1
|
Johnson BS, Allen DK, Bates PD. Triacylglycerol stability limits futile cycles and inhibition of carbon capture in oil-accumulating leaves. PLANT PHYSIOLOGY 2025; 197:kiae121. [PMID: 38431525 PMCID: PMC11849776 DOI: 10.1093/plphys/kiae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Engineering plant vegetative tissue to accumulate triacylglycerols (TAG, e.g. oil) can increase the amount of oil harvested per acre to levels that exceed current oilseed crops. Engineered tobacco (Nicotiana tabacum) lines that accumulate 15% to 30% oil of leaf dry weight resulted in starkly different metabolic phenotypes. In-depth analysis of the leaf lipid accumulation and 14CO2 tracking describe metabolic adaptations to the leaf oil engineering. An oil-for-membrane lipid tradeoff in the 15% oil line (referred to as HO) was surprisingly not further exacerbated when lipid production was enhanced to 30% (LEAFY COTYLEDON 2 (LEC2) line). The HO line exhibited a futile cycle that limited TAG yield through exchange with starch, altered carbon flux into various metabolite pools and end products, and suggested interference of the glyoxylate cycle with photorespiration that limited CO2 assimilation by 50%. In contrast, inclusion of the LEC2 transcription factor in tobacco improved TAG stability, alleviated the TAG-to-starch futile cycle, and recovered CO2 assimilation and plant growth comparable to wild type but with much higher lipid levels in leaves. Thus, the unstable production of storage reserves and futile cycling limit vegetative oil engineering approaches. The capacity to overcome futile cycles and maintain enhanced stable TAG levels in LEC2 demonstrated the importance of considering unanticipated metabolic adaptations while engineering vegetative oil crops.
Collapse
Affiliation(s)
- Brandon S Johnson
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- United States Department of Agriculture–Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
2
|
Liu T, Xu H, Amanullah S, Du Z, Hu X, Che Y, Zhang L, Jiang Z, Zhu L, Wang D. Deciphering the Enhancing Impact of Exogenous Brassinolide on Physiological Indices of Melon Plants under Downy Mildew-Induced Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:779. [PMID: 38592782 PMCID: PMC10974236 DOI: 10.3390/plants13060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Melon (Cucumis melo L.) is a valuable horticultural crop of the Cucurbitaceae family. Downy mildew (DM), caused by Pseudoperonospora cubensis, is a significant inhibitor of the production and quality of melon. Brassinolide (BR) is a new type of phytohormone widely used in cultivation for its broad spectrum of resistance- and defense-mechanism-improving activity. In this study, we applied various exogenous treatments (0.5, 1.0, and 2.0 mg·L-1) of BR at four distinct time periods (6 h, 12 h, 24 h, and 48 h) and explored the impact of BR on physiological indices and the genetic regulation of melon seedling leaves infected by downy-mildew-induced stress. It was mainly observed that a 2.0 mg·L-1 BR concentration effectively promoted the enhanced photosynthetic activity of seedling leaves, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis similarly exhibited an upregulated expression of the predicted regulatory genes of photosystem II (PSII) CmHCF136 (MELO3C023596.2) and CmPsbY (MELO3C010708.2), thus indicating the stability of the PSII reaction center. Furthermore, 2.0 mg·L-1 BR resulted in more photosynthetic pigments (nearly three times more than the chlorophyll contents (264.52%)) as compared to the control and other treatment groups and similarly upregulated the expression trend of the predicted key enzyme genes CmLHCP (MELO3C004214.2) and CmCHLP (MELO3C017176.2) involved in chlorophyll biosynthesis. Meanwhile, the maximum contents of soluble sugars and starch (186.95% and 164.28%) were also maintained, which were similarly triggered by the upregulated expression of the predicted genes CmGlgC (MELO3C006552.2), CmSPS (MELO3C020357.2), and CmPEPC (MELO3C018724.2), thereby maintaining osmotic adjustment and efficiency in eliminating reactive oxygen species. Overall, the exogenous 2.0 mg·L-1 BR exhibited maintained antioxidant activities, plastid membranal stability, and malondialdehyde (MDA) content. The chlorophyll fluorescence parameter values of F0 (42.23%) and Fv/Fm (36.67%) were also noticed to be higher; however, nearly three times higher levels of NPQ (375.86%) and Y (NPQ) (287.10%) were observed at 48 h of treatment as compared to all other group treatments. Increased Rubisco activity was also observed (62.89%), which suggested a significant role for elevated carbon fixation and assimilation and the upregulated expression of regulatory genes linked with Rubisco activity and the PSII reaction process. In short, we deduced that the 2.0 mg·L-1 BR application has an enhancing effect on the genetic modulation of physiological indices of melon plants against downy mildew disease stress.
