1
|
Kraševec N. Pore-forming aegerolysin and MACPF proteins in extremotolerant or extremophilic fungi. IUBMB Life 2024; 76:922-936. [PMID: 38970306 DOI: 10.1002/iub.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
Aegerolysin proteins are involved in various interactions by recognising a molecular receptor in the target organism. The formation of pores in combination with larger, non-aegerolysin-like protein partners (such as membrane attack complex/perforin proteins [MACPFs]) is one of the possible responses in the presumed competitive exclusion of other organisms from the ecological niche. Bicomponent pairs are already observed at the gene level. Fungi growing under extreme conditions can be divided into ubiquitous and extremotolerant generalists which can compete with mesophilic species and rare, isolated extremophilic and extremotolerant specialists with narrow ecological amplitude that cannot compete. Under extreme conditions, there are fewer competitors, so fungal specialists generally produce less diverse and complicated profiles of specialised molecules. Since extremotolerant and extremophilic fungi have evolved in numerous branches of the fungal tree of life and aegerolysins are unevenly distributed across fungal genomes, we investigated whether aegerolysins, together with their partner proteins, contribute to the extreme survival ecology of generalists and specialists. We compiled a list of 109 thermo-, psihro-, acido-, alkali-, halo-, metallo- and polyextremo-tolerant/-philic fungal species. Several challenges were identified that affected the outcome: renaming fungal species, defining extremotolerant/extremophilic traits, identifying extremotolerant/extremophilic traits as metadata in databases and linking fungal isolates to fungal genomes. The yield of genomes coding aegerolysins or MACPFs appears to be lower in extremotolerant/extremophilic fungi compared to all fungal genomes. No candidates for pore-forming gene pairs were identified in the genomes of extremophilic fungi. Aegerolysin and MACPFs partner pairs were identified in only two of 69 species with sequenced genomes, namely in the ubiquitous metallotolerant generalists Aspergillus niger and A. foetidus. These results support the hypothesised role of these pore-forming proteins in competitive exclusion.
Collapse
Affiliation(s)
- Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
2
|
Choudhary BK, Choudhary M, Barbuddhe SB, Shanker A. Partial genomic characterization of Chromobacterium piscinae from India reveals multi drug resistance. Braz J Microbiol 2024; 55:1557-1567. [PMID: 38374322 PMCID: PMC11153472 DOI: 10.1007/s42770-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/10/2024] [Indexed: 02/21/2024] Open
Abstract
Species of genus Chromobacterium have been isolated from diverse geographical settings, which exhibits significant metabolic flexibility as well as biotechnological and pathogenic properties. This study describes the isolation, characterization, draft assembly, and detailed sequence analysis of Chromobacterium piscinae strain W1B-CG-NIBSM isolated from water samples from multi use community pond. The organism was characterized by biochemical tests, Matrix Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI TOF-MS) and partial genome sequencing. The partial genomic data of Chromobacterium pisciane isolate W1B NIBSM strain was submitted to GenBank with Bio project number PRJNA803347 and accession no CP092474. An integrated genome analysis of Chromobacterium piscinae has been accomplished with PATRIC which indicates good quality genome. DNA sequencing using the illumina HiSeq 4000 system generated total length of 4,155,481 bp with 63 contig with G + C content is 62.69%. This partial genome contains 4,126 protein-coding sequences (CDS), 27 repeats region and 78 transfer RNA (tRNA) genes as well as 3 ribosomal RNA (rRNA) genes. The genomic annotation of Chromobacterium W1B depicts 2,925 proteins with functional assignments and 1201 hypothetical proteins. A repertoire of specialty genes implicated in antibiotic resistance (45 genes), drug target (6 genes), Transporter (3 genes) and virulence factor (10 genes). The genomic analysis reveals the adaptability, displays metabolic varied pathways and shows specific structural complex and various virulence factors which makes this strain multi drug resistant. The isolate was found to be highly resistant to β-lactam antibiotics whereas it showed sensitivity towards aminoglycosides and fluoroquinolone antibiotics. Hence, the recovery of Chromobacterium piscinae from community pond evidenced for uncertain hidden source of public health hazard. To the best of authors knowledge this is first report of isolation and genomic description of C. piscinae from India.
