1
|
Campos‐Magaña MA, Martins dos Santos VAP, Garcia‐Morales L. Enabling Access to Novel Bacterial Biosynthetic Potential From ONT Draft Genomic Data. Microb Biotechnol 2025; 18:e70104. [PMID: 40034067 PMCID: PMC11876861 DOI: 10.1111/1751-7915.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/19/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Natural products comprise a wide diversity of compounds with a range of biological activities, including antibiotics, anti-inflammatory and anti-tumoral molecules. However, we can only access a small portion of these compounds due to various technical difficulties. We have herein developed a novel and efficient approach for accessing biosynthetic gene clusters (BGCs) that encode natural products from soil bacteria. The pipeline uses a combination of long-read sequencing, antiSMASH for BGC identification and Transformation-associated recombination (TAR) for cloning the BGCs. We hypothesized that a genome assembly using Oxford Nanopore Technology (ONT) sequencing could facilitate the detection of large BGCs at a relatively fast and low-cost DNA sequencing. Despite the relative low accuracy and sequence mistakes due to high GC content and sequence repetitions frequently found in BGC containing bacteria, we demonstrate that ONT long-read sequencing and antiSMASH are effective for identifying novel BGCs and enabling TAR cloning to isolate the BGC in a desired vector. We applied this pipeline on a previously non-sequenced myxobacteria Aetherobacter fasciculatus SBSr002. Our approach enabled us to clone a previously unknown BGC into a genome engineering-ready vector, illustrating the capabilities of this powerful and cost-effective strategy.
Collapse
Affiliation(s)
- Marco A. Campos‐Magaña
- Dept. Bioprocess EngineeringWageningen University and ResearchWageningenthe Netherlands
- Dept. Systems and Synthetic BiologyWageningen University and ResearchWageningenthe Netherlands
| | | | | |
Collapse
|
2
|
Roblero-Mejía DO, García-Ausencio C, Rodríguez-Sanoja R, Guzmán-Chávez F, Sánchez S. Embleporicin: A Novel Class I Lanthipeptide from the Actinobacteria Embleya sp. NF3. Antibiotics (Basel) 2024; 13:1179. [PMID: 39766569 PMCID: PMC11672506 DOI: 10.3390/antibiotics13121179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Genome mining has emerged as a revolutionary tool for discovering new ribosomally synthesized and post-translationally modified peptides (RiPPs) in various genomes. Recently, these approaches have been used to detect and explore unique environments as sources of RiPP-producing microorganisms, particularly focusing on endophytic microorganisms found in medicinal plants. Some endophytic actinobacteria, especially strains of Streptomyces, are notable examples of peptide producers, as specific biosynthetic clusters encode them. To uncover the genetic potential of these organisms, we analyzed the genome of the endophytic actinobacterium Embleya sp. NF3 using genome mining and bioinformatics tools. Our analysis led to the identification of a putative class I lanthipeptide. We cloned the core biosynthetic genes of this putative lanthipeptide, named embleporicin, and expressed them in vitro using a cell-free protein system (CFPS). The resulting product demonstrated antimicrobial activity against Micrococcus luteus ATCC 9341. This represents the first RiPP reported in the genus Embleya and the first actinobacterial lanthipeptide produced through cell-free technology.
Collapse
Affiliation(s)
- Dora Onely Roblero-Mejía
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Carlos García-Ausencio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| | - Fernando Guzmán-Chávez
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (D.O.R.-M.); (C.G.-A.); (R.R.-S.)
| |
Collapse
|
3
|
Liu Z, Li H, Yu Q, Song Q, Peng B, Wang K, Li Z. Heterologous Expression Facilitates the Production and Characterization of a Class III Lanthipeptide with Coupled Labionin Cross-Links in Sponge-Associated Streptomyces rochei MB037. ACS Chem Biol 2024; 19:2060-2069. [PMID: 39145437 DOI: 10.1021/acschembio.4c00428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cyclic peptides, with remarkable stability, cellular permeability, and proteolysis resistance, display promising potential in pharmaceutical applications. Labionin (Lab), a unique bicyclic cross-link containing both C-C and C-S bonds, provides high rigidity and better control of conformation compared to monocyclic cross-links. To discover more Lab-containing scaffolds with highly rigid conformation for cyclic peptide drug development, herein, a cryptic class III lanthipeptide biosynthetic gene cluster (BGC) (i.e., rcs) was identified in the sponge-associated Streptomyces rochei MB037 and expressed in Escherichia coli, incorporating an N-terminal SUMO-tag on the RcsA precursor peptide to prevent proteolysis. Subsequently, a novel class III lanthipeptide, i.e., rochsin A, exhibiting a highly rigid conformation with coupled Lab cross-links crowded by bulky aromatic amino acids, was produced. Three AplP-like proteases outside the rcs BGC were proven to remove the leader peptide of rochsin A through their dual endo- and aminopeptidase activities, resulting in mature rochsin A in vitro. Ala mutation experiments revealed the C to N cyclization direction, like most class III lanthipeptides. However, RcsKC displays a high substrate breadth, enabling various ring topologies that are rarely observed in other class III lanthipeptides. Overall, the established expression system broadens the chemical diversity of cyclic peptides with unique Lab cross-links and offers a highly rigid scaffold for cyclic peptide drug development.
Collapse
Affiliation(s)
- Zhengjie Liu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianzhe Yu
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianqian Song
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Peng
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kang Wang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
4
|
Kobayashi R, Saito K, Kodani S. Heterologous Biosynthesis of New Lanthipeptides Nocardiopeptins with an Unprecedented Bridging Pattern of Lanthionine and Labionin. ACS Chem Biol 2024; 19:1896-1903. [PMID: 39248435 DOI: 10.1021/acschembio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The class III lanthipeptide synthetase (LanKC) installs unusual amino acids, such as lanthionine and labionin, in lanthipeptides. Through genome mining, we discovered a new class III lanthipeptide synthetase coding gene (nptKC) and precursor peptide coding genes (nptA1, nptA2, and nptA3) in the genome of the actinobacterium Nocardiopsis alba. Coexpression experiments of the biosynthetic genes in Escherichia coli resulted in the production of new lanthipeptides named nocardiopeptins A1-A3. Analysis of two-dimensional NMR spectra after enzymatic degradation and partial basic hydrolysis of nocardiopeptin A2 revealed that labionin was located in lanthionine with opposite orientations, forming a nesting structure in nocardiopeptin A2. To the best of our knowledge, this bridging pattern in the lanthipeptides was unprecedented, indicating a novel reaction characteristic of the class III lanthipeptide synthetase NptKC.
