1
|
Nguyen T, Hong SH, Arora P. Proteomimetic Strategy for the Modulation of Intrinsically Disordered Protein MYC. J Am Chem Soc 2025; 147:13296-13302. [PMID: 40198840 DOI: 10.1021/jacs.4c18144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
The difficulty in developing specific ligands for protein receptors is directly correlated to the presence of unique binding sites on the protein surface. Conformationally dynamic proteins increase the level of difficulty in ligand design, and the challenge is further exacerbated for proteins that are intrinsically disordered. Intrinsically disordered proteins (or IDPs) do not adopt a fixed three-dimensional shape until they bind their target; an absence of organized binding sites underscores the difficulty in developing synthetic ligands for these proteins. We hypothesized that one avenue for the development of binders for a disordered region would be to trap one of its thermodynamically accessible conformations in a receptor. Here, we show the application of this approach to MYC, which represents a critical therapeutic target but has not yielded small-molecule inhibitors due to its conformationally dynamic nature. MYC adopts a helical configuration when it binds to its cellular partner MAX. We rationally designed a proteomimetic scaffold to trap this conformation. We show that MYC can be directly engaged in both biochemical and cellular assays. Overall, this work demonstrates a general method to capture and trap intrinsically disordered proteins with a propensity to adopt α-helical conformations.
Collapse
Affiliation(s)
- Thu Nguyen
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
2
|
Monté D, Lens Z, Dewitte F, Fislage M, Aumercier M, Verger A, Villeret V. Structural basis of human Mediator recruitment by the phosphorylated transcription factor Elk-1. Nat Commun 2025; 16:3772. [PMID: 40263353 PMCID: PMC12015215 DOI: 10.1038/s41467-025-59014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
One function of Mediator complex subunit MED23 is to mediate transcriptional activation by the phosphorylated transcription factor Elk-1, in response to the Ras-MAPK signaling pathway. Using cryogenic electron microscopy, we solve a 3.0 Å structure of human MED23 complexed with the phosphorylated activation domain of Elk-1. Elk-1 binds to MED23 via a hydrophobic sequence PSIHFWSTLSPP containing one phosphorylated residue (S383p), which forms a tight turn around the central Phenylalanine. Binding of Elk-1 induces allosteric changes in MED23 that propagate to the opposite face of the subunit, resulting in the dynamic behavior of a 19-residue segment, which alters the molecular surface of MED23. We design a specific MED23 mutation (G382F) that disrupts Elk--1 binding and consequently impairs Elk-1-dependent serum-induced activation of target genes in the Ras-Raf-MEK-ERK signaling pathway. The structure provides molecular details and insights into a Mediator subunit-transcription factor interface.
Collapse
Affiliation(s)
- Didier Monté
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Zoé Lens
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Frédérique Dewitte
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, Brussels, Belgium
| | - Marc Aumercier
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Alexis Verger
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France.
| | - Vincent Villeret
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France.
| |
Collapse
|
3
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Hebert KA, Merajver SD, Cierpicki T, Mapp AK. A Lipopeptidomimetic of Transcriptional Activation Domains Selectively Disrupts the Coactivator Med25 Protein-Protein Interactions. Angew Chem Int Ed Engl 2024; 63:e202400781. [PMID: 38527936 PMCID: PMC11134611 DOI: 10.1002/anie.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (LPPM-8) increases the affinity for the coactivator Med25 >20-fold (Ki >100 μM to 4 μM), rendering it an effective inhibitor of Med25 protein-protein interactions (PPIs). The lipid structure, the peptide sequence, and the C-terminal functionalization of the lipopeptidomimetic each influence the structural propensity of LPPM-8 and its effectiveness as an inhibitor. LPPM-8 engages Med25 through interaction with the H2 face of its activator interaction domain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, LPPM-8 is a useful tool for studying Med25 and mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
Affiliation(s)
- Olivia N. Pattelli
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Estefanía Martínez Valdivia
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew S. Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Clint S. Regan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mónica Rivas
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Sofia D. Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
4
|
Monté D, Lens Z, Dewitte F, Villeret V, Verger A. Assessment of machine-learning predictions for the Mediator complex subunit MED25 ACID domain interactions with transactivation domains. FEBS Lett 2024; 598:758-773. [PMID: 38436147 DOI: 10.1002/1873-3468.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.
