur within cells. Here, we review state-of-the-art live cell imaging techniques for tracking individual stages of viral life cycles, focusing predominantly on retroviruses and especially human immunodeficiency virus type 1, which is most extensively studied. We describe how visible viruses can be engineered for live cell imaging and how nonmodified viruses can, in some instances, be tracked and studied indirectly using cell biosensor systems. We summarize the ways in which live cell imaging has been used to dissect the retroviral life cycle. Finally, we discuss select challenges for the future including the need for better labeling strategies, increased resolution, and multivariate systems that will allow for the study of full viral replication cycles.
Collapse
Affiliation(s)
- Jorge F Guerrero
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Sydney L Lesko
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Edward L Evans
- Current affiliation: Department of Biomedical Engineering and Center for Quantitative Imaging, University of Wisconsin-Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
2
|
Ying Y, Yang Y, Chen AK. Roles of RNA scaffolding in nanoscale Gag multimerization and selective protein sorting at HIV membranes. SCIENCE ADVANCES 2024; 10:eadk8297. [PMID: 38394201 PMCID: PMC10889351 DOI: 10.1126/sciadv.adk8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/25/2024]
Abstract
HIV-1 Gag proteins can multimerize upon the viral genomic RNA or multiple random cellular messenger RNAs to form a virus particle or a virus-like particle, respectively. To date, whether the two types of particles form via the same Gag multimerization process has remained unclarified. Using photoactivated localization microscopy to illuminate Gag organizations and dynamics at the nanoscale, here, we showed that genomic RNA mediates Gag multimerization in a more cluster-centric, cooperative, and spatiotemporally coordinated fashion, with the ability to drive dense Gag clustering dependent on its ability to act as a long-stranded scaffold not easily attainable by cellular messenger RNAs. These differences in Gag multimerization were further shown to affect downstream selective protein sorting into HIV membranes, indicating that the choice of RNA for packaging can modulate viral membrane compositions. These findings should advance the understanding of HIV assembly and further benefit the development of virus-like particle-based therapeutics.
Collapse
Affiliation(s)
- Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. Biophys J 2024; 123:42-56. [PMID: 37978800 PMCID: PMC10808027 DOI: 10.1016/j.bpj.2023.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
5
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
6
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553549. [PMID: 37645781 PMCID: PMC10462060 DOI: 10.1101/2023.08.16.553549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-gRNA interactions play a crucial role in the multimerization process, which is yet to be fully understood. We have performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model (hENM) applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to impact mainly the SP1 domain of the 18-mer and the MA-CA linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the NC domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, as well as regulates the dynamic organization of the local membrane region itself. Significance Gag(Pr 55 Gag ) polyprotein orchestrates many essential events in HIV-1 assembly, including packaging of the genomic RNA (gRNA) in the immature virion. Although various experimental techniques, such as cryo-ET, X-ray, and NMR, have revealed structural properties of individual domains in the immature Gag clusters, structural and biophysical characterization of a full-length Gag molecule remains a challenge for existing experimental techniques. Using atomistic molecular dynamics simulations of the different model systems of Gag polyprotein, we present here a detailed structural characterization of Gag molecules in different multimerization states and interrogate the synergy between Gag-Gag, Gag-membrane, and Gag-gRNA interactions during the viral assembly process.
Collapse
|
7
|
Zhou AXZ, Hammond JA, Sheng K, Millar DP, Williamson JR. Early HIV-1 Gag Assembly on Lipid Membrane with vRNA. RESEARCH SQUARE 2023:rs.3.rs-3060076. [PMID: 37461524 PMCID: PMC10350206 DOI: 10.21203/rs.3.rs-3060076/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
HIV-1 capsid assembly is an essential process in the virus infection cycle. Initiation of capsid assembly involves viral proteins, genomic RNA, and the inner leaflet of the plasma membrane, facilitated by a number of cellular factors1. The viral structural protein Gag plays a number of central roles in this process, including association with the membrane, selective binding of genomic RNA, and oligomerization and packaging to ultimately produce an immature budded pro-viral particle2. While there have been intensive studies regarding the early stages of Gag assembly, there is a lack of consensus on the mechanism for nucleation and growth of Gag complexes3-7. Here we show that myristoylated Gag forms a trimer nucleus in a model membrane that can selectively bind a dimeric RNA containing the packaging signal. Subsequent growth of myristoyl-Gag oligomers requires vRNA, and occurs by addition of 1 or 2 Gag monomers at a time from solution. These data support a model where the immature capsid lattice formation occurs by a gradual lattice edge expansion, following a trimeric nucleation event. The dynamic single molecule data that support this model were recorded using mass photometry, involving full length myristoylated protein, RNA, and lipid together. These data are the first to support a lattice edge expansion model of Gag during early stages of assembly in a biological-relevant setting, providing insights to the fundamental models of virus structural protein assembly process.