Collapse
Affiliation(s)
- Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Huichun Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Du
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Xixi Hu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Ling Zhang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Zeyu Jiang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Lei Zhu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (Y.C.); (L.Z.); (Z.J.); (L.Z.)
| |
Collapse
|
3
|
Shimojo M, Nakamura M, Kitaura G, Ihara Y, Shimizu S, Hori K, Iwai M, Ohta H, Ishizaki K, Shimojima M. Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions. PLANTA 2023; 258:92. [PMID: 37792042 PMCID: PMC10550880 DOI: 10.1007/s00425-023-04247-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
MAIN CONCLUSION The phosphatidic acid phosphohydrolase of Marchantia polymorpha modulates plastid glycolipid synthesis through the ER pathway and is essential for normal plant development regardless of nutrient availability. Membrane lipid remodeling is one of the strategies plant cells use to secure inorganic phosphate (Pi) for plant growth, but many aspects of the molecular mechanism and its regulation remain unclear. Here we analyzed membrane lipid remodeling using a non-vascular plant, Marchantia polymorpha. The lipid composition and fatty acid profile during Pi starvation in M. polymorpha revealed a decrease in phospholipids and an increase in both galactolipids and betaine lipids. In Arabidopsis thaliana, phosphatidic acid phosphohydrolase (PAH) is involved in phospholipid degradation and is crucial for tolerance to both Pi and nitrogen starvation. We produced two M. polymorpha PAH (MpPAH) knockout mutants (Mppah-1 and Mppah-2) and found that, unlike Arabidopsis mutants, Mppah impaired plant growth with shorter rhizoids compared with wild-type plants even under nutrient-replete conditions. Mutation of MpPAH did not significantly affect the mole percent of each glycerolipid among total membrane glycerolipids from whole plants under both Pi-replete and Pi-deficient conditions. However, the fatty acid composition of monogalactosyldiacylglycerol indicated that the amount of plastid glycolipids produced through the endoplasmic reticulum pathway was suppressed in Mppah mutants. Phospholipids accumulated in the mutants under N starvation. These results reveal that MpPAH modulates plastid glycolipid synthesis through the endoplasmic reticulum pathway more so than what has been observed for Arabidopsis PAH; moreover, unlike Arabidopsis, MpPAH is crucial for M. polymorpha growth regardless of nutrient availability.
Collapse
Affiliation(s)
- Misao Shimojo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masashi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Ginga Kitaura
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Yuta Ihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinsuke Shimizu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan.
| |
Collapse
|
4
|
Liu T, Amanullah S, Xu H, Gao P, Du Z, Hu X, Han M, Che Y, Zhang L, Qi G, Wang D. RNA-Seq Identified Putative Genes Conferring Photosynthesis and Root Development of Melon under Salt Stress. Genes (Basel) 2023; 14:1728. [PMID: 37761868 PMCID: PMC10530605 DOI: 10.3390/genes14091728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Melon is an important fruit crop of the Cucurbitaceae family that is being cultivated over a large area in China. Unfortunately, salt stress has crucial effects on crop plants and damages photosynthesis, membranal lipid components, and hormonal metabolism, which leads to metabolic imbalance and retarded growth. Herein, we performed RNA-seq analysis and a physiological parameter evaluation to assess the salt-induced stress impact on photosynthesis and root development activity in melon. The endogenous quantification analysis showed that the significant oxidative damage in the membranal system resulted in an increased ratio of non-bilayer/bilayer lipid (MGDG/DGDG), suggesting severe irregular stability in the photosynthetic membrane. Meanwhile, root development was slowed down by a superoxidized membrane system, and downregulated genes showed significant contributions to cell wall biosynthesis and IAA metabolism. The comparative transcriptomic analysis also exhibited that major DEGs were more common in the intrinsic membrane component, photosynthesis, and metabolism. These are all processes that are usually involved in negative responses. Further, the WGCN analysis revealed the involvement of two main network modules: the thylakoid membrane and proteins related to photosystem II. The qRT-PCR analysis exhibited that two key genes (MELO3C006053.2 and MELO3C023596.2) had significant variations in expression profiling at different time intervals of salt stress treatments (0, 6, 12, 24, and 48 h), which were also consistent with the RNA-seq results, denoting the significant accuracy of molecular dataset analysis. In summary, we performed an extensive molecular and metabolic investigation to check the salt-stress-induced physiological changes in melon and proposed that the PSII reaction centre may likely be the primary stress target.
Collapse
Affiliation(s)
- Tai Liu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (S.A.); (P.G.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Huichun Xu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (S.A.); (P.G.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhiqiang Du
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Xixi Hu
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Mo Han
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Ye Che
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Ling Zhang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Guochao Qi
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| | - Di Wang
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163711, China; (T.L.); (H.X.); (Z.D.); (X.H.); (M.H.); (Y.C.); (L.Z.); (G.Q.)
| |
Collapse
|
5
|
Negi J, Obata T, Nishimura S, Song B, Yamagaki S, Ono Y, Okabe M, Hoshino N, Fukatsu K, Tabata R, Yamaguchi K, Shigenobu S, Yamada M, Hasebe M, Sawa S, Kinoshita T, Nishida I, Iba K. PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 37058128 DOI: 10.1111/tpj.16245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023]
Abstract
An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].