Collapse
Affiliation(s)
- Didier Monté
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Zoé Lens
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Frédérique Dewitte
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Vincent Villeret
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Alexis Verger
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| |
Collapse
|
5
|
Theisen FF, Prestel A, Elkjær S, Leurs YHA, Morffy N, Strader LC, O'Shea C, Teilum K, Kragelund BB, Skriver K. Molecular switching in transcription through splicing and proline-isomerization regulates stress responses in plants. Nat Commun 2024; 15:592. [PMID: 38238333 PMCID: PMC10796322 DOI: 10.1038/s41467-024-44859-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
The Arabidopsis thaliana DREB2A transcription factor interacts with the negative regulator RCD1 and the ACID domain of subunit 25 of the transcriptional co-regulator mediator (Med25) to integrate stress signals for gene expression, with elusive molecular interplay. Using biophysical and structural analyses together with high-throughput screening, we reveal a bivalent binding switch in DREB2A containing an ACID-binding motif (ABS) and the known RCD1-binding motif (RIM). The RIM is lacking in a stress-induced DREB2A splice variant with retained transcriptional activity. ABS and RIM bind to separate sites on Med25-ACID, and NMR analyses show a structurally heterogeneous complex deriving from a DREB2A-ABS proline residue populating cis- and trans-isomers with remote impact on the RIM. The cis-isomer stabilizes an α-helix, while the trans-isomer may introduce energetic frustration facilitating rapid exchange between activators and repressors. Thus, DREB2A uses a post-transcriptionally and post-translationally modulated switch for transcriptional regulation.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Steffie Elkjær
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yannick H A Leurs
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Charlotte O'Shea
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Merajver SD, Cierpicki T, Mapp AK. A lipopeptidomimetic of transcriptional activation domains selectively disrupts Med25 PPIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534168. [PMID: 36993479 PMCID: PMC10055422 DOI: 10.1101/2023.03.24.534168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (34913-8) increases the affinity for the coactivator Med25 >10-fold ( Ki >>100 μM to 10 μM). Importantly, the selectivity of 34913-8 for Med25 compared to other coactivators is excellent. 34913-8 engages Med25 through interaction with the H2 face of its Ac tivator I nteraction D omain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, 34913-8 is a useful tool for studying Med25 and the Mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
|
7
|
Respiratory Syncytial virus NS1 protein targets the transactivator binding domain of MED25. J Mol Biol 2022; 434:167763. [PMID: 35907573 DOI: 10.1016/j.jmb.2022.167763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Human RSV is the leading cause of infantile bronchiolitis in the world and one of the major causes of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. Respiratory syncytial virus has evolved a unique strategy to evade host immune response by coding for two non-structural proteins NS1 and NS2. Recently it was shown that in infected cells, nuclear NS1 could be involved in transcription regulation of host genes linked to innate immune response, via interactions with chromatin and the Mediator complex. Here we identified the MED25 Mediator subunit as an NS1 interactor in a yeast two-hybrid screen. We demonstrate that NS1 directly interacts with MED25 in vitro and in cellula, and that this interaction involves the MED25 transactivator binding ACID domain on the one hand, and the C-terminal α3 helix of NS1, with an additional contribution of the globular domain of NS1, on the other hand. By NMR we show that the NS1 α3 sequence primarily binds to the MED25 ACID H2 face, similarly to the α-helical transactivation domains (TADs) of transcription regulators such as Herpex simplex VP16 and ATF6α, a master regulator of ER stress response activated upon viral infection. Moreover, we found out that the NS1 could compete with ATF6α TAD for binding to MED25. These findings point to a mechanism of NS1 interfering with innate immune response by impairing recruitment by cellular TADs of the Mediator via MED25 and hence transcription of specific genes by RNA polymerase II.