Collapse
Affiliation(s)
- Binod Kumar Choudhary
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Baronda, Raipur, 493 225, Chhattisgarh, India.
| | - Mamta Choudhary
- Indian Council of Agricultural Research-National Institute of Biotic Stress Management, Baronda, Raipur, 493 225, Chhattisgarh, India
| | | | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, 824236, India
| |
Collapse
|
3
|
Simmons CR, Herman RA. Non-seed plants are emerging gene sources for agriculture and insect control proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:23-37. [PMID: 37309832 DOI: 10.1111/tpj.16349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
The non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants. While sharing broadly conserved biology with seed plants and the major crops, non-seed plants sometimes possess alternative molecular and physiological adaptations. These adaptations may guide crop improvements. One such area is the presence of multiple classes of insecticidal proteins found in non-seed plant genomes which are either absent or widely diverged in seed plants. There are documented uses of non-seed plants, and ferns for example have been used in human diets. Among the occasional identifiable toxins or antinutritive components present in non-seed plants, none include these insecticidal proteins. Apart from these discrete risk factors which can be addressed in the safety assessment, there should be no general safety concern about sourcing genes from non-seed plant species.
Collapse
Affiliation(s)
- Carl R Simmons
- Corteva Agriscience, Trait Discovery, Johnston, Iowa, 50131, USA
| | - Rod A Herman
- Corteva Agriscience, Regulatory and Stewardship, Johnston, Iowa, 50131, USA
| |
Collapse
|
4
|
Ma S, Guo Y, Liu D, Zhang X, Guo J, Zhang T, Lai L, Li Y, Chen Q, Yu L. Genome-Wide Analysis of the Membrane Attack Complex and Perforin Genes and Their Expression Pattern under Stress in the Solanaceae. Int J Mol Sci 2023; 24:13193. [PMID: 37686000 PMCID: PMC10487776 DOI: 10.3390/ijms241713193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The Membrane Attack Complex and Perforin (MACPF) proteins play a crucial role in plant development and adaptation to environmental stresses. Heretofore, few MACPF genes have been functionally identified, leaving gaps in our understanding of MACPF genes in other plants, particularly in the Solanaceae family, which includes economically and culturally significant species, such as tomato, potato, and pepper. In this study, we have identified 26 MACPF genes in three Solanaceae species and in the water lily, which serves as the base group for angiosperms. Phylogenetic analysis indicates that angiosperm MACPF genes could be categorized into three distinct groups, with another moss and spikemoss lineage-specific group, which is further supported by the examination of gene structures and domain or motif organizations. Through inter-genome collinearity analysis, it is determined that there are 12 orthologous SolMACPF gene pairs. The expansion of SolMACPF genes is primarily attributed to dispersed duplications, with purifying selection identified as the principal driving force in their evolutionary process, as indicated by the ω values. Furthermore, the analysis of expression patterns revealed that Solanaceae genes are preferentially expressed in reproductive tissues and regulated by various environmental stimuli, particularly induced by submergence. Taken together, these findings offer valuable insights into and a fresh perspective on the evolution and function of SolMACPF genes, thereby establishing a foundation for further investigations into their phenotypic and functional characteristics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lujun Yu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.M.); (Y.G.); (D.L.); (X.Z.); (J.G.); (T.Z.); (L.L.); (Y.L.); (Q.C.)
| |
Collapse
|
5
|
Marini G, Poland B, Leininger C, Lukoyanova N, Spielbauer D, Barry JK, Altier D, Lum A, Scolaro E, Ortega CP, Yalpani N, Sandahl G, Mabry T, Klever J, Nowatzki T, Zhao JZ, Sethi A, Kassa A, Crane V, Lu AL, Nelson ME, Eswar N, Topf M, Saibil HR. Structural journey of an insecticidal protein against western corn rootworm. Nat Commun 2023; 14:4171. [PMID: 37443175 PMCID: PMC10344926 DOI: 10.1038/s41467-023-39891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The broad adoption of transgenic crops has revolutionized agriculture. However, resistance to insecticidal proteins by agricultural pests poses a continuous challenge to maintaining crop productivity and new proteins are urgently needed to replace those utilized for existing transgenic traits. We identified an insecticidal membrane attack complex/perforin (MACPF) protein, Mpf2Ba1, with strong activity against the devastating coleopteran pest western corn rootworm (WCR) and a novel site of action. Using an integrative structural biology approach, we determined monomeric, pre-pore and pore structures, revealing changes between structural states at high resolution. We discovered an assembly inhibition mechanism, a molecular switch that activates pre-pore oligomerization upon gut fluid incubation and solved the highest resolution MACPF pore structure to-date. Our findings demonstrate not only the utility of Mpf2Ba1 in the development of biotechnology solutions for protecting maize from WCR to promote food security, but also uncover previously unknown mechanistic principles of bacterial MACPF assembly.