Collapse
Affiliation(s)
- Ryo Kobayashi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
5
|
Wang M, Li WW, Cao Z, Sun J, Xiong J, Tao SQ, Lv T, Gao K, Luo S, Dong SH. Genome mining of sulfonated lanthipeptides reveals unique cyclic peptide sulfotransferases. Acta Pharm Sin B 2024; 14:2773-2785. [PMID: 38828142 PMCID: PMC11143521 DOI: 10.1016/j.apsb.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 06/05/2024] Open
Abstract
Although sulfonation plays crucial roles in various biological processes and is frequently utilized in medicinal chemistry to improve water solubility and chemical diversity of drug leads, it is rare and underexplored in ribosomally synthesized and post-translationally modified peptides (RiPPs). Biosynthesis of RiPPs typically entails modification of hydrophilic residues, which substantially increases their chemical stability and bioactivity, albeit at the expense of reducing water solubility. To explore sulfonated RiPPs that may have improved solubility, we conducted co-occurrence analysis of RiPP class-defining enzymes and sulfotransferase (ST), and discovered two distinctive biosynthetic gene clusters (BGCs) encoding both lanthipeptide synthetase (LanM) and ST. Upon expressing these BGCs, we characterized the structures of novel sulfonated lanthipeptides and determined the catalytic details of LanM and ST. We demonstrate that SslST-catalyzed sulfonation is leader-independent but relies on the presence of A ring formed by LanM. Both LanM and ST are promiscuous towards residues in the A ring, but ST displays strict regioselectivity toward Tyr5. The recognition of cyclic peptide by ST was further discussed. Bioactivity evaluation underscores the significance of the ST-catalyzed sulfonation. This study sets up the starting point to engineering the novel lanthipeptide STs as biocatalysts for hydrophobic lanthipeptides improvement.
Collapse
Affiliation(s)
| | | | - Zhe Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianong Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Si-Qin Tao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tinghong Lv
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Rukthanapitak P, Saito K, Kobayashi R, Kaweewan I, Kodani S. Heterologous production of a new lanthipeptide boletupeptin using a cryptic biosynthetic gene cluster of the myxobacterium Melittangium boletus. J Biosci Bioeng 2024; 137:354-359. [PMID: 38458885 DOI: 10.1016/j.jbiosc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 03/10/2024]
Abstract
Myxobacteria have comparatively large genomes that contain many biosynthetic genes with the potential to produce secondary metabolites. Based on genome mining, we discovered a new biosynthetic gene cluster of class III lanthipeptide in the genome of the myxobacterium Melittangium boletus. The biosynthetic gene cluster contained a precursor peptide-coding gene bolA, and a class III lanthipeptide synthetase-coding gene bolKC. The expression vector containing bolA and bolKC was constructed using synthetic DNA with codon-optimized sequences based on the commercially available vector pET29b. Co-expression of the two genes in the host Escherichia coli BL21(DE3) yielded a new class III lanthipeptide named boletupeptin. The structure of boletupeptin was proposed to have one unit of labionin, as determined by mass spectrometry experiments after reductive cleavage. This is the first report of a class III lanthipeptide from a myxobacterial origin.
Collapse
Affiliation(s)
- Pratchaya Rukthanapitak
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Keita Saito
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryo Kobayashi
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Issara Kaweewan
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Medicine, Chiang Mai University, Inthawarorot Rd., Sri Phum, Muang, Chiang Mai 50200, Thailand
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; College of Agriculture, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
7
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Crone KK, Jomori T, Miller FS, Gralnick JA, Elias MH, Freeman MF. RiPP enzyme heterocomplex structure-guided discovery of a bacterial borosin α- N-methylated peptide natural product. RSC Chem Biol 2023; 4:804-816. [PMID: 37799586 PMCID: PMC10549244 DOI: 10.1039/d3cb00093a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
Amide peptide backbone methylation is a characteristic post-translational modification found in a family of ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) called borosins. Previously, we bioinformatically identified >1500 putative borosin pathways in bacteria; however, none of the pathways were associated with a known secondary metabolite. Through in-depth characterization of a borosin pathway in Shewanella oneidensis MR-1, we have now identified a bacterially derived borosin natural product named Shewanellamide A. Borosin identification was facilitated by the creation and analysis of a series of precursor variants and crystallographic interrogation of variant precursor and methyltransferase complexes. Along with assaying two proteases from S. oneidensis, probable boundaries for proteolytic maturation of the metabolite were projected and confirmed via comparison of S. oneidensis knockout and overexpression strains. All in all, the S. oneidensis natural product was found to be a 16-mer linear peptide featuring two backbone methylations, establishing Shewanellamide A as one of the few borosin metabolites yet identified, and the first from bacteria.
Collapse
Affiliation(s)
- K K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - T Jomori
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - F S Miller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - J A Gralnick
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
- Department of Plant and Microbial Biology, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M H Elias
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| | - M F Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities St. Paul 55108 USA
- The BioTechnology Institute, University of Minnesota - Twin Cities St. Paul 55108 USA
| |
Collapse
|
9
|
Wang X, Chen X, Wang ZJ, Zhuang M, Zhong L, Fu C, Garcia R, Müller R, Zhang Y, Yan J, Wu D, Huo L. Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity. J Am Chem Soc 2023. [PMID: 37466996 DOI: 10.1021/jacs.3c06014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The genomes of myxobacteria harbor a variety of biosynthetic gene clusters encoding numerous secondary metabolites, including ribosomally synthesized and post-translationally modified peptides (RiPPs) with diverse chemical structures and biological activities. However, the biosynthetic potential of RiPPs from myxobacteria remains barely explored. Herein, we report a novel myxobacteria lanthipeptide myxococin identified from Myxococcus fulvus. Myxococins represent the first example of lanthipeptides, of which the characteristic multiple thioether rings are installed by employing a Class II lanthipeptide synthetase MfuM and a Class I lanthipeptide cyclase MfuC in a cascaded way. Unprecedentedly, we biochemically characterized the first M61 family aminopeptidase MfuP involved in RiPP biosynthesis, demonstrating that MfuP showed the activity of an endopeptidase activity. MfuP is leader-independent but strictly selective for the multibridge structure of myxococin A and responsible for unwrapping two rings via amide bond hydrolysis, yielding myxococin B. Furthermore, the X-ray crystal structure of MfuP and structural analysis, including active-site mutations, are reported. Finally, myxococins are evaluated to exhibit anti-inflammatory activity in lipopolysaccharide-induced macrophages without detectable cytotoxicity.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Xiaoyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Zong-Jie Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Mengwei Zhuang
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Chin
| | - Chengzhang Fu
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz International Laboratory, Department of Microbial Natural Products (MINS), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Campus E8 1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Jie Yan
- Department of Diagnostics, Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| | - Liujie Huo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Helmholtz International Lab for Anti-Infectives, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
10
|
Li Y, Ma Y, Xia Y, Zhang T, Sun S, Gao J, Yao H, Wang H. Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks. Nat Commun 2023; 14:2944. [PMID: 37221219 DOI: 10.1038/s41467-023-38517-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023] Open
Abstract
Cyclic peptide natural products represent an important class of bioactive compounds and clinical drugs. Enzymatic side-chain macrocyclization of ribosomal peptides is a major strategy developed by nature to generate these chemotypes, as exemplified by the superfamily of ribosomally synthesized and post-translational modified peptides. Despite the diverse types of side-chain crosslinks in this superfamily, the participation of histidine residues is rare. Herein, we report the discovery and biosynthesis of bacteria-derived tricyclic lanthipeptide noursin, which is constrained by a tri amino acid labionin crosslink and an unprecedented histidine-to-butyrine crosslink, named histidinobutyrine. Noursin displays copper-binding ability that requires the histidinobutyrine crosslink and represents the first copper-binding lanthipeptide. A subgroup of lanthipeptide synthetases, named LanKCHbt, were identified to catalyze the formation of both the labionin and the histidinobutyrine crosslinks in precursor peptides and produce noursin-like compounds. The discovery of the histidinobutyrine-containing lanthipeptides expands the scope of post-translational modifications, structural diversity and bioactivity of ribosomally synthesized and post-translational modified peptides.