Collapse
|
8
|
Liu R, Niimi H, Ueda M, Takaoka Y. Coordinately regulated transcription factors EIN3/EIL1 and MYCs in ethylene and jasmonate signaling interact with the same domain of MED25. Biosci Biotechnol Biochem 2022; 86:1405-1412. [PMID: 35876657 DOI: 10.1093/bbb/zbac119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/15/2022]
Abstract
Ethylene (ET) and jasmonate (JA) are plant hormones that act synergistically to regulate plant development and defense against necrotrophic fungi infections, and antagonistically in response to wounds and apical hook formation. Previous studies revealed that the coordination of these responses is due to dynamic protein-protein interactions (PPI) between their master transcription factors (TFs) EIN3/EIL1 and MYC in ET and JA signaling, respectively. In addition, both TFs are activated via interactions with the same transcriptional mediator MED25, which upregulates downstream gene expression. Herein, we analyzed the PPI between EIN3/EIL1 and MED25, and as with the PPI between MYC3 and MED25, found that the short binding domain of MED25 (CMIDM) is also responsible for the interaction with EIN3/EIL1 - a finding which suggests that both TFs compete for binding with MED25. These results further inform our understanding of the coordination between the ET and JA regulatory systems.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Hikaru Niimi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| | - Minoru Ueda
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yousuke Takaoka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Japan
| |
Collapse
|
9
|
Su BG, Henley MJ. Drugging Fuzzy Complexes in Transcription. Front Mol Biosci 2022; 8:795743. [PMID: 34993233 PMCID: PMC8724552 DOI: 10.3389/fmolb.2021.795743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) are one of the most promising but underutilized classes of drug targets. The high degree of intrinsic disorder in both the structure and the interactions (i.e., “fuzziness”) of TFs is one of the most important challenges to be addressed in this context. Here, we discuss the impacts of fuzziness on transcription factor drug discovery, describing how disorder poses fundamental problems to the typical drug design, and screening approaches used for other classes of proteins such as receptors or enzymes. We then speculate on ways modern biophysical and chemical biology approaches could synergize to overcome many of these challenges by directly addressing the challenges imposed by TF disorder and fuzziness.
Collapse
Affiliation(s)
- Bonnie G Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,The Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
10
|
Elongin functions as a loading factor for Mediator at ATF6α-regulated ER stress response genes. Proc Natl Acad Sci U S A 2021; 118:2108751118. [PMID: 34544872 DOI: 10.1073/pnas.2108751118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
The bZIP transcription factor ATF6α is a master regulator of endoplasmic reticulum (ER) stress response genes. In this report, we identify the multifunctional RNA polymerase II transcription factor Elongin as a cofactor for ATF6α-dependent transcription activation. Biochemical studies reveal that Elongin functions at least in part by facilitating ATF6α-dependent loading of Mediator at the promoters and enhancers of ER stress response genes. Depletion of Elongin from cells leads to impaired transcription of ER stress response genes and to defects in the recruitment of Mediator and its CDK8 kinase subunit. Taken together, these findings bring to light a role for Elongin as a loading factor for Mediator during the ER stress response.
Collapse
|
11
|
Brand M, Clayton J, Moroglu M, Schiedel M, Picaud S, Bluck JP, Skwarska A, Bolland H, Chan AKN, Laurin CMC, Scorah AR, See L, Rooney TPC, Andrews KH, Fedorov O, Perell G, Kalra P, Vinh KB, Cortopassi WA, Heitel P, Christensen KE, Cooper RI, Paton RS, Pomerantz WCK, Biggin PC, Hammond EM, Filippakopoulos P, Conway SJ. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity Ligands for the CREBBP Bromodomain. J Med Chem 2021; 64:10102-10123. [PMID: 34255515 PMCID: PMC8311651 DOI: 10.1021/acs.jmedchem.1c00348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
CREBBP (CBP/KAT3A)
and its paralogue EP300 (KAT3B) are lysine acetyltransferases
(KATs) that are essential for human development. They each comprise
10 domains through which they interact with >400 proteins, making
them important transcriptional co-activators and key nodes in the
human protein–protein interactome. The bromodomains of CREBBP
and EP300 enable the binding of acetylated lysine residues from histones
and a number of other important proteins, including p53, p73, E2F,
and GATA1. Here, we report a work to develop a high-affinity, small-molecule
ligand for the CREBBP and EP300 bromodomains [(−)-OXFBD05]
that shows >100-fold selectivity over a representative member of
the
BET bromodomains, BRD4(1). Cellular studies using this ligand demonstrate
that the inhibition of the CREBBP/EP300 bromodomain in HCT116 colon
cancer cells results in lowered levels of c-Myc and a reduction in
H3K18 and H3K27 acetylation. In hypoxia (<0.1% O2),
the inhibition of the CREBBP/EP300 bromodomain results in the enhanced
stabilization of HIF-1α.
