1
|
Papadaki GF, Ani O, Florio TJ, Young MC, Danon JN, Sun Y, Dersh D, Sgourakis NG. Decoupling peptide binding from T cell receptor recognition with engineered chimeric MHC-I molecules. Front Immunol 2023; 14:1116906. [PMID: 36761745 PMCID: PMC9905809 DOI: 10.3389/fimmu.2023.1116906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Major Histocompatibility Complex class I (MHC-I) molecules display self, viral or aberrant epitopic peptides to T cell receptors (TCRs), which employ interactions between complementarity-determining regions with both peptide and MHC-I heavy chain 'framework' residues to recognize specific Human Leucocyte Antigens (HLAs). The highly polymorphic nature of the HLA peptide-binding groove suggests a malleability of interactions within a common structural scaffold. Here, using structural data from peptide:MHC-I and pMHC:TCR structures, we first identify residues important for peptide and/or TCR binding. We then outline a fixed-backbone computational design approach for engineering synthetic molecules that combine peptide binding and TCR recognition surfaces from existing HLA allotypes. X-ray crystallography demonstrates that chimeric molecules bridging divergent HLA alleles can bind selected peptide antigens in a specified backbone conformation. Finally, in vitro tetramer staining and biophysical binding experiments using chimeric pMHC-I molecules presenting established antigens further demonstrate the requirement of TCR recognition on interactions with HLA framework residues, as opposed to interactions with peptide-centric Chimeric Antigen Receptors (CARs). Our results underscore a novel, structure-guided platform for developing synthetic HLA molecules with desired properties as screening probes for peptide-centric interactions with TCRs and other therapeutic modalities.
Collapse
Affiliation(s)
- Georgia F. Papadaki
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Omar Ani
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Florio
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael C. Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia N. Danon
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Devin Dersh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Maeng HM, Moore BN, Bagheri H, Steinberg SM, Inglefield J, Dunham K, Wei WZ, Morris JC, Terabe M, England LC, Roberson B, Rosing D, Sachdev V, Pack SD, Miettinen MM, Barr FG, Weiner LM, Panch S, Stroncek DF, Wood LV, Berzofsky JA. Phase I Clinical Trial of an Autologous Dendritic Cell Vaccine Against HER2 Shows Safety and Preliminary Clinical Efficacy. Front Oncol 2021; 11:789078. [PMID: 34976830 PMCID: PMC8716407 DOI: 10.3389/fonc.2021.789078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Despite recent advances, there is an urgent need for agents targeting HER2-expressing cancers other than breast cancer. We report a phase I study (NCT01730118) of a dendritic cell (DC) vaccine targeting HER2 in patients with metastatic cancer or bladder cancer at high risk of relapse. PATIENTS AND METHODS Part 1 of the study enrolled patients with HER2-expressing metastatic cancer that had progressed after at least standard treatment and patients who underwent definitive treatment for invasive bladder cancer with no evidence of disease at the time of enrollment. Part 2 enrolled patients with HER2-expressing metastatic cancer who had progressed after anti-HER2 therapy. The DC vaccines were prepared from autologous monocytes and transduced with an adenoviral vector expressing the extracellular and transmembrane domains of HER2 (AdHER2). A total of five doses were planned, and adverse events were recorded in patients who received at least one dose. Objective response was evaluated by unidimensional immune-related response criteria every 8 weeks in patients who received at least two doses. Humoral and cellular immunogenicity were assessed in patients who received more than three doses. RESULTS A total of 33 patients were enrolled at four dose levels (5 × 106, 10 × 106, 20 × 106, and 40 × 106 DCs). Median follow-up duration was 36 weeks (4-124); 10 patients completed five doses. The main reason for going off-study was disease progression. The main adverse events attributable to the vaccine were injection-site reactions. No cardiac toxicity was noted. Seven of 21 evaluable patients (33.3%) demonstrated clinical benefit (1 complete response, 1 partial response, and 5 stable disease). After ≥3 doses, an antibody response was detected in 3 of 13 patients (23.1%), including patients with complete and partial responses. Lymphocytes from 10 of 11 patients (90.9%) showed induction of anti-HER2 responses measured by the production of at least one of interferon-gamma, granzyme B, or tumor necrosis factor-alpha, and there were multifunctional responses in 8 of 11 patients (72.7%). CONCLUSIONS The AdHER2 DC vaccine showed evidence of immunogenicity and preliminary clinical benefit in patients with HER2-expressing cancers, along with an excellent safety profile. It shows promise for further clinical applications, especially in combination regimens.