Collapse
Affiliation(s)
- Guendalina Marini
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Brad Poland
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Chris Leininger
- Corteva Agriscience, Johnston, IA, 50131, USA
- Syngenta, Research Triangle Park, NC, 27709, USA
| | - Natalya Lukoyanova
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK
| | | | | | - Dan Altier
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Amy Lum
- Corteva Agriscience, Johnston, IA, 50131, USA
- Willow Biosciences, 319 N Bernardo Ave #4, Mountain View, CA, 94043, USA
| | | | - Claudia Pérez Ortega
- Corteva Agriscience, Johnston, IA, 50131, USA
- Hologic, Inc., 250 Campus Drive, Marlborough, MA, 01752, USA
| | - Nasser Yalpani
- Corteva Agriscience, Johnston, IA, 50131, USA
- Dept. of Biology, University of British Columbia Okanagan, 3187 University Way, Kelowna, BC, V1V 1V7, Canada
| | | | - Tim Mabry
- Corteva Agriscience, Ivesdale, IL, 61851, USA
| | | | | | | | - Amit Sethi
- Corteva Agriscience, Johnston, IA, 50131, USA
| | - Adane Kassa
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | - Albert L Lu
- Corteva Agriscience, Johnston, IA, 50131, USA
| | | | | | - Maya Topf
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
- Centre for Structural Systems Biology (CSSB), Leibniz-Institut für Virologie (LIV), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet St, London, WC1E 7HX, UK.
| |
Collapse
|
6
|
IPD072Aa from Pseudomonas chlororaphis Targets Midgut Epithelial Cells in Killing Western Corn Rootworm ( Diabrotica virgifera virgifera). Appl Environ Microbiol 2023; 89:e0162222. [PMID: 36847510 PMCID: PMC10057879 DOI: 10.1128/aem.01622-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
IPD072Aa from Pseudomonas chlororaphis is a new insecticidal protein that has been shown to have high activity against western corn rootworm (WCR). IPD072 has no sequence signatures or predicted structural motifs with any known protein revealing little insight into its mode of action using bioinformatic tools. As many bacterially derived insecticidal proteins are known to act through mechanisms that lead to death of midgut cells, we evaluated whether IPD072Aa also acts by targeting the cells of WCR midgut. IPD072Aa exhibits specific binding to brush border membrane vesicles (BBMVs) prepared from WCR guts. The binding was found to occur at binding sites that are different than those recognized by Cry3A or Cry34Ab1/Cry35Ab1, proteins expressed by current maize traits that target WCR. Using fluorescence confocal microscopy, immuno-detection of IPD072Aa in longitudinal sections from whole WCR larvae that were fed IPD072Aa revealed the association of the protein with the cells that line the gut. High-resolution scanning electron microscopy of similar whole larval sections revealed the disruption of the gut lining resulting from cell death caused by IPD072Aa exposure. These data show that the insecticidal activity of IPD072Aa results from specific targeting and killing of rootworm midgut cells. IMPORTANCE Transgenic traits targeting WCR based on insecticidal proteins from Bacillus thuringiensis have proven effective in protecting maize yield in North America. High adoption has led to WCR populations that are resistant to the trait proteins. Four proteins have been developed into commercial traits, but they represent only two modes of action due to cross-resistance among three. New proteins suited for trait development are needed. IPD072Aa, identified from the bacterium Pseudomonas chlororaphis, was shown to be effective in protecting transgenic maize against WCR. To be useful, IPD072Aa must work through binding to different receptors than those utilized by current traits to reduce risk of cross-resistance and understanding its mechanism of toxicity could aid in countering resistance development. Our results show that IPD072Aa binds to receptors in WCR gut that are different than those utilized by current commercial traits and its targeted killing of midgut cells results in larval death.