Collapse
Affiliation(s)
- Michael Brand
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - James Clayton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Mustafa Moroglu
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthias Schiedel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sarah Picaud
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Joseph P Bluck
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Anna Skwarska
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Hannah Bolland
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Anthony K N Chan
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Corentine M C Laurin
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Amy R Scorah
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Larissa See
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Timothy P C Rooney
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Katrina H Andrews
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Oleg Fedorov
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Gabriella Perell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayla B Vinh
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Wilian A Cortopassi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Pascal Heitel
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Richard I Cooper
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Robert S Paton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,Department of Chemistry, Colorado State University, 1301 Center Ave, Ft. Collins, Colorado 80523-1872, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Ester M Hammond
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, U.K
| | - Panagis Filippakopoulos
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 3TA, U.K
| | - Stuart J Conway
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
12
|
Garlick JM, Sturlis SM, Bruno PA, Yates JA, Peiffer AL, Liu Y, Goo L, Bao L, De Salle SN, Tamayo-Castillo G, Brooks CL, Merajver SD, Mapp AK. Norstictic Acid Is a Selective Allosteric Transcriptional Regulator. J Am Chem Soc 2021; 143:9297-9302. [PMID: 34137598 PMCID: PMC8717358 DOI: 10.1021/jacs.1c03258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibitors of transcriptional protein-protein interactions (PPIs) have high value both as tools and for therapeutic applications. The PPI network mediated by the transcriptional coactivator Med25, for example, regulates stress-response and motility pathways, and dysregulation of the PPI networks contributes to oncogenesis and metastasis. The canonical transcription factor binding sites within Med25 are large (∼900 Å2) and have little topology, and thus, they do not present an array of attractive small-molecule binding sites for inhibitor discovery. Here we demonstrate that the depsidone natural product norstictic acid functions through an alternative binding site to block Med25-transcriptional activator PPIs in vitro and in cell culture. Norstictic acid targets a binding site comprising a highly dynamic loop flanking one canonical binding surface, and in doing so, it both orthosterically and allosterically alters Med25-driven transcription in a patient-derived model of triple-negative breast cancer. These results highlight the potential of Med25 as a therapeutic target as well as the inhibitor discovery opportunities presented by structurally dynamic loops within otherwise challenging proteins.
Collapse
Affiliation(s)
- Julie M Garlick
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven M Sturlis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul A Bruno
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel A Yates
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yejun Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Laura Goo
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - LiWei Bao
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Henley MJ, Koehler AN. Advances in targeting 'undruggable' transcription factors with small molecules. Nat Rev Drug Discov 2021; 20:669-688. [PMID: 34006959 DOI: 10.1038/s41573-021-00199-0] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Transcription factors (TFs) represent key biological players in diseases including cancer, autoimmunity, diabetes and cardiovascular disease. However, outside nuclear receptors, TFs have traditionally been considered 'undruggable' by small-molecule ligands due to significant structural disorder and lack of defined small-molecule binding pockets. Renewed interest in the field has been ignited by significant progress in chemical biology approaches to ligand discovery and optimization, especially the advent of targeted protein degradation approaches, along with increasing appreciation of the critical role a limited number of collaborators play in the regulation of key TF effector genes. Here, we review current understanding of TF-mediated gene regulation, discuss successful targeting strategies and highlight ongoing challenges and emerging approaches to address them.