Collapse
Affiliation(s)
- Hoyoung M. Maeng
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States,*Correspondence: Hoyoung M. Maeng,
| | - Brittni N. Moore
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Hadi Bagheri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Seth M. Steinberg
- Biostatistics and Data Management Section, National Cancer Institute, Rockville, MD, United States
| | - Jon Inglefield
- Clinical Support Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory, Frederick, MD, United States
| | - Kim Dunham
- Clinical Support Laboratory, Applied/Developmental Research Directorate, Frederick National Laboratory, Frederick, MD, United States
| | - Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - John C. Morris
- Division of Hematology-Oncology, University of Cincinnati, Cincinnati, OH, United States
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Lee C. England
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Brenda Roberson
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Douglas Rosing
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Vandana Sachdev
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
| | - Svetlana D. Pack
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Frederic G. Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Louis M. Weiner
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - Sandhya Panch
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - David F. Stroncek
- Center for Cellular Engineering, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Lauren V. Wood
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Jay A. Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
3
|
Public and private human T-cell clones respond differentially to HCMV antigen when boosted by CD3 copotentiation. Blood Adv 2021; 4:5343-5356. [PMID: 33125463 DOI: 10.1182/bloodadvances.2020002255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) induces long-lasting T-cell immune responses that control but do not clear infection. Typical responses involve private T-cell clones, expressing T-cell antigen receptors (TCRs) unique to a person, and public T-cell clones with identical TCRs active in different people. Here, we report the development of a pretherapeutic immunostimulation modality against HCMV for human T cells, CD3 copotentiation, and the clonal analysis of its effects in recall assays at single-cell resolution. CD3 copotentiation of human T cells required identification of an intrinsically inert anti-CD3 Fab fragment that conditionally augmented signaling only when TCR was coengaged with antigen. When applied in recall assays, CD3 copotentiation enhanced the expansion of both public and private T-cell clones responding to autologous HLA-A2(+) antigen-presenting cells and immunodominant NLVPMVATV (NLV) peptide from HCMV pp65 protein. Interestingly, public vs private TCR expression was associated with distinct clonal expansion signatures in response to recall stimulus. This implied that besides possible differences in their generation and selection in an immune response, public and private T cells may respond differently to pharmacoimmunomodulation. Furthermore, a third clonal expansion profile was observed upon CD3 copotentiation of T-cell clones from HLA-A2(-) donors and 1 HLA-A2(+) presumed-uninfected donor, where NLV was of low intrinsic potency. We conclude that human T-cell copotentiation can increase the expansion of different classes of T-cell clones responding to recall antigens of different strengths, and this may be exploitable for therapeutic development against chronic, persistent infections such as HCMV.
Collapse
|
4
|
Yu H, Ye C, Li J, Pan C, Lin W, Chen H, Zhou Z, Ye Y. An altered HLA-A0201-restricted MUC1 epitope that could induce more efficient anti-tumor effects against gastric cancer. Exp Cell Res 2020; 390:111953. [PMID: 32156601 DOI: 10.1016/j.yexcr.2020.111953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/30/2022]
Abstract
MUC1 is a tumor-associated antigen (TAA) overexpressed in many tumor types, which makes it an attractive target for cancer immunotherapy. However, this marker is a non-mutated antigen without high immunogenicity. In this study, we designed several new altered peptides by replacing amino acids in their sequences, which were derived from a low-affinity MUC1 peptide, thus bypassing immune tolerance. Compared to the wild-type (WT) peptide, the altered MUC1 peptides (MUC11081-1089L2, MUC11156-1164L2, MUC11068-1076Y1) showed higher affinity to the HLA-A0201 molecule and stronger immunogenicity. Furthermore, these altered peptides resulted in the generation of more cytotoxic T lymphocytes (CTLs) that could cross-recognize gastric cancer cells expressing WT MUC1 peptides, in an HLA-A0201-restricted manner. In addition, M1.1 (MUC1950-958), a promising antitumor peptide that has been tested in multiple tumors, was not able to induce stronger antitumor responses. Collectively, our results demonstrated that altered peptides from MUC1, as potential HLA-A0201-restricted CTL epitopes, could serve as peptide vaccines or constitute components of peptide-loaded dendritic cell vaccines for gastric cancer treatment.
Collapse
Affiliation(s)
- Huahui Yu
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Chunmei Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jieyu Li
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Chunli Pan
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Wansong Lin
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Zhifeng Zhou
- Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China
| | - Yunbin Ye
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Immuno-Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, 350014, China; Fujian Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, Fujian Province, China.
| |
Collapse
|