Collapse
|
7
|
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211976. [PMID: 38033810 PMCID: PMC10683392 DOI: 10.1177/25152564231211976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
VPS13 is a lipid transfer protein family conserved among Eukaryotes and playing roles in fundamental processes involving vesicular transport and membrane expansion including autophagy and organelle biogenesis. VPS13 folds into a long hydrophobic tunnel, allowing lipid transport, decorated by distinct domains involved in protein localization and regulation. Whereas VPS13 organization and function have been extensively studied in yeast and mammals, information in organisms originating from primary endosymbiosis is scarce. In the higher plant Arabidopsis thaliana, four paralogs, AtVPS13S, X, M1, and M2, were identified, AtVPS13S playing a role in the regulation of root growth, cell patterning, and reproduction. In this work, we performed phylogenetic, as well as domain and structural modeling of VPS13 proteins in Archaeplastida in order to understand their general organization and evolutionary history. We confirmed the presence of human VPS13B orthologues in some phyla and described two new VPS13 families presenting a particular domain arrangement: VPS13R in Rhodophytes and VPS13Y in Chlorophytes and Streptophytes. By focusing on Viridiplantae, we were able to draw the evolutionary history of these proteins made by multiple gene gains and duplications as well as domain rearrangements. We showed that some Chlorophytes have only three (AtVPS13M, S, Y) whereas some Charophytes have up to six VPS13 paralogs (AtVPS13M1, M2, S, Y, X, B). We also highlighted specific structural features of VPS13M and X paralogs. This study reveals the complex evolution of VPS13 family and opens important perspectives for their functional characterization in photosynthetic organisms.
Collapse
Affiliation(s)
- Sébastien Leterme
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | | | - Alberto Amato
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| |
Collapse
|
8
|
Cai Y, Lv W, Jiang Y, Li Q, Su P, Pang Y. Molecular evolution of the BRINP and ASTN genes and expression profles in response to pathogens and spinal cord injury repair in lamprey (Lethenteron reissneri). FISH & SHELLFISH IMMUNOLOGY 2022; 131:274-282. [PMID: 36228880 DOI: 10.1016/j.fsi.2022.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Bone morphogenic protein/retinoic acid inducible neural-specific proteins (BRINPs) and astrotactins (ASTNs) are two members of membrane attack complex/perforin-like (MACPF) superfamily proteins that present high expression in the growing and mature vertebrate neurons. Lamprey has a unique evolutionary status as a representative of the oldest jawless vertebrates, making it an ideal animal model for understanding vertebrate evolution. The evolutionary origins of BRINPs and ASTNs genes in vertebrates, however, have not been shown in lampreys. Here, BRINP and ASTN genes were found in lamprey genomes and the evolutionary relationships of them were investigated by phylogenetic analysis. Protein domains, motifs, genetic structure, and crystal structure analysis revealed that the features of BRINP and ASTN appear to be conserved in vertebrates. Genomic synteny analysis indicated that lamprey BRINP and ASTN neighbor genes differed dramatically from jawed vertebrate. Real-time quantitative results illustrated that the BRINP and ASTN genes family might take part in immune defence and spinal cord injury repair. This study not only enriches a better understanding of the evolution of the BRINP and ASTN genes but also offers a foundation for exploring their roles in the development of the vertebrate central nervous system (CNS).
Collapse
Affiliation(s)
- Yang Cai
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wanrong Lv
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Ying Jiang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
9
|
Chromobacterium Csp_P biopesticide is toxic to larvae of three Diabrotica species including strains resistant to Bacillus thuringiensis. Sci Rep 2022; 12:17858. [PMID: 36284199 PMCID: PMC9596699 DOI: 10.1038/s41598-022-22229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.