Collapse
Affiliation(s)
- Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yeying Ma
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yinzheng Xia
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Tao Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Hongwei Yao
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
11
|
Xue D, Shang Z, Older EA, Zhong Z, Pulliam C, Peter K, Nagarkatti M, Nagarkatti P, Li YX, Li J. Refactoring and Heterologous Expression of Class III Lanthipeptide Biosynthetic Gene Clusters Lead to the Discovery of N, N-Dimethylated Lantibiotics from Firmicutes. ACS Chem Biol 2023; 18:508-517. [PMID: 36926816 PMCID: PMC10069475 DOI: 10.1021/acschembio.2c00849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Class III lanthipeptides are an emerging subclass of lanthipeptides, representing an underexplored trove of new natural products with potentially broad chemical diversity and important biological activity. Bioinformatic analysis of class III lanthipeptide biosynthetic gene cluster (BGC) distribution has revealed their high abundance in the phylum Firmicutes. Many of these clusters also feature methyltransferase (MT) genes, which likely encode uncommon class III lanthipeptides. However, two hurdles, silent BGCs and low-yielding pathways, have hindered the discovery of class III lanthipeptides from Firmicutes. Here, we report the design and construction of a biosynthetic pathway refactoring and heterologous overexpression strategy which seeks to overcome these hurdles, simultaneously activating and increasing the production of these Firmicutes class III lanthipeptides. Applying our strategy to MT-containing BGCs, we report the discovery of new class III lanthipeptides from Firmicutes bearing rare N,N-dimethylations. We reveal the importance of the first two amino acids in the N-terminus of the core peptide in controlling the MT dimethylation activity. Leveraging this feature, we engineer class III lanthipeptides to enable N,N-dimethylation, resulting in significantly increased antibacterial activity. Furthermore, the refactoring and heterologous overexpression strategy showcased in this study is potentially applicable to other ribosomally synthesized and post-translationally modified peptide BGCs from Firmicutes, unlocking the genetic potential of Firmicutes for producing peptide natural products.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zheng Zhong
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Hong Kong 999077, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
| | - Conor Pulliam
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Kyle Peter
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina 29209, United States
| | - Yong-Xin Li
- Department of Chemistry and the Swire Institute of Marine Science, The University of Hong Kong, Hong Kong 999077, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 519000, China
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
12
|
Huang S, Wang Y, Cai C, Xiao X, Liu S, Ma Y, Xie X, Liang Y, Chen H, Zhu J, Hegemann JD, Yao H, Wei W, Wang H. Discovery of a Unique Structural Motif in Lanthipeptide Synthetases for Substrate Binding and Interdomain Interactions. Angew Chem Int Ed Engl 2022; 61:e202211382. [PMID: 36102578 PMCID: PMC9828337 DOI: 10.1002/anie.202211382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Class III lanthipeptide synthetases catalyze the formation of lanthionine/methyllanthionine and labionin crosslinks. We present here the 2.40 Å resolution structure of the kinase domain of a class III lanthipeptide synthetase CurKC from the biosynthesis of curvopeptin. A unique structural subunit for leader binding, named leader recognition domain (LRD), was identified. The LRD of CurKC is responsible for the recognition of the leader peptide and for mediating interactions between the lyase and kinase domains. LRDs are highly conserved among the kinase domains of class III and class IV lanthipeptide synthetases. The discovery of LRDs provides insight into the substrate recognition and domain organization in multidomain lanthipeptide synthetases.
Collapse
Affiliation(s)
- Shanqing Huang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Ying Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiuyun Xiao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Shulei Liu
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Yeying Ma
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiangqian Xie
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Yong Liang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Hao Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Jiapeng Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Saarland University Campus66123SaarbrückenGermany
| | - Julian D. Hegemann
- School of Medicine and Life SciencesState Key Laboratory Cultivation Base for TCM Quality and EfficacyJiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Hongwei Yao
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Wanqing Wei
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122P. R. China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| |
Collapse
|
13
|
Ayikpoe RS, Shi C, Battiste AJ, Eslami SM, Ramesh S, Simon MA, Bothwell IR, Lee H, Rice AJ, Ren H, Tian Q, Harris LA, Sarksian R, Zhu L, Frerk AM, Precord TW, van der Donk WA, Mitchell DA, Zhao H. A scalable platform to discover antimicrobials of ribosomal origin. Nat Commun 2022; 13:6135. [PMID: 36253467 PMCID: PMC9576775 DOI: 10.1038/s41467-022-33890-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a promising source of new antimicrobials in the face of rising antibiotic resistance. Here, we report a scalable platform that combines high-throughput bioinformatics with automated biosynthetic gene cluster refactoring for rapid evaluation of uncharacterized gene clusters. As a proof of concept, 96 RiPP gene clusters that originate from diverse bacterial phyla involving 383 biosynthetic genes are refactored in a high-throughput manner using a biological foundry with a success rate of 86%. Heterologous expression of all successfully refactored gene clusters in Escherichia coli enables the discovery of 30 compounds covering six RiPP classes: lanthipeptides, lasso peptides, graspetides, glycocins, linear azol(in)e-containing peptides, and thioamitides. A subset of the discovered lanthipeptides exhibit antibiotic activity, with one class II lanthipeptide showing low µM activity against Klebsiella pneumoniae, an ESKAPE pathogen. Overall, this work provides a robust platform for rapidly discovering RiPPs.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Chengyou Shi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Alexander J Battiste
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Sangeetha Ramesh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Max A Simon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Ian R Bothwell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hyunji Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew J Rice
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Hengqian Ren
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Qiqi Tian
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lonnie A Harris
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Raymond Sarksian
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Autumn M Frerk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Timothy W Precord
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, 20815, MD, USA.
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| | - Huimin Zhao
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
| |
Collapse
|
14
|
Conformational remodeling enhances activity of lanthipeptide zinc-metallopeptidases. Nat Chem Biol 2022; 18:724-732. [PMID: 35513512 DOI: 10.1038/s41589-022-01018-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/23/2022] [Indexed: 02/05/2023]
Abstract
Lanthipeptides are an important group of natural products with diverse biological functions, and their biosynthesis requires the removal of N-terminal leader peptides (LPs) by designated proteases. LanPM1 enzymes, a subgroup of M1 zinc-metallopeptidases, have been recently identified as bifunctional proteases with both endo- and aminopeptidase activities to remove LPs of class III and class IV lanthipeptides. Herein, we report the biochemical and structural characterization of EryP as the LanPM1 enzyme from the biosynthesis of class III lanthipeptide erythreapeptin. We determined X-ray crystal structures of EryP in three conformational states, the open, intermediate and closed states, and identified a unique interdomain Ca2+ binding site as a regulatory element that modulates its domain dynamics and proteolytic activity. Inspired by this regulatory Ca2+ binding, we developed a strategy to engineer LanPM1 enzymes for enhanced catalytic activities by strengthening interdomain associations and driving the conformational equilibrium toward their closed forms.