Collapse
Affiliation(s)
- Anne X.-Z. Zhou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - John A. Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - Kai Sheng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - David P. Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| | - James R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute; La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
9
|
Zhou AXZ, Hammond JA, Sheng K, Millar DP, Williamson JR. Early HIV-1 Gag Assembly on Lipid Membrane with vRNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525415. [PMID: 36747785 PMCID: PMC9901173 DOI: 10.1101/2023.01.27.525415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mass photometry (MP) was used to investigate the assembly of myristoylated full-length HIV-1 Gag (myr-Gag) and vRNA 5’ UTR fragment in a supported lipid bilayer (SLB) model system. The MP trajectories demonstrated that Gag trimerization on the membrane is a key step of early Gag assembly in the presence of vRNA. Growth of myr-Gag oligomers requires vRNA, occuring by addition of 1 or 2 monomers at a time from solution. These data support a model where formation of the Gag hexamers characteristic of the immature capsid lattice occurs by a gradual edge expansion, following a trimeric nucleation event. These dynamic single molecule data involving protein, RNA, and lipid components together, provide novel and fundamental insights into the initiation of virus capsid assembly.
Collapse
|
10
|
Pak A, Gupta M, Yeager M, Voth GA. Inositol Hexakisphosphate (IP6) Accelerates Immature HIV-1 Gag Protein Assembly toward Kinetically Trapped Morphologies. J Am Chem Soc 2022; 144:10417-10428. [PMID: 35666943 PMCID: PMC9204763 DOI: 10.1021/jacs.2c02568] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During the late stages of the HIV-1 lifecycle, immature virions are produced by the concerted activity of Gag polyproteins, primarily mediated by the capsid (CA) and spacer peptide 1 (SP1) domains, which assemble into a spherical lattice, package viral genomic RNA, and deform the plasma membrane. Recently, inositol hexakisphosphate (IP6) has been identified as an essential assembly cofactor that efficiently produces both immature virions in vivo and immature virus-like particles in vitro. To date, however, several distinct mechanistic roles for IP6 have been proposed on the basis of independent functional, structural, and kinetic studies. In this work, we investigate the molecular influence of IP6 on the structural outcomes and dynamics of CA/SP1 assembly using coarse-grained (CG) molecular dynamics (MD) simulations and free energy calculations. Here, we derive a bottom-up, low-resolution, and implicit-solvent CG model of CA/SP1 and IP6, and simulate their assembly under conditions that emulate both in vitro and in vivo systems. Our analysis identifies IP6 as an assembly accelerant that promotes curvature generation and fissure-like defects throughout the lattice. Our findings suggest that IP6 induces kinetically trapped immature morphologies, which may be physiologically important for later stages of viral morphogenesis and potentially useful for virus-like particle technologies.
Collapse
Affiliation(s)
- Alexander
J. Pak
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Manish Gupta
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mark Yeager
- Department
of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States,Center
for Membrane Biology, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States, United States,Cardiovascular
Research Center, University of Virginia
School of Medicine, Charlottesville, Virginia 22908, United States,Department
of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Gregory A. Voth
- Department
of Chemistry, Chicago Center for Theoretical Chemistry, Institute
for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States,E-mail:
| |
Collapse
|
11
|
Sumner C, Ono A. Relationship between HIV-1 Gag Multimerization and Membrane Binding. Viruses 2022; 14:v14030622. [PMID: 35337029 PMCID: PMC8949992 DOI: 10.3390/v14030622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
HIV-1 viral particle assembly occurs specifically at the plasma membrane and is driven primarily by the viral polyprotein Gag. Selective association of Gag with the plasma membrane is a key step in the viral assembly pathway, which is traditionally attributed to the MA domain. MA regulates specific plasma membrane binding through two primary mechanisms including: (1) specific interaction of the MA highly basic region (HBR) with the plasma membrane phospholipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2], and (2) tRNA binding to the MA HBR, which prevents Gag association with non-PI(4,5)P2 containing membranes. Gag multimerization, driven by both CA–CA inter-protein interactions and NC-RNA binding, also plays an essential role in viral particle assembly, mediating the establishment and growth of the immature Gag lattice on the plasma membrane. In addition to these functions, the multimerization of HIV-1 Gag has also been demonstrated to enhance its membrane binding activity through the MA domain. This review provides an overview of the mechanisms regulating Gag membrane binding through the MA domain and multimerization through the CA and NC domains, and examines how these two functions are intertwined, allowing for multimerization mediated enhancement of Gag membrane binding.