Collapse
|
10
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
11
|
Levine TP. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:251525642211343. [PMID: 36571082 PMCID: PMC7613979 DOI: 10.1177/25152564221134328] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipid transfer between organelles requires proteins that shield the hydrophobic portions of lipids as they cross the cytoplasm. In the last decade a new structural form of lipid transfer protein (LTP) has been found: long hydrophobic grooves made of beta-sheet that bridge between organelles at membrane contact sites. Eukaryotes have five families of bridge-like LTPs: VPS13, ATG2, SHIP164, Hobbit and Tweek. These are unified into a single superfamily through their bridges being composed of just one domain, called the repeating beta groove (RBG) domain, which builds into rod shaped multimers with a hydrophobic-lined groove and hydrophilic exterior. Here, sequences and predicted structures of the RBG superfamily were analyzed in depth. Phylogenetics showed that the last eukaryotic common ancestor contained all five RBG proteins, with duplicated VPS13s. The current set of long RBG protein appears to have arisen in even earlier ancestors from shorter forms with 4 RBG domains. The extreme ends of most RBG proteins have amphipathic helices that might be an adaptation for direct or indirect bilayer interaction, although this has yet to be tested. The one exception to this is the C-terminus of SHIP164, which instead has a coiled-coil. Finally, the exterior surfaces of the RBG bridges are shown to have conserved residues along most of their length, indicating sites for partner interactions almost all of which are unknown. These findings can inform future cell biological and biochemical experiments.
Collapse
|
12
|
Kraševec N, Panevska A, Lemež Š, Razinger J, Sepčić K, Anderluh G, Podobnik M. Lipid-Binding Aegerolysin from Biocontrol Fungus Beauveria bassiana. Toxins (Basel) 2021; 13:820. [PMID: 34822604 PMCID: PMC8624791 DOI: 10.3390/toxins13110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
Fungi are the most common pathogens of insects and thus important regulators of their populations. Lipid-binding aegerolysin proteins, which are commonly found in the fungal kingdom, may be involved in several biologically relevant processes including attack and defense against other organisms. Aegerolysins act alone or together with membrane-attack-complex/perforin (MACPF)-like proteins to form transmembrane pores that lead to cell lysis. We performed an in-depth bioinformatics analysis of aegerolysins in entomopathogenic fungi and selected a candidate aegerolysin, beauveriolysin A (BlyA) from Beauveria bassiana. BlyA was expressed as a recombinant protein in Escherichia coli, and purified to further determine its functional and structural properties, including lipid-binding ability. Aegerolysins were found to be encoded in genomes of entomopathogenic fungi, such as Beauveria, Cordyceps, Metarhizium and Ophiocordyceps. Detailed bioinformatics analysis revealed that they are linked to MACPF-like genes in most genomes. We also show that BlyA interacts with an insect-specific membrane lipid. These results were placed in the context of other fungal and bacterial aegerolysins and their partner proteins. We believe that aegerolysins play a role in promoting the entomopathogenic and antagonistic activity of B. bassiana, which is an active ingredient of bioinsecticides.
Collapse
Affiliation(s)
- Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Špela Lemež
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
- Biotechnology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, SI-1000 Ljubljana, Slovenia;
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (A.P.); (K.S.)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, SI-1000 Ljubljana, Slovenia; (Š.L.); (G.A.); (M.P.)
| |
Collapse
|
13
|
Pereira AE, Huynh MP, Carlson AR, Haase A, Kennedy RM, Shelby KS, Coudron TA, Hibbard BE. Assessing the Single and Combined Toxicity of the Bioinsecticide Spear and Cry3Bb1 Protein Against Susceptible and Resistant Western Corn Rootworm Larvae (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:2220-2228. [PMID: 34453170 DOI: 10.1093/jee/toab160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 06/13/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), poses a serious threat to maize (Zea mays L.) growers in the U.S. Corn Belt. Transgenic corn expressing Bacillus thuringiensis (Bt) Berliner is the major management tactic along with crop rotation. Bt crops targeting WCR populations have been widely planted throughout the Corn Belt. Rootworms have developed resistance to nearly all management strategies including Bt corn. Therefore, there is a need for new products that are not cross-resistant with the current Bt proteins. In this study, we evaluated the susceptibility of WCR strains resistant and susceptible to Cry3Bb1 to the biological insecticide Spear-T (GS-omega/kappa-Hexatoxin-Hv1a) alone and combined with Cry3Bb1 protein. The activity of Hv1a alone was similar between Cry3Bb1-resistant and susceptible strains (LC50s = 0.95 mg/cm2 and 1.50 mg/cm2, respectively), suggesting that there is no cross-resistance with Cry3Bb1 protein. Effective concentration (EC50), molt inhibition concentration (MIC50), and inhibition concentration (IC50) values of Hv1a alone were also similar between both strains, based on non-overlapping confidence intervals. Increased mortality (64%) was observed on resistant larvae exposed to Hv1a (0.6 mg/cm2) + Cry3Bb1 protein (170.8 µg/cm2) compared to 0% mortality when exposed to Cry3Bb1 alone and 34% mortality to Hv1a alone (0.3 mg/cm2). The time of larval death was not significantly different between Hv1a alone (3.79 mg/cm2) and Hv1a (0.6 mg/cm2) + Cry3Bb1 (170.8 µg/cm2). New control strategies that are not cross-resistant with current insecticides and Bt proteins are needed to better manage the WCR, and Hv1a together with Cry3Bb1 may fit this role.