Collapse
|
15
|
Sarksian R, Hegemann JD, Simon MA, Acedo JZ, van der Donk WA. Unexpected Methyllanthionine Stereochemistry in the Morphogenetic Lanthipeptide SapT. J Am Chem Soc 2022; 144:6373-6382. [PMID: 35352944 PMCID: PMC9011353 DOI: 10.1021/jacs.2c00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Lanthipeptides are
polycyclic peptides characterized by the presence
of lanthionine (Lan) and/or methyllanthionine (MeLan). They are members
of the ribosomally synthesized and post-translationally modified peptides (RiPPs). The stereochemical
configuration of (Me)Lan cross-links is important for the bioactivity
of lanthipeptides. To date, MeLan residues in characterized lanthipeptides
have either the 2S,3S or 2R,3R stereochemistry. Herein, we reconstituted
in Escherichia coli the biosynthetic pathway toward
SapT, a class I lanthipeptide that exhibits morphogenetic activity.
Through the synthesis of standards, the heterologously produced peptide
was shown to possess three MeLan residues with the 2S,3R stereochemistry (d-allo-l-MeLan), the first time such stereochemistry has been
observed in a lanthipeptide. Bioinformatic analysis of the biosynthetic
enzymes suggests this stereochemistry may also be present in other
lanthipeptides. Analysis of another gene cluster in Streptomyces
coelicolor that is widespread in actinobacteria confirmed
another example of d-allo-l-MeLan
and verified the bioinformatic prediction. We propose a mechanism
for the origin of the unexpected stereochemistry and provide support
using site-directed mutagenesis.
Collapse
Affiliation(s)
- Raymond Sarksian
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Max A Simon
- Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Jeella Z Acedo
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States.,Department of Bioengineering and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61822, United States
| |
Collapse
|
16
|
Xue D, Older EA, Zhong Z, Shang Z, Chen N, Dittenhauser N, Hou L, Cai P, Walla MD, Dong SH, Tang X, Chen H, Nagarkatti P, Nagarkatti M, Li YX, Li J. Correlational networking guides the discovery of unclustered lanthipeptide protease-encoding genes. Nat Commun 2022; 13:1647. [PMID: 35347143 PMCID: PMC8960859 DOI: 10.1038/s41467-022-29325-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial natural product biosynthetic genes, canonically clustered, have been increasingly found to rely on hidden enzymes encoded elsewhere in the genome for completion of biosynthesis. The study and application of lanthipeptides are frequently hindered by unclustered protease genes required for final maturation. Here, we establish a global correlation network bridging the gap between lanthipeptide precursors and hidden proteases. Applying our analysis to 161,954 bacterial genomes, we establish 5209 correlations between precursors and hidden proteases, with 91 prioritized. We use network predictions and co-expression analysis to reveal a previously missing protease for the maturation of class I lanthipeptide paenilan. We further discover widely distributed bacterial M16B metallopeptidases of previously unclear biological function as a new family of lanthipeptide proteases. We show the involvement of a pair of bifunctional M16B proteases in the production of previously unreported class III lanthipeptides with high substrate specificity. Together, these results demonstrate the strength of our correlational networking approach to the discovery of hidden lanthipeptide proteases and potentially other missing enzymes for natural products biosynthesis.
Collapse
Affiliation(s)
- Dan Xue
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Ethan A Older
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhuo Shang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Nanzhu Chen
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Nolan Dittenhauser
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Lukuan Hou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Peiyan Cai
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Michael D Walla
- The Mass Spectrometry Center, Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hexin Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Yong-Xin Li
- Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| | - Jie Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
17
|
Zhang SS, Xiong J, Cui JJ, Ma KL, Wu WL, Li Y, Luo S, Gao K, Dong SH. Lanthipeptides from the Same Core Sequence: Characterization of a Class II Lanthipeptide Synthetase from Microcystis aeruginosa NIES-88. Org Lett 2022; 24:2226-2231. [PMID: 35293207 DOI: 10.1021/acs.orglett.2c00573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Class II lanthipeptide synthetases (LanMs) are relatively promiscuous to core peptide variations. Previous studies have shown that different LanMs catalyze identical reactions on the same core sequence fused to their respective cognate leaders. We characterized a new LanM enzyme from Microcystis aeruginosa NIES-88, MalM, and demonstrated that MalM and ProcM exhibited disparate dehydration and cyclization patterns on identical core peptides. Our study provided new insights into the regioselectivity of LanMs and showcased an appropriate strategy for lanthipeptide structural diversity engineering.
Collapse
Affiliation(s)
- Sha-Sha Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kai-Liang Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Wen-Liang Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
18
|
Xiong J, Luo S, Qin CX, Cui JJ, Ma YX, Guo MX, Zhang SS, Li Y, Gao K, Dong SH. Biochemical Reconstitution Reveals the Biosynthetic Timing and Substrate Specificity for Thioamitides. Org Lett 2022; 24:1518-1523. [PMID: 35170977 DOI: 10.1021/acs.orglett.2c00191] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thioamitides are apoptosis-inducing ribosomally synthesized and post-translationally modified peptides (RiPPs) with substantial post-translational modifications (PTMs), whose biosynthetic details remain elusive. We reconstituted their key PTMs through in vitro enzymatic reactions and gene coexpressions in E. coli and rigorously demonstrated the order of those modifications. Notably, thioamitide biosynthesis involves N- to C-terminal thioamidations and employs both leader-dependent and leader-independent reactions followed by leader removal by successive degradation. Our study provides a comprehensive overview of thioamitide biosynthesis and lays the foundation for thioamitide engineering in E. coli.
Collapse
Affiliation(s)
- Jiang Xiong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Cheng-Xiao Qin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Jiao-Jiao Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yu-Xia Ma
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Meng-Xue Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Sha-Sha Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ya Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shi-Hui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
19
|
Zhang Y, Hong Z, Zhou L, Zhang Z, Tang T, Guo E, Zheng J, Wang C, Dai L, Si T, Wang H. Biosynthesis of Gut‐Microbiota‐Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Liang Zhou
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Ting Tang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Ciji Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
20
|
Zhang Y, Hong Z, Zhou L, Zhang Z, Tang T, Guo E, Zheng J, Wang C, Dai L, Si T, Wang H. Biosynthesis of Gut-Microbiota-Derived Lantibiotics Reveals a Subgroup of S8 Family Proteases for Class III Leader Removal. Angew Chem Int Ed Engl 2021; 61:e202114414. [PMID: 34889011 DOI: 10.1002/anie.202114414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Indexed: 11/08/2022]
Abstract
Lanthipeptides are a group of ribosomally synthesized and post-translationally modified peptides with diverse structural features and bioactivities. Gut-microbiota-derived lanthipeptides play important roles in gut homeostasis of the host. Herein, we report the discovery and biosynthesis of class III lantibiotics named amylopeptins, which are derived from the gut microbiota of Sprague-Dawley rats and display a narrow antimicrobial spectrum. In contrast to known class III lanthipeptides, the biosynthesis of amylopeptins employs AmyP, which belongs to a subgroup of S8 family serine proteases, to remove the leader of corresponding precursor peptides in a site-specific manner during the last step of their maturation. Overall, this study shows for the first time that S8 family proteases participate in the biosynthesis of class III lanthipeptides.
Collapse
Affiliation(s)
- Yingying Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Zhilai Hong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liang Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenkun Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ting Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Erpeng Guo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Ciji Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, No. 163 Xianlin Ave, Nanjing, 210093, China
| |
Collapse
|
21
|
Liao Y, Jiang X. Construction of Thioamide Peptide via Sulfur-Involved Amino Acids/Amino Aldehydes Coupling. Org Lett 2021; 23:8862-8866. [PMID: 34761950 DOI: 10.1021/acs.orglett.1c03370] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sulfur-involved ligation for thioamide quasi-peptides was developed via amino acids and amino aldehydes coupling. The key to the transformation was the chelation of copper with imines for chiral activation and fixation. In this environment, linear polysulfur decreased the alkalinity of single sulfur anions to prevent racemization caused by the interaction between sulfur and sodium sulfide. Dipeptides, tripeptides, tetrapeptides, and the linkage between the drug and amino acids were successfully obtained.