Collapse
|
12
|
Qu N, Ying Y, Qin J, Chen AK. Rational design of self-assembled RNA nanostructures for HIV-1 virus assembly blockade. Nucleic Acids Res 2021; 50:e44. [PMID: 34967412 PMCID: PMC9071489 DOI: 10.1093/nar/gkab1282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
Many pathological processes are driven by RNA-protein interactions, making such interactions promising targets for molecular interventions. HIV-1 assembly is one such process, in which the viral genomic RNA interacts with the viral Gag protein and serves as a scaffold to drive Gag multimerization that ultimately leads to formation of a virus particle. Here, we develop self-assembled RNA nanostructures that can inhibit HIV-1 virus assembly, achieved through hybridization of multiple artificial small RNAs with a stem-loop structure (STL) that we identify as a prominent ligand of Gag that can inhibit virus particle production via STL-Gag interactions. The resulting STL-decorated nanostructures (double and triple stem-loop structures denoted as Dumbbell and Tribell, respectively) can elicit more pronounced viral blockade than their building blocks, with the inhibition arising as a result of nanostructures interfering with Gag multimerization. These findings could open up new avenues for RNA-based therapy.
Collapse
Affiliation(s)
- Na Qu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Jinshan Qin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Mao S, Ying Y, Ma Z, Yang Y, Chen AK. A Background Assessable and Correctable Bimolecular Fluorescence Complementation System for Nanoscopic Single-Molecule Imaging of Intracellular Protein-Protein Interactions. ACS NANO 2021; 15:14338-14346. [PMID: 34427423 DOI: 10.1021/acsnano.1c03242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bimolecular Fluorescence Complementation (BiFC) is a versatile approach for intracellular analysis of protein-protein interactions (PPIs), but the tendency of the split fluorescent protein (FP) fragments to self-assemble when brought into close proximity of each other by random collision can lead to generation of false-positive signals that hamper high-definition imaging of PPIs occurring on the nanoscopic level. While it is thought that expressing the fusion proteins at a low level can remove false positives without impacting specific signals, there has been no effective strategy to test this possibility. Here, we present a system capable of assessing and removing BiFC false positives, termed Background Assessable and Correctable-BiFC (BAC-BiFC), in which one of the split FP fragments is fused with an optically distinct FP that serves as a reference marker, and the single-cell fluorescence ratio of the BiFC signal to the reference signal is used to gauge an optimal transfection condition. We showed that when BAC-BiFC is designed to image PPIs regulating Human Immunodeficiency Virus type 1 (HIV-1) assembly, the fluorescence ratio could decrease with decreasing probe quantity, and ratios approaching the limit of detection could allow physiologically relevant characterization of the assembly process on the nanoscale by single-molecule localization microscopy (SMLM). With much improved clarity, previously undescribed features of HIV-1 assembly were revealed.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhao Ma
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Yantao Yang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Antony K Chen
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
14
|