Collapse
Affiliation(s)
- Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sakura Nishimura
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Boseok Song
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Sho Yamagaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yuhei Ono
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Makoto Okabe
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| | - Natsumi Hoshino
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Kohei Fukatsu
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ryo Tabata
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Masashi Yamada
- Department of Biology and HHMI, Duke University, Durham, North Carolina, 27710, USA
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Shinichiro Sawa
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, 2-39-1, Kumamoto, Japan
| | - Toshinori Kinoshita
- Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Ikuo Nishida
- Graduate School of Science and Engineering, Saitama University, 338-8570, Saitama, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
6
|
Chang Y, Shi M, Sun Y, Cheng H, Ou X, Zhao Y, Zhang X, Day B, Miao C, Jiang K. Light-induced stomatal opening in Arabidopsis is negatively regulated by chloroplast-originated OPDA signaling. Curr Biol 2023; 33:1071-1081.e5. [PMID: 36841238 DOI: 10.1016/j.cub.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
Stomatal movement is orchestrated by diverse signaling cascades and metabolic activities in guard cells. Light triggers the opening of the pores through the phototropin-mediated pathway, which leads to the activation of plasma membrane H+-ATPase and thereby facilitates potassium accumulation through Kin+ channels. However, it remains poorly understood how phototropin signaling is fine-tuned to prevent excessive stomatal opening and consequent water loss. Here, we show that the stomatal response to light is negatively regulated by 12-oxo-phytodienoic acid (OPDA), an oxylipin metabolite produced through enzymatic oxygenation of polyunsaturated fatty acids (PUFAs). We identify a set of phospholipase-encoding genes, phospholipase (PLIP)1/2/3, which are transactivated rapidly in guard cells upon illumination in a phototropin-dependent manner. These phospholipases release PUFAs from the chloroplast membrane, which is oxidized by guard-cell lipoxygenases and further metabolized to OPDA. The OPDA-deficient mutants had wider stomatal pores, whereas mutants containing elevated levels of OPDA showed the opposite effect on stomatal aperture. Transmembrane solute fluxes that drive stomatal aperture were enhanced in lox6-1 guard cells, indicating that OPDA signaling ultimately impacts on activities of proton pumps and Kin+ channels. Interestingly, the accelerated stomatal kinetics in lox6-1 leads to increased plant growth without cost in water or macronutrient use. Together, our results reveal a new role for chloroplast membrane oxylipin metabolism in stomatal regulation. Moreover, the accelerated stomatal opening kinetics in OPDA-deficient mutants benefits plant growth and water use efficiency.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yanfeng Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Hui Cheng
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Xiaobin Ou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, Henan Province, China.
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
7
|
Hu Z, Shi J, Feng S, Wu X, Shao S, Shi K. Plant N-acylethanolamines play a crucial role in defense and its variation in response to elevated CO 2 and temperature in tomato. HORTICULTURE RESEARCH 2023; 10:uhac242. [PMID: 37077371 PMCID: PMC10108025 DOI: 10.1093/hr/uhac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 05/03/2023]
Abstract
The ubiquitous lipid-derived molecules N-acylethanolamines (NAEs) have multiple immune functions in mammals, but their roles and mechanisms in plant defense response during changing environment remain largely unclear. Here, we found that exogenous NAE18:0 and NAE18:2 promoted defense against the necrotrophic pathogen Botrytis cinerea but suppressed defense to the hemi-biotrophic pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 in tomato. The knocking-down and overexpression function analysis of the pathogen-responsive NAE synthetic gene PHOSPHOLIPASE Dγ (PLDγ) and hydrolytic gene FATTY ACID AMID HYDROLASE 1 (FAAH1) revealed that the NAE pathway is crucial for plant defense response. Using exogenous applications and SA-abolished NahG plants, we unveiled the antagonistic relationship between NAE and SA in plant defense response. Elevated CO2 and temperature significantly changed the NAE pathway in response to pathogens, while inhibition of the NAE pathway led to the alternation of environment-mediated defense variations against Pst DC3000 in tomato, indicating that NAE pathway is associated with plant defense variations in response to elevated CO2 and temperature. The results herein reveal a new function of NAE in plant defense, and its involvement in environment-mediated defense variation in tomato. These findings shed light on the NAE-based plant defense, which may have relevance to crop disease management in future changing climate.