Collapse
Affiliation(s)
- Yanyan Liao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State Key Laboratory of Element-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
22
|
Hegemann JD, Süssmuth RD. Identification of the Catalytic Residues in the Cyclase Domain of the Class IV Lanthipeptide Synthetase SgbL. Chembiochem 2021; 22:3169-3172. [PMID: 34490957 PMCID: PMC9292228 DOI: 10.1002/cbic.202100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
Lanthipeptides belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and are subdivided into different classes based on their processing enzymes. The three-domain class IV lanthipeptide synthetases (LanL enzymes) consist of N-terminal lyase, central kinase, and C-terminal cyclase domains. While the catalytic residues of the kinase domains (mediating ATP-dependent Ser/Thr phosphorylations) and the lyase domains (carrying out subsequent phosphoserine/phosphothreonine (pSer/pThr) eliminations to yield dehydroalanine/dehydrobutyrine (Dha/Dhb) residues) have been characterized previously, such studies are missing for LanL cyclase domains. To close this gap of knowledge, this study reports on the identification and validation of the catalytic residues in the cyclase domain of the class IV lanthipeptide synthetase SgbL, which facilitate the nucleophilic attacks by Cys thiols on Dha/Dhb residues for the formation of β-thioether crosslinks.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
23
|
Viel JH, van Tilburg AY, Kuipers OP. Characterization of Leader Processing Shows That Partially Processed Mersacidin Is Activated by AprE After Export. Front Microbiol 2021; 12:765659. [PMID: 34777321 PMCID: PMC8581636 DOI: 10.3389/fmicb.2021.765659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
The ribosomally synthesized and post-translationally modified peptide mersacidin is a class II lanthipeptide with good activity against Gram-positive bacteria. The intramolecular lanthionine rings, that give mersacidin its stability and antimicrobial activity, are specific structures with potential applications in synthetic biology. To add the mersacidin modification enzymes to the synthetic biology toolbox, a heterologous expression system for mersacidin in Escherichia coli has recently been developed. While this system was able to produce fully modified mersacidin precursor peptide that could be activated by Bacillus amyloliquefaciens supernatant and showed that mersacidin was activated in an additional proteolytic step after transportation out of the cell, it lacked a mechanism for clean and straightforward leader processing. Here, the protease responsible for activating mersacidin was identified and heterologously produced in E. coli, improving the previously reported heterologous expression system. By screening multiple proteases, the stringency of proteolytic activity directly next to a very small lanthionine ring is demonstrated, and the full two-step proteolytic activation of mersacidin was elucidated. Additionally, the effect of partial leader processing on diffusion and antimicrobial activity is assessed, shedding light on the function of two-step leader processing.
Collapse
Affiliation(s)
- Jakob H Viel
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Amanda Y van Tilburg
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
24
|
Li C, Alam K, Zhao Y, Hao J, Yang Q, Zhang Y, Li R, Li A. Mining and Biosynthesis of Bioactive Lanthipeptides From Microorganisms. Front Bioeng Biotechnol 2021; 9:692466. [PMID: 34395400 PMCID: PMC8358304 DOI: 10.3389/fbioe.2021.692466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues in the worldwide and only a few new antimicrobial drugs have been discovered in recent decades. To overcome the ever-increasing emergence of multidrug-resistant (MDR) pathogens, discovery of new natural products (NPs) against MDR pathogens with new technologies is in great demands. Lanthipeptides which are ribosomally synthesized and post-translationally modified peptides (RiPPs) display high diversity in their chemical structures and mechanisms of action. Genome mining and biosynthetic engineering have also yielded new lanthipeptides, which are a valuable source of drug candidates. In this review we cover the recent advances in the field of microbial derived lanthipeptide discovery and development.
Collapse
Affiliation(s)
- Caiyun Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Khorshed Alam
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfang Hao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qing Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruijuan Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
25
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
26
|
Grigoreva A, Andreeva J, Bikmetov D, Rusanova A, Serebryakova M, Garcia AH, Slonova D, Nair SK, Lippens G, Severinov K, Dubiley S. Identification and characterization of andalusicin: N-terminally dimethylated class III lantibiotic from Bacillus thuringiensis sv. andalousiensis. iScience 2021; 24:102480. [PMID: 34113822 PMCID: PMC8169954 DOI: 10.1016/j.isci.2021.102480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/21/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Lanthipeptides, ribosomally synthesized and post-translationally modified peptides (RiPPs), can be divided into five classes based on their structures and biosynthetic pathways. Class I and II lanthipeptides have been well characterized, whereas less is known about members of the other three classes. Here, we describe a new family of class III lanthipeptides from Firmicutes. Members of the family are distinguished by the presence of a single carboxy-terminal labionin. We identified and characterized andalusicin, a representative of this family. Andalusicin bears two methyl groups at the α-amino terminus, a post-translational modification that has not previously been identified in class III lanthipeptides. Mature andalusicin A shows bioactivity against various Gram-positive bacteria, an activity that is highly dependent on the α-N dimethylation.
Collapse
Affiliation(s)
- Anastasiia Grigoreva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Julia Andreeva
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitry Bikmetov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Anastasiia Rusanova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina Serebryakova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrea Hernandez Garcia
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, IL 61801 USA
| | - Darya Slonova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Champaign, IL 61801 USA
| | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Waksman Institute for Microbiology, Piscataway, NJ 08854-8020, USA
| | - Svetlana Dubiley
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
27
|
Abstract
Lanthipeptides are a class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products characterized by the presence of lanthionine and methyllanthionine. During the maturation of select lanthipeptides, five different alterations have been observed to the chemical structure of the peptide backbone. First, dehydratases generate dehydroalanine and dehydrobutyrine from Ser or Thr residues, respectively. A second example of introduction of unsaturation is the oxidative decarboxylation of C-terminal Cys residues catalyzed by the decarboxylase LanD. Both modifications result in loss of chirality at the α-carbon of the amino acid residues. Attack of a cysteine thiol onto a dehydrated amino acid results in thioether crosslink formation with either inversion or retention of the l-stereochemical configuration at the α-carbon of former Ser and Thr residues. A fourth modification of the protein backbone is the hydrogenation of dehydroamino acids to afford d-amino acids catalyzed by NAD(P)H-dependent reductases. A fifth modification is the conversion of Asp to isoAsp. Herein, the methods used to produce and characterize the lanthipeptide bicereucin will be described in detail along with a brief overview of other lanthipeptides.
Collapse
Affiliation(s)
- Richard S Ayikpoe
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wilfred A van der Donk
- Department of Chemistry and Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
28
|
Biosynthesis and Heterologous Expression of Cacaoidin, the First Member of the Lanthidin Family of RiPPs. Antibiotics (Basel) 2021; 10:antibiotics10040403. [PMID: 33917820 PMCID: PMC8068269 DOI: 10.3390/antibiotics10040403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cacaoidin is produced by the strain Streptomyces cacaoi CA-170360 and represents the first member of the new lanthidin (class V lanthipeptides) RiPP family. In this work, we describe the complete identification, cloning and heterologous expression of the cacaoidin biosynthetic gene cluster, which shows unique RiPP genes whose functions were not predicted by any bioinformatic tool. We also describe that the cacaoidin pathway is restricted to strains of the subspecies Streptomyces cacaoi subsp. cacaoi found in public genome databases, where we have also identified the presence of other putative class V lanthipeptide pathways. This is the first report on the heterologous production of a class V lanthipeptide.