Collapse
Affiliation(s)
- Matthew J Henley
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Koehler
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
14
|
Mediator subunit Med15 dictates the conserved "fuzzy" binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat Commun 2021; 12:2220. [PMID: 33850123 PMCID: PMC8044209 DOI: 10.1038/s41467-021-22441-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
The acidic activation domain (AD) of yeast transcription factor Gal4 plays a dual role in transcription repression and activation through binding to Gal80 repressor and Mediator subunit Med15. The activation function of Gal4 arises from two hydrophobic regions within the 40-residue AD. We show by NMR that each AD region binds the Mediator subunit Med15 using a “fuzzy” protein interface. Remarkably, comparison of chemical shift perturbations shows that Gal4 and Gcn4, two intrinsically disordered ADs of different sequence, interact nearly identically with Med15. The finding that two ADs of different sequence use an identical fuzzy binding mechanism shows a common sequence-independent mechanism for AD-Mediator binding, similar to interactions within a hydrophobic cloud. In contrast, the same region of Gal4 AD interacts strongly with Gal80 via a distinct structured complex, implying that the structured binding partner of an intrinsically disordered protein dictates the type of protein–protein interaction. The intrinsically disordered acidic activation domain (AD) of the yeast transcription factor Gal4 acts through binding to the Med15 subunit of the Mediator complex. Here, the authors show that Gal4 interacts with Med15 through an identical fuzzy binding mechanism as Gcn4 AD, which has a different sequence, revealing a common sequence-independent mechanism for AD-Mediator binding. In contrast, Gal4 AD binds to the Gal80 repressor as a structured polypeptide, which strongly suggests that the structured binding partner dictates the type of protein–protein interaction for an intrinsically disordered protein.
Collapse
|
15
|
Henley MJ, Linhares BM, Morgan BS, Cierpicki T, Fierke CA, Mapp AK. Unexpected specificity within dynamic transcriptional protein-protein complexes. Proc Natl Acad Sci U S A 2020; 117:27346-27353. [PMID: 33077600 PMCID: PMC7959569 DOI: 10.1073/pnas.2013244117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A key functional event in eukaryotic gene activation is the formation of dynamic protein-protein interaction networks between transcriptional activators and transcriptional coactivators. Seemingly incongruent with the tight regulation of transcription, many biochemical and biophysical studies suggest that activators use nonspecific hydrophobic and/or electrostatic interactions to bind to coactivators, with few if any specific contacts. Here a mechanistic dissection of a set of representative dynamic activator•coactivator complexes, comprised of the ETV/PEA3 family of activators and the coactivator Med25, reveals a different molecular recognition model. The data demonstrate that small sequence variations within an activator family significantly redistribute the conformational ensemble of the complex while not affecting overall affinity, and distal residues within the activator-not often considered as contributing to binding-play a key role in mediating conformational redistribution. The ETV/PEA3•Med25 ensembles are directed by specific contacts between the disordered activator and the Med25 interface, which is facilitated by structural shifts of the coactivator binding surface. Taken together, these data highlight the critical role coactivator plasticity plays in recognition of disordered activators and indicate that molecular recognition models of disordered proteins must consider the ability of the binding partners to mediate specificity.
Collapse
Affiliation(s)
- Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
| | - Brian M Linhares
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
| | - Brittany S Morgan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Carol A Fierke
- Department of Chemistry, Texas A&M University, College Station, TX 77843
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Jeffery HM, Weinzierl ROJ. Multivalent and Bidirectional Binding of Transcriptional Transactivation Domains to the MED25 Coactivator. Biomolecules 2020; 10:biom10091205. [PMID: 32825095 PMCID: PMC7564715 DOI: 10.3390/biom10091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
The human mediator subunit MED25 acts as a coactivator that binds the transcriptional activation domains (TADs) present in various cellular and viral gene-specific transcription factors. Previous studies, including on NMR measurements and site-directed mutagenesis, have only yielded low-resolution models that are difficult to refine further by experimental means. Here, we apply computational molecular dynamics simulations to study the interactions of two different TADs from the human transcription factor ETV5 (ERM) and herpes virus VP16-H1 with MED25. Like other well-studied coactivator-TAD complexes, the interactions of these intrinsically disordered domains with the coactivator surface are temporary and highly dynamic (‘fuzzy’). Due to the fact that the MED25 TAD-binding region is organized as an elongated cleft, we specifically asked whether these TADs are capable of binding in either orientation and how this could be achieved structurally and energetically. The binding of both the ETV5 and VP16-TADs in either orientation appears to be possible but occurs in a conformationally distinct manner and utilizes different sets of hydrophobic residues present in the TADs to drive the interactions. We propose that MED25 and at least a subset of human TADs specifically evolved a redundant set of molecular interaction patterns to allow binding to particular coactivators without major prior spatial constraints.