Immature HIV-1 assembles from Gag dimers leaving partial hexamers at lattice edges as potential substrates for proteolytic maturation. Proc Natl Acad Sci U S A 2021; 118:2020054118. [PMID: 33397805 PMCID: PMC7826355 DOI: 10.1073/pnas.2020054118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HIV-1 particle assembly is driven by the viral Gag protein, which oligomerizes into a hexameric array on the inner surface of the viral envelope, forming a truncated spherical lattice containing large and small gaps. Gag is then cut by the viral protease, disassembles, and rearranges to form the mature, infectious virus. Here, we present structures and molecular dynamics simulations of the edges of the immature Gag lattice. Our analysis shows that Gag dimers are the basic assembly unit of the HIV-1 particle, lattice edges are partial hexamers, and partial hexamers are prone to structural changes allowing protease to cut Gag. These findings provide insights into assembly of the immature virus, its structure, and how it disassembles during maturation. The CA (capsid) domain of immature HIV-1 Gag and the adjacent spacer peptide 1 (SP1) play a key role in viral assembly by forming a lattice of CA hexamers, which adapts to viral envelope curvature by incorporating small lattice defects and a large gap at the site of budding. This lattice is stabilized by intrahexameric and interhexameric CA-CA interactions, which are important in regulating viral assembly and maturation. We applied subtomogram averaging and classification to determine the oligomerization state of CA at lattice edges and found that CA forms partial hexamers. These structures reveal the network of interactions formed by CA-SP1 at the lattice edge. We also performed atomistic molecular dynamics simulations of CA-CA interactions stabilizing the immature lattice and partial CA-SP1 helical bundles. Free energy calculations reveal increased propensity for helix-to-coil transitions in partial hexamers compared to complete six-helix bundles. Taken together, these results suggest that the CA dimer is the basic unit of lattice assembly, partial hexamers exist at lattice edges, these are in a helix-coil dynamic equilibrium, and partial helical bundles are more likely to unfold, representing potential sites for HIV-1 maturation initiation.
Collapse
|
15
|
Bhat SV, Price JDW, Dahms TES. AFM-Based Correlative Microscopy Illuminates Human Pathogens. Front Cell Infect Microbiol 2021; 11:655501. [PMID: 34026660 PMCID: PMC8138568 DOI: 10.3389/fcimb.2021.655501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
Microbes have an arsenal of virulence factors that contribute to their pathogenicity. A number of challenges remain to fully understand disease transmission, fitness landscape, antimicrobial resistance and host heterogeneity. A variety of tools have been used to address diverse aspects of pathogenicity, from molecular host-pathogen interactions to the mechanisms of disease acquisition and transmission. Current gaps in our knowledge include a more direct understanding of host-pathogen interactions, including signaling at interfaces, and direct phenotypic confirmation of pathogenicity. Correlative microscopy has been gaining traction to address the many challenges currently faced in biomedicine, in particular the combination of optical and atomic force microscopy (AFM). AFM, generates high-resolution surface topographical images, and quantifies mechanical properties at the pN scale under physiologically relevant conditions. When combined with optical microscopy, AFM probes pathogen surfaces and their physical and molecular interaction with host cells, while the various modes of optical microscopy view internal cellular responses of the pathogen and host. Here we review the most recent advances in our understanding of pathogens, recent applications of AFM to the field, how correlative AFM-optical microspectroscopy and microscopy have been used to illuminate pathogenicity and how these methods can reach their full potential for studying host-pathogen interactions.
Collapse
Affiliation(s)
- Supriya V Bhat
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Jared D W Price
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK, Canada
| |
Collapse
|
16
|
Deng Y, Hammond JA, Pauszek R, Ozog S, Chai I, Rabuck-Gibbons J, Lamichhane R, Henderson SC, Millar DP, Torbett BE, Williamson JR. Discrimination between Functional and Non-functional Cellular Gag Complexes involved in HIV-1 Assembly. J Mol Biol 2021; 433:166842. [PMID: 33539875 DOI: 10.1016/j.jmb.2021.166842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.