Collapse
|
29
|
Lu J, Wu Y, Li Y, Wang H. The Utilization of Lanthipeptide Synthetases Is a General Strategy for the Biosynthesis of 2‐Aminovinyl‐Cysteine Motifs in Thioamitides**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Yuan Wu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
30
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
31
|
Zdouc MM, Alanjary MM, Zarazúa GS, Maffioli SI, Crüsemann M, Medema MH, Donadio S, Sosio M. A biaryl-linked tripeptide from Planomonospora reveals a widespread class of minimal RiPP gene clusters. Cell Chem Biol 2020; 28:733-739.e4. [PMID: 33321099 DOI: 10.1016/j.chembiol.2020.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Microbial natural products impress by their bioactivity, structural diversity, and ingenious biosynthesis. While screening the less exploited actinobacterial genus Planomonospora, two cyclopeptides were discovered, featuring an unusual Tyr-His biaryl bridging across a tripeptide scaffold, with the sequences N-acetyl-Tyr-Tyr-His and N-acetyl-Tyr-Phe-His. Planomonospora genomes pointed toward a ribosomal synthesis of the cyclopeptide from a pentapeptide precursor encoded by 18-bp bytA, to our knowledge the smallest coding gene ever reported. Closely linked to bytA is bytO, encoding a cytochrome P450 monooxygenase likely responsible for biaryl installment. In Streptomyces, the bytAO segment was sufficient to direct production of the crosslinked N-acetylated Tyr-Tyr-His tripeptide. Bioinformatic analysis of related cytochrome P450 monooxygenases indicated that they constitute a widespread family of enzymes, and the corresponding genes are closely linked to 5-amino acid coding sequences in approximately 200 (actino)bacterial genomes, all with potential for biaryl linkage between amino acids 1 and 3. We propose the named biarylitides this family of RiPPs.
Collapse
Affiliation(s)
- Mitja M Zdouc
- Naicons Srl., Viale Ortles 22/4, 20139 Milano, Italy; Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH 1098, the Netherlands.
| | - Mohammad M Alanjary
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, the Netherlands
| | - Guadalupe S Zarazúa
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, Nußallee 6, Bonn 53115, Germany
| | | | - Max Crüsemann
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, Nußallee 6, Bonn 53115, Germany
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, Wageningen, PB 6708, the Netherlands
| | | | | |
Collapse
|
32
|
Lu J, Wu Y, Li Y, Wang H. The Utilization of Lanthipeptide Synthetases Is a General Strategy for the Biosynthesis of 2‐Aminovinyl‐Cysteine Motifs in Thioamitides**. Angew Chem Int Ed Engl 2020; 60:1951-1958. [DOI: 10.1002/anie.202012871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Yuan Wu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
33
|
Pipiya SO, Terekhov SS, Mokrushina YA, Knorre VD, Smirnov IV, Gabibov AG. Engineering Artificial Biodiversity of Lantibiotics to Expand Chemical Space of DNA-Encoded Antibiotics. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:1319-1334. [PMID: 33280576 DOI: 10.1134/s0006297920110048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.
Collapse
Affiliation(s)
- S O Pipiya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - S S Terekhov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yu A Mokrushina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V D Knorre
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - I V Smirnov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A G Gabibov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
34
|
Smits SHJ, Schmitt L, Beis K. Self-immunity to antibacterial peptides by ABC transporters. FEBS Lett 2020; 594:3920-3942. [PMID: 33040342 DOI: 10.1002/1873-3468.13953] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Bacteria produce under certain stress conditions bacteriocins and microcins that display antibacterial activity against closely related species for survival. Bacteriocins and microcins exert their antibacterial activity by either disrupting the membrane or inhibiting essential intracellular processes of the bacterial target. To this end, they can lyse bacterial membranes and cause subsequent loss of their integrity or nutrients, or hijack membrane receptors for internalisation. Both bacteriocins and microcins are ribosomally synthesised and several are posttranslationally modified, whereas others are not. Such peptides are also toxic to the producer bacteria, which utilise immunity proteins or/and dedicated ATP-binding cassette (ABC) transporters to achieve self-immunity and peptide export. In this review, we discuss the structure and mechanism of self-protection that is conferred by these ABC transporters.
Collapse
Affiliation(s)
- Sander H J Smits
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany.,Center for Structural Studies, Heinrich-Heine-University, Duesseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, UK.,Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, UK
| |
Collapse
|
35
|
Wiebach V, Mainz A, Schnegotzki R, Siegert MJ, Hügelland M, Pliszka N, Süssmuth RD. An Amphipathic Alpha-Helix Guides Maturation of the Ribosomally-Synthesized Lipolanthines. Angew Chem Int Ed Engl 2020; 59:16777-16785. [PMID: 32533616 PMCID: PMC7540663 DOI: 10.1002/anie.202003804] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/15/2020] [Indexed: 12/19/2022]
Abstract
The recently discovered strongly anti-Gram-positive lipolanthines represent a new group of lipidated, ribosomally synthesized and post-translationally modified peptides (RiPPs). They are bicyclic octapeptides with a central quaternary carbon atom (avionin), which is installed through the cooperative action of the class-III lanthipeptide synthetase MicKC and the cysteine decarboxylase MicD. Genome mining efforts indicate a widespread distribution and unprecedented biosynthetic diversity of lipolanthine gene clusters, combining elements of RiPPs, polyketide and non-ribosomal peptide biosynthesis. Utilizing NMR spectroscopy, we show that a (θxx)θxxθxxθ (θ=L, I, V, M or T) motif, which is conserved in the leader peptides of all class-III and -IV lanthipeptides, forms an amphipathic α-helix in MicA that destines the peptide substrate for enzymatic processing. Our results provide general rules of substrate recruitment and enzymatic regulation during lipolanthine maturation. These insights will facilitate future efforts to rationally design new lanthipeptide scaffolds with antibacterial potency.
Collapse
Affiliation(s)
- Vincent Wiebach
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Andi Mainz
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Romina Schnegotzki
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Mary‐Ann J. Siegert
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Manuela Hügelland
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Nicole Pliszka
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| | - Roderich D. Süssmuth
- Institut für Chemie/ Biologische ChemieTechnische Universität BerlinStraße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
36
|
Hegemann JD, Süssmuth RD. Matters of class: coming of age of class III and IV lanthipeptides. RSC Chem Biol 2020; 1:110-127. [PMID: 34458752 PMCID: PMC8341899 DOI: 10.1039/d0cb00073f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Lanthipeptides belong to the superfamily of ribosomally-synthesized and posttranslationally-modified peptides (RiPPs). Despite the fact that they represent one of the longest known RiPP subfamilies, their youngest members, classes III and IV, have only been described more recently. Since then, a plethora of studies furthered the understanding of their biosynthesis. While there are commonalities between classes III and IV due to the similar domain architectures of their processing enzymes, there are also striking differences that allow their discrimination. In this concise review article, we summarize what is known about the underlying biosynthetic principles of these lanthipeptides and discuss open questions for future research.