Collapse
Affiliation(s)
- Heather M. Jeffery
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robert O. J. Weinzierl
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
- Correspondence:
| |
Collapse
|
18
|
Allosteric drugs and mutations: chances, challenges, and necessity. Curr Opin Struct Biol 2020; 62:149-157. [DOI: 10.1016/j.sbi.2020.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
|
19
|
Singh R, Meena NK, Das T, Sharma RD, Prakash A, Lynn AM. Delineating the conformational dynamics of intermediate structures on the unfolding pathway of β-lactoglobulin in aqueous urea and dimethyl sulfoxide. J Biomol Struct Dyn 2019; 38:5027-5036. [PMID: 31744390 DOI: 10.1080/07391102.2019.1695669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The funnel shaped energy landscape model of the protein folding suggests that progression of folding proceeds through multiple pathways, having the multiple intermediates which leads to multidimensional free-energy surface. Herein, we applied all-atom MD simulation to conduct a comparative study on the structure of β-lactoglobulin (β-LgA) in aqueous mixture of 8 M urea and 8 M dimethyl sulfoxide (DMSO), at different temperatures. The cumulative results of multiple simulations suggest a common unfolding pathway of β-LgA, occurred through the stable and meta-stable intermediates (I), in both urea and DMSO. However, the free-energy landscape (FEL) analyses show that the structural transitions of I-states are energetically different. In urea, FEL shows distinct ensemble of intermediates, I1 and I2, separated by the energy barrier of ∼3.0 kcal mol-1. Similarly, we find the population of two distinct I1 and I2 states in DMSO, however, the I1 appeared transiently around ∼30-35 ns and is short-lived. But, the I2 ensemble is observed structurally compact and long-lived (∼50-150 ns) as compared to unfolding in urea. Furthermore, the I1 and I2 are separated through a high energy barrier of ∼6.0 kcal mol-1. Thus, our results provide the structural insights of intermediates which essentially bear the signature of a different unfolding pathway of β-LgA in urea and DMSO.Abbreviationsβ-LgAβ-lactoglobulinDMSOdimethyl sulfoxideFELfree-energy landscapeGdmClguanidinium chlorideIintermediate stateMGmolten globule statePMEparticle mesh EwaldQfraction of native contactsRMSDroot mean square deviationRMSFroot mean square fluctuationRgradius of gyrationSASAsolvent Accessible Surface AreascSASAthe side chain SASATrptryptophanCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ruhar Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naveen Kumar Meena
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Trishala Das
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Datta Sharma
- Amity Institute of Integrative Sciences and Health, Amity University, Haryana, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University, Haryana, India
| | - Andrew M Lynn
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Twenty years of Mediator complex structural studies. Biochem Soc Trans 2019; 47:399-410. [PMID: 30733343 PMCID: PMC6393861 DOI: 10.1042/bst20180608] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Mediator is a large multiprotein complex conserved in all eukaryotes that plays an essential role in transcriptional regulation. Mediator comprises 25 subunits in yeast and 30 subunits in humans that form three main modules and a separable four-subunit kinase module. For nearly 20 years, because of its size and complexity, Mediator has posed a formidable challenge to structural biologists. The first two-dimensional electron microscopy (EM) projection map of Mediator leading to the canonical view of its division in three topological modules named Head, Middle and Tail, was published in 1999. Within the last few years, optimization of Mediator purification combined with technical and methodological advances in cryo-electron microscopy (cryo-EM) have revealed unprecedented details of Mediator subunit organization, interactions with RNA polymerase II and parts of its core structure at high resolution. To celebrate the twentieth anniversary of the first Mediator EM reconstruction, we look back on the structural studies of Mediator complex from a historical perspective and discuss them in the light of our current understanding of its role in transcriptional regulation.
Collapse
|