Collapse
Affiliation(s)
| | | | | | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Shujun Shao
- Department of Horticulture, Zhejiang University, 310058, China
| | - Kai Shi
- Correspondence E-mail: ; Tel: +86-571-88982383 ORCID ID: 0000-0001-5351-1910
| |
Collapse
|
8
|
Diamond A, Barnabé S, Desgagné‐Penix I. Is a spice missing from the recipe? The intra-cellular localization of vanillin biosynthesis needs further investigations. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:3-7. [PMID: 36066305 PMCID: PMC10087407 DOI: 10.1111/plb.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Vanillin is the most popular flavor compound in the world. Substantial effort were made in the last decades to completely elucidate the metabolic pathway that leads to vanillin in plants, with some controversy reported. In V. planifolia, vanillin biosynthesis occurs in plastids or in redifferentiated-plastids termed ''phenyloplasts''. More recently, it was shown that all enzymes required for the conversion of [14 C]-phenylalanine to [14 C]-vanillin-glucoside are confined within that organelle. However, knowing that some of these enzymes are cytosolic or ER-membrane bound in most plant species, it raises questions on the interpretation of data obtained from the technique used and on the true localization of the biosynthetic enzymes in V.planifolia. In addition, intense debate has emerged about the real participation of last enzyme of the pathway involving vanillin synthase (VpVAN) in the direct conversion of ferulic acid to vanillin. With the discovery of another enzyme capable of this conversion and the lack of activity of VpVAN in vitro, further disagreement emerged. One additional challenge to VpVAN being necessary and sufficient is that the transcript for this protein is abundant invarious non-vanillin-producing tissues of the vanilla plant. In this viewpoint, we discuss the findings surrounding the cellular-localization and activity of enzymes of vanillin biosynthesis. This will help to further understand the pathway and urge for additional research study to resolve the debate.
Collapse
Affiliation(s)
- A. Diamond
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - S. Barnabé
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
| | - I. Desgagné‐Penix
- Department of Chemistry, Biochemistry and PhysicsUniversité du Québec à Trois‐RivièresTrois‐RivièresQuébecCanada
- Groupe de Recherche en Biologie Végétale (GRBV)Trois‐RivièresQuébecCanada
| |
Collapse
|
9
|
Xiao R, Zou Y, Guo X, Li H, Lu H. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 2022; 49:9997-10011. [PMID: 35819557 DOI: 10.1007/s11033-022-07568-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/28/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives. OBJECTIVE In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover' the existing problems in related research and future research directions were also discussed. RESULTS Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species. CONCLUSION Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.
Collapse
Affiliation(s)
- Ruixue Xiao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Yirong Zou
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Xiaorui Guo
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hui Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China
| | - Hai Lu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, 100083, China.
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Tsinghua East Road 35, Haidian District, Beijing, 100083, China.
| |
Collapse
|
10
|
Moriwaki K, Yanagisawa S, Iba K, Negi J. Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:440-451. [PMID: 35061307 DOI: 10.1111/tpj.15679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 12/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.
Collapse
Affiliation(s)
- Kosuke Moriwaki
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Shuichi Yanagisawa
- Agro-Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Tagami S, Ohnishi K, Hikichi Y, Kiba A. Trigalactosyldiacylglycerol 3 protein orthologs are required for basal disease resistance in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:373-378. [PMID: 34782825 PMCID: PMC8562578 DOI: 10.5511/plantbiotechnology.21.0624a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Phosphatidic acid plays an important role in Nicotiana benthamiana immune responses against phytopathogenic bacteria. We analyzed the contributions of endoplasmic reticulum-derived chloroplast phospholipids, including phosphatidic acid, to the resistance of N. benthamiana against Ralstonia solanacearum. Here, we focused on trigalactosyldiacylglycerol 3 (TGD3) protein as a candidate required for phosphatidic acid signaling. On the basis of Arabidopsis thaliana TGD3 sequences, we identified two putative TGD3 orthologs in the N. benthamiana genome, NbTGD3-1 and NbTGD3-2. To address the role of TGD3s in plant defense responses, we created double NbTGD3-silenced plants using virus-induced gene silencing. The NbTGD3-silenced plants showed a moderately reduced growth phenotype. Bacterial growth and the appearance of bacterial wilt disease were accelerated in NbTGD3-silenced plants, compared with control plants, challenged with R. solanacearum. The NbTGD3-silenced plants showed reduced both expression of allene oxide synthase that encoded jasmonic acid biosynthetic enzyme and NbPR-4, a marker gene for jasmonic acid signaling, after inoculation with R. solanacearum. Thus, NbTGD3-mediated endoplasmic reticulum-chloroplast lipid transport might be required for jasmonic acid signaling-mediated basal disease resistance in N. benthamiana.