Collapse
Affiliation(s)
- Julian D Hegemann
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
37
|
Wiebach V, Mainz A, Schnegotzki R, Siegert MJ, Hügelland M, Pliszka N, Süssmuth RD. Eine amphipathische alpha‐Helix lenkt die Modifizierung ribosomal‐synthetisierter Lipolanthine. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vincent Wiebach
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Romina Schnegotzki
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Mary‐Ann J. Siegert
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Manuela Hügelland
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Nicole Pliszka
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Roderich D. Süssmuth
- Institut für Chemie/ Biologische ChemieTechnische Universität Berlin Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
38
|
Ren H, Shi C, Bothwell IR, van der Donk WA, Zhao H. Discovery and Characterization of a Class IV Lanthipeptide with a Nonoverlapping Ring Pattern. ACS Chem Biol 2020; 15:1642-1649. [PMID: 32356655 DOI: 10.1021/acschembio.0c00267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lanthipeptides constitute a major family of ribosomally synthesized and post-translationally modified peptides (RiPPs). They are classified into four subfamilies, based on the characteristics of their lanthipeptide synthetases. While over a hundred lanthipeptides have been discovered to date, very few of them are class IV lanthipeptides and the latter are all structurally similar. Here, we identified an uncharacterized group of class IV lanthipeptides using bioinformatics analysis. One representative pathway from Streptomyces sp. NRRL S-1022 was expressed in Escherichia coli, which generated a lanthipeptide with two nonoverlapping rings that have not been reported for known class IV lanthipeptides. Further investigation into the biosynthetic mechanism revealed that multiple modification pathways are in operation in which dehydration and cyclization occur in parallel. While peptidases for maturation of class IV lanthipeptides have been elusive, two aminopeptidases encoded in the genome of Streptomyces sp. NRRL S-1022 were shown to process the modified peptide by the dual endopeptidase/aminopeptidase activity. This work opens doors to discover more class IV lanthipeptides with interesting structural features and biological activities.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Chengyou Shi
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ian R. Bothwell
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
39
|
Walker MC, Eslami SM, Hetrick KJ, Ackenhusen SE, Mitchell DA, van der Donk WA. Precursor peptide-targeted mining of more than one hundred thousand genomes expands the lanthipeptide natural product family. BMC Genomics 2020; 21:387. [PMID: 32493223 PMCID: PMC7268733 DOI: 10.1186/s12864-020-06785-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Lanthipeptides belong to the ribosomally synthesized and post-translationally modified peptide group of natural products and have a variety of biological activities ranging from antibiotics to antinociceptives. These peptides are cyclized through thioether crosslinks and can bear other secondary post-translational modifications. While lanthipeptide biosynthetic gene clusters can be identified by the presence of genes encoding characteristic enzymes involved in the post-translational modification process, locating the precursor peptides encoded within these clusters is challenging due to their short length and high sequence variability, which limits the high-throughput exploration of lanthipeptide biosynthesis. To address this challenge, we enhanced the predictive capabilities of Rapid ORF Description & Evaluation Online (RODEO) to identify members of all four known classes of lanthipeptides. RESULTS Using RODEO, we mined over 100,000 bacterial and archaeal genomes in the RefSeq database. We identified nearly 8500 lanthipeptide precursor peptides. These precursor peptides were identified in a broad range of bacterial phyla as well as the Euryarchaeota phylum of archaea. Bacteroidetes were found to encode a large number of these biosynthetic gene clusters, despite making up a relatively small portion of the genomes in this dataset. A number of these precursor peptides are similar to those of previously characterized lanthipeptides, but even more were not, including potential antibiotics. One such new antimicrobial lanthipeptide was purified and characterized. Additionally, examination of the biosynthetic gene clusters revealed that enzymes installing secondary post-translational modifications are more widespread than initially thought. CONCLUSION Lanthipeptide biosynthetic gene clusters are more widely distributed and the precursor peptides encoded within these clusters are more diverse than previously appreciated, demonstrating that the lanthipeptide sequence-function space remains largely underexplored.
Collapse
Affiliation(s)
- Mark C Walker
- Department of Chemistry and Chemical Biology, University of New Mexico, 346 Clark Hall, 300 Terrace St. NE, Albuquerque, NM, 87131, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA.
| | - Sara M Eslami
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Kenton J Hetrick
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Sarah E Ackenhusen
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Wilfred A van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Roger Adams Laboratory, 600 S. Mathews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
40
|
Peña-Ortiz L, Graça AP, Guo H, Braga D, Köllner TG, Regestein L, Beemelmanns C, Lackner G. Structure elucidation of the redox cofactor mycofactocin reveals oligo-glycosylation by MftF. Chem Sci 2020; 11:5182-5190. [PMID: 33014324 PMCID: PMC7491314 DOI: 10.1039/d0sc01172j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/18/2020] [Indexed: 01/13/2023] Open
Abstract
Mycofactocin (MFT) is a redox cofactor belonging to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs) and is involved in alcohol metabolism of mycobacteria including Mycobacterium tuberculosis. A preliminary biosynthetic model had been established by bioinformatics and in vitro studies, while the structure of natural MFT and key biosynthetic steps remained elusive. Here, we report the discovery of glycosylated MFT by 13C-labeling metabolomics and establish a model of its biosynthesis in Mycolicibacterium smegmatis. Extensive structure elucidation including NMR revealed that MFT is decorated with up to nine β-1,4-linked glucose residues including 2-O-methylglucose. Dissection of biosynthetic genes demonstrated that the oligoglycosylation is catalyzed by the glycosyltransferase MftF. Furthermore, we confirm the redox cofactor function of glycosylated MFTs by activity-based metabolic profiling using the carveol dehydrogenase LimC and show that the MFT pool expands during cultivation on ethanol. Our results will guide future studies into the biochemical functions and physiological roles of MFT in bacteria.