Collapse
Affiliation(s)
- Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Man P Huynh
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | | | | | | | - Kent S Shelby
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | - Thomas A Coudron
- Biological Control of Insect Research Laboratory, USDA/ARS, Columbia, MO, USA
| | | |
Collapse
|
14
|
Milijaš Jotić M, Panevska A, Iacovache I, Kostanjšek R, Mravinec M, Skočaj M, Zuber B, Pavšič A, Razinger J, Modic Š, Trenti F, Guella G, Sepčić K. Dissecting Out the Molecular Mechanism of Insecticidal Activity of Ostreolysin A6/Pleurotolysin B Complexes on Western Corn Rootworm. Toxins (Basel) 2021; 13:toxins13070455. [PMID: 34209983 PMCID: PMC8310357 DOI: 10.3390/toxins13070455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Ostreolysin A6 (OlyA6) is a protein produced by the oyster mushroom (Pleurotus ostreatus). It binds to membrane sphingomyelin/cholesterol domains, and together with its protein partner, pleurotolysin B (PlyB), it forms 13-meric transmembrane pore complexes. Further, OlyA6 binds 1000 times more strongly to the insect-specific membrane sphingolipid, ceramide phosphoethanolamine (CPE). In concert with PlyB, OlyA6 has potent and selective insecticidal activity against the western corn rootworm. We analysed the histological alterations of the midgut wall columnar epithelium of western corn rootworm larvae fed with OlyA6/PlyB, which showed vacuolisation of the cell cytoplasm, swelling of the apical cell surface into the gut lumen, and delamination of the basal lamina underlying the epithelium. Additionally, cryo-electron microscopy was used to explore the membrane interactions of the OlyA6/PlyB complex using lipid vesicles composed of artificial lipids containing CPE, and western corn rootworm brush border membrane vesicles. Multimeric transmembrane pores were formed in both vesicle preparations, similar to those described for sphingomyelin/cholesterol membranes. These results strongly suggest that the molecular mechanism of insecticidal action of OlyA6/PlyB arises from specific interactions of OlyA6 with CPE, and the consequent formation of transmembrane pores in the insect midgut.
Collapse
Affiliation(s)
- Matej Milijaš Jotić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Rok Kostanjšek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Martina Mravinec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland; (I.I.); (B.Z.)
| | - Ana Pavšič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
| | - Jaka Razinger
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Špela Modic
- Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia; (J.R.); (Š.M.)
| | - Francesco Trenti
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, 38123 Trento, Italy; (F.T.); (G.G.)
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.M.J.); (A.P.); (R.K.); (M.M.); (M.S.); (A.P.)
- Correspondence: ; Tel.: +386-1-320-3419
| |
Collapse
|
15
|
Johnstone BA, Christie MP, Morton CJ, Parker MW. X-ray crystallography shines a light on pore-forming toxins. Methods Enzymol 2021; 649:1-46. [PMID: 33712183 DOI: 10.1016/bs.mie.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A common form of cellular attack by pathogenic bacteria is to secrete pore-forming toxins (PFTs). Capable of forming transmembrane pores in various biological membranes, PFTs have also been identified in a diverse range of other organisms such as sea anemones, earthworms and even mushrooms and trees. The mechanism of pore formation by PFTs is associated with substantial conformational changes in going from the water-soluble to transmembrane states of the protein. The determination of the crystal structures for numerous PFTs has shed much light on our understanding of these proteins. Other than elucidating the atomic structural details of PFTs and the conformational changes that must occur for pore formation, crystal structures have revealed structural homology that has led to the discovery of new PFTs and new PFT families. Here we review some key crystallographic results together with complimentary approaches for studying PFTs. We discuss how these studies have impacted our understanding of PFT function and guided research into biotechnical applications.