Collapse
Affiliation(s)
- Shuhei Tagami
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
12
|
Xiao C, Guo H, Tang J, Li J, Yao X, Hu H. Expression Pattern and Functional Analyses of Arabidopsis Guard Cell-Enriched GDSL Lipases. FRONTIERS IN PLANT SCIENCE 2021; 12:748543. [PMID: 34621289 PMCID: PMC8490726 DOI: 10.3389/fpls.2021.748543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 05/27/2023]
Abstract
There are more than 100 GDSL lipases in Arabidopsis, but only a few members have been functionally investigated. Moreover, no reports have ever given a comprehensive analysis of GDSLs in stomatal biology. Here, we systematically investigated the expression patterns of 19 putative Guard-cell-enriched GDSL Lipases (GGLs) at various developmental stages and in response to hormone and abiotic stress treatments. Gene expression analyses showed that these GGLs had diverse expression patterns. Fifteen GGLs were highly expressed in guard cells, with seven preferentially in guard cells. Most GGLs were localized in endoplasmic reticulum, and some were also localized in lipid droplets and nucleus. Some closely homologous GGLs exhibited similar expression patterns at various tissues and in response to hormone and abiotic stresses, or similar subcellular localization, suggesting the correlation of expression pattern and biological function, and the functional redundancy of GGLs in plant development and environmental adaptations. Further phenotypic identification of ggl mutants revealed that GGL7, GGL14, GGL22, and GGL26 played unique and redundant roles in stomatal dynamics, stomatal density and morphology, and plant water relation. The present study provides unique resources for functional insights into these GGLs to control stomatal dynamics and development, plant growth, and adaptation to the environment.
Collapse
Affiliation(s)
- Chuanlei Xiao
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huimin Guo
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Tang
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaying Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuan Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Itoh RD, Nakajima KP, Sasaki S, Ishikawa H, Kazama Y, Abe T, Fujiwara MT. TGD5 is required for normal morphogenesis of non-mesophyll plastids, but not mesophyll chloroplasts, in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:237-255. [PMID: 33884686 DOI: 10.1111/tpj.15287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Stromules are dynamic membrane-bound tubular structures that emanate from plastids. Stromule formation is triggered in response to various stresses and during plant development, suggesting that stromules may have physiological and developmental roles in these processes. Despite the possible biological importance of stromules and their prevalence in green plants, their exact roles and formation mechanisms remain unclear. To explore these issues, we obtained Arabidopsis thaliana mutants with excess stromule formation in the leaf epidermis by microscopy-based screening. Here, we characterized one of these mutants, stromule biogenesis altered 1 (suba1). suba1 forms plastids with severely altered morphology in a variety of non-mesophyll tissues, such as leaf epidermis, hypocotyl epidermis, floral tissues, and pollen grains, but apparently normal leaf mesophyll chloroplasts. The suba1 mutation causes impaired chloroplast pigmentation and altered chloroplast ultrastructure in stomatal guard cells, as well as the aberrant accumulation of lipid droplets and their autophagic engulfment by the vacuole. The causal defective gene in suba1 is TRIGALACTOSYLDIACYLGLYCEROL5 (TGD5), which encodes a protein putatively involved in the endoplasmic reticulum (ER)-to-plastid lipid trafficking required for the ER pathway of thylakoid lipid assembly. These findings suggest that a non-mesophyll-specific mechanism maintains plastid morphology. The distinct mechanisms maintaining plastid morphology in mesophyll versus non-mesophyll plastids might be attributable, at least in part, to the differential contributions of the plastidial and ER pathways of lipid metabolism between mesophyll and non-mesophyll plastids.
Collapse
Affiliation(s)
- Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Kohdai P Nakajima
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| | - Yusuke Kazama
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Tomoko Abe
- Nishina Center, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyoda, Tokyo, 102-8554, Japan
| |
Collapse
|
14
|
Sanjaya A, Muramatsu R, Sato S, Suzuki M, Sasaki S, Ishikawa H, Fujii Y, Asano M, Itoh RD, Kanamaru K, Ohbu S, Abe T, Kazama Y, Fujiwara MT. Arabidopsis EGY1 Is Critical for Chloroplast Development in Leaf Epidermal Guard Cells. PLANTS (BASEL, SWITZERLAND) 2021; 10:1254. [PMID: 34205501 PMCID: PMC8235790 DOI: 10.3390/plants10061254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
In Arabidopsis thaliana, the Ethylene-dependent Gravitropism-deficient and Yellow-green 1 (EGY1) gene encodes a thylakoid membrane-localized protease involved in chloroplast development in leaf mesophyll cells. Recently, EGY1 was also found to be crucial for the maintenance of grana in mesophyll chloroplasts. To further explore the function of EGY1 in leaf tissues, we examined the phenotype of chloroplasts in the leaf epidermal guard cells and pavement cells of two 40Ar17+ irradiation-derived mutants, Ar50-33-pg1 and egy1-4. Fluorescence microscopy revealed that fully expanded leaves of both egy1 mutants showed severe chlorophyll deficiency in both epidermal cell types. Guard cells in the egy1 mutant exhibited permanent defects in chloroplast formation during leaf expansion. Labeling of plastids with CaMV35S or Protodermal Factor1 (PDF1) promoter-driven stroma-targeted fluorescent proteins revealed that egy1 guard cells contained the normal number of plastids, but with moderately reduced size, compared with wild-type guard cells. Transmission electron microscopy further revealed that the development of thylakoids was impaired in the plastids of egy1 mutant guard mother cells, guard cells, and pavement cells. Collectively, these observations demonstrate that EGY1 is involved in chloroplast formation in the leaf epidermis and is particularly critical for chloroplast differentiation in guard cells.