Collapse
Affiliation(s)
- Luis Peña-Ortiz
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Ana Patrícia Graça
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Huijuan Guo
- Junior Research Group Chemical Biology of Microbe-Host Interactions , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Daniel Braga
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Tobias G Köllner
- Department of Biochemistry , Max Planck Institute for Chemical Ecology , Hans-Knöll-Str. 8 , 07745 Jena , Germany
| | - Lars Regestein
- Bio Pilot Plant , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Christine Beemelmanns
- Junior Research Group Chemical Biology of Microbe-Host Interactions , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology , Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstr. 11a , 07745 Jena , Germany . .,Friedrich Schiller University , Beutenbergstr. 11a , 07745 Jena , Germany
| |
Collapse
|
41
|
Wu J, Kaplaneris N, Ni S, Kaltenhäuser F, Ackermann L. Late-stage C(sp 2)-H and C(sp 3)-H glycosylation of C-aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chem Sci 2020; 11:6521-6526. [PMID: 34094117 PMCID: PMC8152807 DOI: 10.1039/d0sc01260b] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
C(sp3)–H and C(sp2)–H glycosylations of structurally complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed peptide–saccharide conjugation provided modular access to structurally complex C-alkyl glycoamino acids, glycopeptides and C-aryl glycosides, while enabling the assembly of fluorescent-labeled glycoamino acids. The C–H activation approach represents an expedient and efficient strategy for peptide late-stage diversification in a programmable as well as chemo-, regio-, and diastereo-selective fashion. C–H glycosylations of complex amino acids and peptides were accomplished through the assistance of triazole peptide-isosteres. The palladium-catalyzed glycosylation provided access to complex C-glycosides and fluorescent-labeled glycoamino acids.![]()
Collapse
Affiliation(s)
- Jun Wu
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Nikolaos Kaplaneris
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Shaofei Ni
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Felix Kaltenhäuser
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie, Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany .,German Center for Cardiovascular Research (DZHK) Potsdamer Strasse 58 10785 Berlin Germany
| |
Collapse
|
42
|
Abstract
Covering1993 up to May 2020 Linaridins, defined as linear, dehydrated (arid) peptides, are a small but growing family of natural products belonging to the ribosomally synthesized and post-translationally modified peptide (RiPP) superfamily. To date, only a few members of the linaridin family have been characterized; however, in silico analysis has shown that this family of RiPPs is widespread in nature with high structural diversity. Unlike the case of most of the dehydroamino acid-containing RiPPs, such as lanthipeptides and thiopeptides, in which dehydroamino acids are produced by lanthipeptide dehydratase-like enzymes, in linaridins, dehydroamino acids are produced by a distinct set of enzymes with still unknown biochemistry. In this Highlight we have discussed the structural features, classification, biosynthesis, engineering, and widespread occurrence of linaridins and highlighted several intriguing issues in the maturation of this RiPP family.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
43
|
Sheng W, Xu B, Chen S, Li Y, Liu B, Wang H. Substrate tolerance of the biosynthetic enzymes of glycosylated lanthipeptide NAI-112. Org Biomol Chem 2020; 18:6095-6099. [PMID: 32700722 DOI: 10.1039/d0ob01215g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NAI-112 is a glycosylated class III lanthipeptide produced by an Actinoplanes sp. strain with potent bioactivity against nociceptive pain. It contains two labionin/methyllabionin motifs and a rare deoxyhexose modification N-linked to a tryptophan residue. In this study, we investigated the substrate tolerance of the biosynthetic machinery of NAI-112 by using a heterologous co-expression system in Escherichia coli. The results demonstrate AplKC as the first class III lanthipeptide synthetase to catalyze the formation of two labionin/methyllabionin motifs independently. As a rare Trp(N) glycosyltransferase, AplG shows the requirement of two intact ring structures in peptides for substrate recognition. Structural modelling and mutagenesis studies helped identify three residues of catalytic importance in AplG.
Collapse
Affiliation(s)
- Wangjian Sheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Bing Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Shaoming Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Bin Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
44
|
Gontijo MTP, Silva JDS, Vidigal PMP, Martin JGP. Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese. Food Res Int 2019; 128:108783. [PMID: 31955749 DOI: 10.1016/j.foodres.2019.108783] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
The microbiota contributes to artisanal cheese bioprotection and biopreservation through inter and intraspecific competition. This work aimed to investigate the phylogenetic distribution of the repertoire of bacteriocin structural genes of model lactic acid bacteria (LAB) in order to investigate its respective role in the artisanal cheeses microenvironment. A phylogenetic analysis of the rRNA 16S gene from 445 model strains of LAB was conducted using bayesian inference and the repertoire of bacteriocin genes was predicted from these strains by BAGEL software. Bacterial strains were clustered in five monophyletic clades (A, B, C, D and E) with high posterior probability values (PP > 0.99). One bacteriocin structural gene was predicted for 88.5% of the analyzed strains. The majority of the species encoded different classes of bacteriocins. Greater diversity of bacteriocin genes was found for strains included in clade A, comprising Lactococcus lactis, Streptococcus agalactiae, Streptococcus thermophilus, Streptococcus macedonicus, Enterococcus faecalis and Enterococcus faecium. In addition, Lactococcus lactis presented higher diversity of bacteriocin classes, encoding glycocins, lanthipeptides, sactipeptides, cyclic and linear azole-containing peptides, included in bacteriocins class I, besides class II and III. The results suggest that the distribution of bacteriocin structural genes is related to the phylogenetic clades of LAB species, with a higher frequency in some specific clades. Information comprised in this study contributes to comprehend the bacterial competition mechanisms in the artisanal cheese microenvironment.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Microbiologia, Centro de Ciências Biológicas e da Saúde (CCB), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.
| | - Jackson de Sousa Silva
- Departamento de Engenharia de Produção, Centro de Ciências e Tecnologia (CCT), Universidade Regional do Cariri (URCA), Juazeiro do Norte, 63040-000 Ceará, Brazil.
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NUBIOMOL), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| | - José Guilherme Prado Martin
- Departamento de Microbiologia, Centro de Ciências Biológicas e da Saúde (CCB), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil
| |
Collapse
|
45
|
Chiumento S, Roblin C, Kieffer-Jaquinod S, Tachon S, Leprètre C, Basset C, Aditiyarini D, Olleik H, Nicoletti C, Bornet O, Iranzo O, Maresca M, Hardré R, Fons M, Giardina T, Devillard E, Guerlesquin F, Couté Y, Atta M, Perrier J, Lafond M, Duarte V. Ruminococcin C, a promising antibiotic produced by a human gut symbiont. SCIENCE ADVANCES 2019; 5:eaaw9969. [PMID: 31579822 PMCID: PMC6760926 DOI: 10.1126/sciadv.aaw9969] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/27/2019] [Indexed: 05/12/2023]
Abstract
A major public health challenge today is the resurgence of microbial infections caused by multidrug-resistant strains. Consequently, novel antimicrobial molecules are actively sought for development. In this context, the human gut microbiome is an under-explored potential trove of valuable natural molecules, such as the ribosomally-synthesized and post-translationally modified peptides (RiPPs). The biological activity of the sactipeptide subclass of RiPPs remains under-characterized. Here, we characterize an antimicrobial sactipeptide, Ruminococcin C1, purified from the caecal contents of rats mono-associated with Ruminococcus gnavus E1, a human symbiont. Its heterologous expression and post-translational maturation involving a specific sactisynthase establish a thioether network, which creates a double-hairpin folding. This original structure confers activity against pathogenic Clostridia and multidrug-resistant strains but no toxicity towards eukaryotic cells. Therefore, the Ruminococcin C1 should be considered as a valuable candidate for drug development and its producer strain R. gnavus E1 as a relevant probiotic for gut health enhancement.
Collapse
Affiliation(s)
- Steve Chiumento
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Clarisse Roblin
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
- ADISSEO France SAS, Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | | | - Sybille Tachon
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Chloé Leprètre
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Christian Basset
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Dwi Aditiyarini
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Hamza Olleik
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | | | | | - Olga Iranzo
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Marc Maresca
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Renaud Hardré
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Michel Fons
- Unité de Bioénergétique et Ingénierie des Protéines UMR7281, Institut de Microbiologie de la Méditerranée, Aix-Marseille Univ., CNRS, Marseille, France
| | - Thierry Giardina
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Estelle Devillard
- ADISSEO France SAS, Centre d’Expertise et de Recherche en Nutrition, Commentry, France
| | | | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, BGE U1038, 38000 Grenoble, France
| | - Mohamed Atta
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
| | - Josette Perrier
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Mickael Lafond
- Aix-Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
- Corresponding author. (M.L.); (V.D.)
| | - Victor Duarte
- Univ. Grenoble Alpes, CEA, CNRS, CBM-UMR5249, 38000 Grenoble, France
- Corresponding author. (M.L.); (V.D.)
| |
Collapse
|