Collapse
Affiliation(s)
- Bronte A Johnstone
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michelle P Christie
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia.
| |
Collapse
|
16
|
Panevska A, Skočaj M, Modic Š, Razinger J, Sepčić K. Aegerolysins from the fungal genus Pleurotus - Bioinsecticidal proteins with multiple potential applications. J Invertebr Pathol 2020; 186:107474. [PMID: 32971130 DOI: 10.1016/j.jip.2020.107474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
The aegerolysin proteins ostreolysin A6, pleurotolysin A2 and erylysin A are produced by mushrooms of the genus Pleurotus. These aegerolysins can interact specifically with sphingolipid-enriched membranes. In particular, they strongly bind insect cells and to artificial lipid membranes that contain physiologically relevant concentrations of the main invertebrate-specific sphingolipid, ceramide phosphoethanolamine. Moreover, the aegerolysins permeabilise these membranes when combined with their protein partner pleurotolysin B, which contains a membrane-attack-complex/perforin domain. These aegerolysin/ pleurotolysin B complexes show strong and selective toxicity towards western corn rootworm larvae and adults and Colorado potato beetle larvae. Their insecticidal activities arise through aegerolysin binding to ceramide phosphoethanolamine in the insect midgut. This mode of membrane binding is different from those described for similar aegerolysin-based complexes of bacterial origin (e.g., Cry34Ab1/Cry35Ab1), or other Bacillus thuringiensis proteinaceous crystal toxins, which associate with protein receptors. The ability of Pleurotus aegerolysins to specifically interact with sphingolipid-enriched domains in mammalian cells can be further exploited to visualize lipid rafts in living cells, and to treat certain types of tumours and metabolic disorders. Finally, these proteins can strongly enhance fruiting initiation of P. ostreatus even when applied externally. In this review, we summarise the current knowledge of the potential biotechnological and biomedical applications of the Pleurotus aegerolysins, either alone or when complexed with pleurotolysin B, with special emphasis on their bioinsecticidal effects.
Collapse
Affiliation(s)
- Anastasija Panevska
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| | - Špela Modic
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Jaka Razinger
- Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Evolution and Expression of the Membrane Attack Complex and Perforin Gene Family in the Poaceae. Int J Mol Sci 2020; 21:ijms21165736. [PMID: 32785137 PMCID: PMC7460961 DOI: 10.3390/ijms21165736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 01/02/2023] Open
Abstract
Membrane Attack Complex and Perforin (MACPF) proteins play crucial roles in plant development and plant responses to environmental stresses. To date, only four MACPF genes have been identified in Arabidopsis thaliana, and the functions of the MACPF gene family members in other plants, especially in important crop plants, such as the Poaceae family, remain largely unknown. In this study, we identified and analyzed 42 MACPF genes from six completely sequenced and well annotated species representing the major Poaceae clades. A phylogenetic analysis of MACPF genes resolved four groups, characterized by shared motif organizations and gene structures within each group. MACPF genes were unevenly distributed along the Poaceae chromosomes. Moreover, segmental duplications and dispersed duplication events may have played significant roles during MACPF gene family expansion and functional diversification in the Poaceae. In addition, phylogenomic synteny analysis revealed a high degree of conservation among the Poaceae MACPF genes. In particular, Group I, II, and III MACPF genes were exposed to strong purifying selection with different evolutionary rates. Temporal and spatial expression analyses suggested that Group III MACPF genes were highly expressed relative to the other groups. In addition, most MACPF genes were highly expressed in vegetative tissues and up-regulated by several biotic and abiotic stresses. Taken together, these findings provide valuable information for further functional characterization and phenotypic validation of the Poaceae MACPF gene family.
Collapse
|