Collapse
Affiliation(s)
- Alvin Sanjaya
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryohsuke Muramatsu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shiho Sato
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Mao Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Shun Sasaki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Hiroki Ishikawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Yuki Fujii
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Makoto Asano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
| | - Ryuuichi D Itoh
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kengo Kanamaru
- Faculty of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Sumie Ohbu
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Tomoko Abe
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| | - Yusuke Kazama
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, Fukui 910-1195, Japan
| | - Makoto T Fujiwara
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Kioicho, Chiyoda, Tokyo 102-8554, Japan
- RIKEN Nishina Center, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Li C, Liu Y, Liu X, Mai KKK, Li J, Guo X, Zhang C, Li H, Kang BH, Hwang I, Lu H. Chloroplast thylakoid ascorbate peroxidase PtotAPX plays a key role in chloroplast development by decreasing hydrogen peroxide in Populus tomentosa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4333-4354. [PMID: 33884422 DOI: 10.1093/jxb/erab173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Chloroplast development is a complex process that is critical to the growth and development of plants. However, the detailed mechanism of chloroplast development in woody plants remains unclear. In this study, we showed that chloroplasts with elaborate thylakoids could develop from proplastids in the cells of calli derived from leaf tissues of Populus tomentosa upon exposure to light. Chloroplast development was confirmed at the molecular and cellular levels. Transcriptome analysis revealed that genes related to photoreceptors and photosynthesis were significantly up-regulated during chloroplast development in a time-dependent manner. In light-induced chloroplast development, a key process was the removal of hydrogen peroxide, in which thylakoid-localized PtotAPX played a major role; light-induced chloroplast development was enhanced in PtotAPX-overexpressing transgenic P. tomentosa callus with lower levels of hydrogen peroxide, but was suppressed in PtotAPX antisense transgenic callus with higher levels of hydrogen peroxide. Moreover, the suppression of light-induced chloroplast development in PtotAPX antisense transgenic callus was relieved by the exogenous reactive oxygen species scavenging agent N,N'-dimethylthiourea (DMTU). Based on these results, we propose that PtotAPX-mediated removal of reactive oxygen species plays a key role in chloroplast development from proplastids upon exposure to light in P. tomentosa.
Collapse
Affiliation(s)
- Conghui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yadi Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiatong Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Keith Ka Ki Mai
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jiaxin Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaorui Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Chong Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hui Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Byung-Ho Kang
- Centre for Cell and Developmental Biology, State Key Laboratory for Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hai Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
16
|
Irieda H, Takano Y. Epidermal chloroplasts are defense-related motile organelles equipped with plant immune components. Nat Commun 2021; 12:2739. [PMID: 34016974 PMCID: PMC8137707 DOI: 10.1038/s41467-021-22977-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
In addition to conspicuous large mesophyll chloroplasts, where most photosynthesis occurs, small epidermal chloroplasts have also been observed in plant leaves. However, the functional significance of this small organelle remains unclear. Here, we present evidence that Arabidopsis epidermal chloroplasts control the entry of fungal pathogens. In entry trials, specialized fungal cells called appressoria triggered dynamic movement of epidermal chloroplasts. This movement is controlled by common regulators of mesophyll chloroplast photorelocation movement, designated as the epidermal chloroplast response (ECR). The ECR occurs when the PEN2 myrosinase-related higher-layer antifungal system becomes ineffective, and blockage of the distinct steps of the ECR commonly decreases preinvasive nonhost resistance against fungi. Furthermore, immune components were preferentially localized to epidermal chloroplasts, contributing to antifungal nonhost resistance in the pen2 background. Our findings reveal that atypical small chloroplasts act as defense-related motile organelles by specifically positioning immune components in the plant epidermis, which is the first site of contact between the plant and pathogens. Thus, this work deepens our understanding of the functions of epidermal chloroplasts. Leaf epidermal cells contain small chloroplasts which likely contribute little to photosynthesis and whose function is unclear. Here the authors show that these chloroplasts move toward the leaf surface in response to invasion trials by non-adapted fungal pathogens and contribute to non-host resistance.