Collapse
Affiliation(s)
- Yisong Deng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Raymond Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ilean Chai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jessica Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States; The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
17
|
1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat Commun 2021; 12:1973. [PMID: 33785760 PMCID: PMC8009908 DOI: 10.1038/s41467-021-22271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Optical evanescent sensors can non-invasively detect unlabeled nanoscale objects in real time with unprecedented sensitivity, enabling a variety of advances in fundamental physics and biological applications. However, the intrinsic low-frequency noise therein with an approximately 1/f-shaped spectral density imposes an ultimate detection limit for monitoring many paramount processes, such as antigen-antibody reactions, cell motions and DNA hybridizations. Here, we propose and demonstrate a 1/f-noise-free optical sensor through an up-converted detection system. Experimentally, in a CMOS-compatible heterodyne interferometer, the sampling noise amplitude is suppressed by two orders of magnitude. It pushes the label-free single-nanoparticle detection limit down to the attogram level without exploiting cavity resonances, plasmonic effects, or surface charges on the analytes. Single polystyrene nanobeads and HIV-1 virus-like particles are detected as a proof-of-concept demonstration for airborne biosensing. Based on integrated waveguide arrays, our devices hold great potentials for multiplexed and rapid sensing of diverse viruses or molecules. Suppressing 1/f-shaped low-frequency noise is critical but fundamentally challenging to both electrical and optical transducers. Here, the authors demonstrate a 1/f-noise-free optical sensor with integrated CMOS-compatible heterodyne interferometer and an upconversion amplifying technique, which suppresses the noise by two orders of magnitude.
Collapse
|
18
|
Boutant E, Bonzi J, Anton H, Nasim MB, Cathagne R, Réal E, Dujardin D, Carl P, Didier P, Paillart JC, Marquet R, Mély Y, de Rocquigny H, Bernacchi S. Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophys J 2020; 119:419-433. [PMID: 32574557 PMCID: PMC7376094 DOI: 10.1016/j.bpj.2020.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/16/2023] Open
Abstract
The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.
Collapse
Affiliation(s)
- Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Jeremy Bonzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Raphael Cathagne
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Carl
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Tours, France.
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France.
| |
Collapse
|
19
|
Izumida M, Togawa K, Hayashi H, Matsuyama T, Kubo Y. Production of Vesicular Stomatitis Virus Glycoprotein-Pseudotyped Lentiviral Vector Is Enhanced by Ezrin Silencing. Front Bioeng Biotechnol 2020; 8:368. [PMID: 32411688 PMCID: PMC7201057 DOI: 10.3389/fbioe.2020.00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based viral vector is widely used as a biomaterial to transfer a gene of interest into target cells in many biological study fields including gene therapy. Vesicular stomatitis virus glycoprotein (VSV-G)-containing HIV-1 vector much more efficiently transduces various mammalian cells than other viral envelope proteins-containing vectors. Understanding the mechanism would contribute to development of a novel method of efficient HIV-1 vector production. HIV-1 vector is generally constructed by transient transfection of human 293T or African green monkey COS7 cells. It was found in this study that HIV-1 Gag protein is constitutively digested in lysosomes of African green monkey cells. Surprisingly, VSV-G elevated HIV-1 Gag protein levels, suggesting that VSV-G protects Gag protein from the lysosomal degradation. Unphosphorylated ezrin, but not phosphorylated ezrin, was detected in COS7 cells, and ezrin silencing elevated Gag protein levels in the presence of VSV-G. Expression of unphosphorylated ezrin reduced Gag protein amounts. These results indicate that unphosphorylated ezrin proteins inhibit the VSV-G-mediated stabilization of HIV-1 Gag protein. Trafficking of HIV-1 Gag-associated intracellular vesicles may be controlled by ezrin. Finally, this study found that ezrin silencing yields higher amount of VSV-G-pseudotyped HIV-1 vector.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kei Togawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
Inamdar K, Floderer C, Favard C, Muriaux D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019; 11:v11010072. [PMID: 30654596 PMCID: PMC6357049 DOI: 10.3390/v11010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 assembly process is a multi-complex mechanism that takes place at the host cell plasma membrane. It requires a spatio-temporal coordination of events to end up with a full mature and infectious virus. The molecular mechanisms of HIV-1 assembly have been extensively studied during the past decades, in order to dissect the respective roles of the structural and non-structural viral proteins of the viral RNA genome and of some host cell factors. Nevertheless, the time course of HIV-1 assembly was observed in living cells only a decade ago. The very recent revolution of optical microscopy, combining high speed and high spatial resolution, in addition to improved fluorescent tags for proteins, now permits study of HIV-1 assembly at the single molecule level within living cells. In this review, after a short description of these new approaches, we will discuss how HIV-1 assembly at the cell plasma membrane has been revisited using advanced super resolution microscopy techniques and how it can bridge the study of viral assembly from the single molecule to the entire host cell.
Collapse
Affiliation(s)
- Kaushik Inamdar
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Charlotte Floderer
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Cyril Favard
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Delphine Muriaux
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|