Collapse
Affiliation(s)
- Hiroki Irieda
- Academic Assembly, Institute of Agriculture, Shinshu University, Nagano, Japan.
| | | |
Collapse
|
17
|
Obata T, Kobayashi K, Tadakuma R, Akasaka T, Iba K, Negi J. The Endoplasmic Reticulum Pathway for Membrane Lipid Synthesis Has a Significant Contribution toward Shoot Removal-Induced Root Chloroplast Development in Arabidopsis. ACTA ACUST UNITED AC 2021; 62:494-501. [DOI: 10.1093/pcp/pcab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/14/2021] [Indexed: 12/25/2022]
Abstract
Abstract
Chloroplast lipids are synthesized via two distinct pathways: the plastidic pathway and endoplasmic reticulum (ER) pathway. We previously reported that the contribution of the two pathways toward chloroplast development is different between mesophyll cells and guard cells in Arabidopsis leaf tissues and that the ER pathway plays a major role in guard cell chloroplast development. However, little is known about the contribution of the two pathways toward chloroplast development in other tissue cells, and in this study, we focused on root cells. Chloroplast development is normally repressed in roots but can be induced when the roots are detached from the shoots (root greening). We found that, similar to guard cells, root cells exhibit a higher proportion of glycolipid from the ER pathway. Root greening was repressed in the gles1 mutant, which has a defect in ER-to-plastid lipid transportation via the ER pathway, while normal root greening was observed in the ats1 mutant, whose plastidic pathway is blocked. Lipid analysis revealed that the gles1 mutation caused drastic decrease in the ER-derived glycolipids in roots. Furthermore, the gles1 detached roots showed smaller chloroplasts containing less starch than WT. These results suggest that the ER pathway has a significant contribution toward chloroplast development in the root cells.
Collapse
Affiliation(s)
- Tomoki Obata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai Osaka, 599-8531 Japan
| | - Ryosuke Tadakuma
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Taiki Akasaka
- Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
18
|
Xiang Q, Lott AA, Assmann SM, Chen S. Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110697. [PMID: 33288010 DOI: 10.1016/j.plantsci.2020.110697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
Crops are continuously exposed to microbial pathogens that cause tremendous yield losses worldwide. Stomatal pores formed by pairs of specialized guard cells in the leaf epidermis represent a major route of pathogen entry. Guard cells have an essential role as a first line of defense against pathogens. Metabolomics is an indispensable systems biology tool that has facilitated discovery and functional studies of metabolites that regulate stomatal movement in response to pathogens and other environmental factors. Guard cells, pathogens and environmental factors constitute the "stomatal disease triangle". The aim of this review is to highlight recent advances toward understanding the stomatal disease triangle in the context of newly discovered signaling molecules, hormone crosstalk, and consequent molecular changes that integrate pathogens and environmental sensing into stomatal immune responses. Future perspectives on emerging single-cell studies, multiomics and molecular imaging in the context of stomatal defense are discussed. Advances in this important area of plant biology will inform rational crop engineering and breeding for enhanced stomatal defense without disruption of other pathways that impact crop yield.
Collapse
Affiliation(s)
- Qingyuan Xiang
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA
| | - Aneirin A Lott
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA
| | - Sarah M Assmann
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Sixue Chen
- Department of Biology, University of Florida Genetics Institute, Gainesville, FL, USA; Plant Molecular and Cellular Biology Program, University of Florida, FL, USA; Proteomics and Mass Spectrometry Facility, University of Florida, FL, USA.
| |
Collapse
|
19
|
Abstract
The paper focuses on the selected plant lipid issues. Classification, nomenclature, and abundance of fatty acids was discussed. Then, classification, composition, role, and organization of lipids were displayed. The involvement of lipids in xantophyll cycle and glycerolipids synthesis (as the most abundant of all lipid classes) were also discussed. Moreover, in order to better understand the biomembranes remodeling, the model (artificial) membranes, mimicking the naturally occurring membranes are employed and the survey on their composition and application in different kind of research was performed. High level of lipids remodeling in the plant membranes under different environmental conditions, e.g., nutrient deficiency, temperature stress, salinity or drought was proved. The key advantage of lipid research was the conclusion that lipids could serve as the markers of plant physiological condition and the detailed knowledge on lipids chemistry will allow to modify their composition for industrial needs.
Collapse
Affiliation(s)
- Emilia Reszczyńska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland.
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland
| |
Collapse
|
20
|
Hirashima T, Jimbo H, Kobayashi K, Wada H. A START domain-containing protein is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. Biochem Biophys Res Commun 2020; 534:436-441. [PMID: 33246557 DOI: 10.1016/j.bbrc.2020.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 11/18/2022]
Abstract
The appropriate regulation of thylakoid lipid synthesis is essential for the function of chloroplasts. In plant cells, membrane lipids synthesized in the ER are utilized as a precursor for the synthesis of chloroplast glycolipids. This pathway is thought to be mediated by the transport of glycerolipids synthesized in the ER into chloroplasts. However, we have little knowledge about the proteins involved in the lipid transfer between these organelles in plant cells. Here we show a protein, STAR2, containing the START (Steroidogenic acute regulatory protein-related lipid transfer) domain known to function as a lipid transporter, is involved in the incorporation of ER-derived fatty acids into chloroplast glycolipids in Marchantia polymorpha. We found that STAR2 localizes on the chloroplast envelope membrane as a punctuate structure and is required for the increase of C20 fatty acids, which are synthesized in the ER, in chloroplast glycolipids in response to phosphate deprivation. Our results indicate that STAR2 of M. polymorpha is likely to be involved in the lipid transfer from ER to chloroplast, presumably as a lipid transporter.
Collapse
Affiliation(s)
- Takashi Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Koichi Kobayashi
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
21
|
Koide E, Suetsugu N, Iwano M, Gotoh E, Nomura Y, Stolze SC, Nakagami H, Kohchi T, Nishihama R. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2020; 61:631-643. [PMID: 31851335 DOI: 10.1093/pcp/pcz232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
To optimize growth and development, plants monitor photosynthetic activities and appropriately regulate various cellular processes. However, signaling mechanisms that coordinate plant growth with photosynthesis remain poorly understood. To identify factors that are involved in signaling related to photosynthetic stimuli, we performed a phosphoproteomic analysis with Marchantia polymorpha, an extant bryophyte species in the basal lineage of land plants. Among proteins whose phosphorylation status changed differentially between dark-treated plants and those after light irradiation but failed to do so in the presence of a photosynthesis inhibitor, we identified a B4-group Raf-like kinase, named PHOTOSYNTHESIS-RELATED RAF (MpPRAF). Biochemical analyses confirmed photosynthesis-activity-dependent changes in the phosphorylation status of MpPRAF. Mutations in the MpPRAF gene resulted in growth retardation. Measurement of carbohydrates demonstrated both hyper-accumulation of starch and reduction of sucrose in Mppraf mutants. Neither inhibition of starch synthesis nor exogenous supply of sucrose alleviated the growth defect, suggesting serious impairment of Mppraf mutants in both the synthesis of sucrose and the repression of its catabolism. As a result of the compromised photosynthate metabolism, photosynthetic electron transport was downregulated in Mppraf mutants. A mutated MpPRAF with a common amino acid substitution for inactivating kinase activity was unable to rescue the Mppraf mutant defects. Our results provide evidence that MpPRAF is a photosynthesis signaling kinase that regulates sucrose metabolism.
Collapse
Affiliation(s)
- Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
22
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 DOI: 10.1101/474981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/25/2019] [Indexed: 05/26/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
23
|
Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB. CRISPR-TSKO: A Technique for Efficient Mutagenesis in Specific Cell Types, Tissues, or Organs in Arabidopsis. THE PLANT CELL 2019; 31:2868-2887. [PMID: 31562216 PMCID: PMC6925012 DOI: 10.1105/tpc.19.00454] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 05/18/2023]
Abstract
Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.
Collapse
Affiliation(s)
- Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Rafael Andrade Buono
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Marie L Pfeiffer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Technologiepark 71, B-9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
24
|
Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 2019; 75:100990. [DOI: 10.1016/j.plipres.2019.100990] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/29/2022]
|
25
|
Liu L, Li J. Communications Between the Endoplasmic Reticulum and Other Organelles During Abiotic Stress Response in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:749. [PMID: 31249578 PMCID: PMC6582665 DOI: 10.3389/fpls.2019.00749] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/21/2019] [Indexed: 05/08/2023]
Abstract
To adapt to constantly changing environmental conditions, plants have evolved sophisticated tolerance mechanisms to integrate various stress signals and to coordinate plant growth and development. It is well known that inter-organellar communications play important roles in maintaining cellular homeostasis in response to environmental stresses. The endoplasmic reticulum (ER), extending throughout the cytoplasm of eukaryotic cells, is a central organelle involved in lipid metabolism, Ca2+ homeostasis, and synthesis and folding of secretory and transmembrane proteins crucial to perceive and transduce environmental signals. The ER communicates with the nucleus via the highly conserved unfolded protein response pathway to mitigate ER stress. Importantly, recent studies have revealed that the dynamic ER network physically interacts with other intracellular organelles and endomembrane compartments, such as the Golgi complex, mitochondria, chloroplast, peroxisome, vacuole, and the plasma membrane, through multiple membrane contact sites between closely apposed organelles. In this review, we will discuss the signaling and metabolite exchanges between the ER and other organelles during abiotic stress responses in plants as well as the ER-organelle membrane contact sites and their associated tethering complexes.
Collapse
Affiliation(s)
- Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianming Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Jianming Li, ;
| |
Collapse
|