1
|
Kao JA, Ewen-Campen B, Extavour CG. Divergence of germ cell-less roles in germ line development across insect species. Dev Biol 2025:S0012-1606(25)00119-8. [PMID: 40334835 DOI: 10.1016/j.ydbio.2025.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
During development, sexually reproducing animals must specify and maintain the germ line, the lineage of cells that gives rise to the next generation of animals. In the fruit fly Drosophila melanogaster, germ cell-less (gcl) is required for the formation of primordial germ cells in the form of cells that cellularize at the posterior pole of the embryo, called pole cells. Forming pole cells is a mechanism of germ cell formation unique to a subset of insects. Even though most animals do not form pole cells as primordial germ cells, gcl is conserved across Metazoa, raising the question of how this conserved gene acquired its central role in the evolutionarily derived process of pole cell formation. Here, we examine the functions of gcl in two other insects with different modes of germ cell specification: the milkweed bug Oncopeltus fasciatus and the cricket Gryllus bimaculatus. We found that gcl is involved in germ cell development, but not strictly required for germ cell specification, in O. fasciatus, although it appears to function through a mechanism different from that in D. melanogaster. In contrast, we could not detect any impact on the embryonic germ line upon gcl knockdown in G. bimaculatus. This work serves as a case study into how the roles of genes in the process of germ line development can change over evolutionary time across animals.
Collapse
Affiliation(s)
- Jonchee A Kao
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA
| | - Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Cassandra G Extavour
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Zhang S, Duffield KR, Foquet B, Ramirez JL, Sadd BM, Sakaluk SK, Hunt J, Bailey NW. A High-Quality Reference Genome and Comparative Genomics of the Widely Farmed Banded Cricket ( Gryllodes sigillatus) Identifies Selective Breeding Targets. Ecol Evol 2025; 15:e71134. [PMID: 40092899 PMCID: PMC11911027 DOI: 10.1002/ece3.71134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Farmed insects have gained attention as an alternative, sustainable source of protein with a lower carbon footprint than traditional livestock. We present a high-quality reference genome for one of the most commonly farmed insects, the banded cricket Gryllodes sigillatus. In addition to its agricultural importance, G. sigillatus is also a model in behavioural and evolutionary ecology research on reproduction and mating systems. We report comparative genomic analyses that clarify the banded cricket's evolutionary history, identify gene family expansions and contractions unique to this lineage, associate these with agriculturally important traits, and identify targets for genome-assisted breeding efforts. The high-quality G. sigillatus genome assembly plus accompanying comparative genomic analyses serve as foundational resources for both applied and basic research on insect farming and behavioural biology, enabling researchers to pinpoint trait-associated genetic variants, unravel functional pathways governing those phenotypes, and accelerate selective breeding efforts to increase the efficacy of large-scale insect farming operations.
Collapse
Affiliation(s)
| | - Kristin R. Duffield
- USDA‐ARSGeospatial and Environmental Epidemiology Research UnitMississippi StateMississippiUSA
- USDA‐ARS, National Center for Agricultural Utilization ResearchCrop BioProtection Research UnitPeoriaIllinoisUSA
| | - Bert Foquet
- School of Biological SciencesIllinois State UniversityNormalIllinoisUSA
- McGuire Center for Lepidoptera and BiodiversityFlorida Museum of Natural History, University of FloridaGainesvilleFloridaUSA
| | - Jose L. Ramirez
- USDA‐ARS, National Center for Agricultural Utilization ResearchCrop BioProtection Research UnitPeoriaIllinoisUSA
| | - Ben M. Sadd
- School of Biological SciencesIllinois State UniversityNormalIllinoisUSA
| | - Scott K. Sakaluk
- School of Biological SciencesIllinois State UniversityNormalIllinoisUSA
| | - John Hunt
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
| | | |
Collapse
|
3
|
Matsuoka Y, Nakamura T, Watanabe T, Barnett AA, Tomonari S, Ylla G, Whittle CA, Noji S, Mito T, Extavour CG. Establishment of CRISPR/Cas9-based knock-in in a hemimetabolous insect: targeted gene tagging in the cricket Gryllus bimaculatus. Development 2025; 152:dev199746. [PMID: 39514640 PMCID: PMC11829760 DOI: 10.1242/dev.199746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/05/2024] [Indexed: 11/16/2024]
Abstract
Studies of traditional model organisms such as the fruit fly Drosophila melanogaster have contributed immensely to our understanding of the genetic basis of developmental processes. However, the generalizability of these findings cannot be confirmed without functional genetic analyses in additional organisms. Direct genome editing using targeted nucleases has the potential to transform hitherto poorly understood organisms into viable laboratory organisms for functional genetic study. To this end, we present a method to induce targeted genome knockout and knock-in of desired sequences in an insect that serves as an informative contrast to Drosophila, the cricket Gryllus bimaculatus. The efficiency of germline transmission of induced mutations is comparable with that reported for other well-studied laboratory organisms, and knock-ins targeting introns yield viable, fertile animals in which knock-in events are directly detectable by visualization of a fluorescent marker in the expression pattern of the targeted gene. Combined with the recently assembled and annotated genome of this cricket, this knock-in/knockout method increases the viability of G. bimaculatus as a tractable system for functional genetics in a basally branching insect.
Collapse
Affiliation(s)
- Yuji Matsuoka
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Taro Nakamura
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Takahito Watanabe
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
- Bio-Innovation Research Center, Tokushima University, 2272-2 Ishii, Ishii-cho, Myozai-gun, Tokushima 779-3233, Japan
| | - Austen A. Barnett
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Sayuri Tomonari
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Guillem Ylla
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30-387, Poland
| | - Carrie A. Whittle
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sumihare Noji
- Tokushima University, 2-14 Shinkura-cho, Tokushima City 770-8501, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, the University of Tokushima Graduate School, 201 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Liu BP, Hua BZ. Distinct roles of the Hox genes Ultrabithorax and abdominal-A in scorpionfly embryonic proleg development. INSECT MOLECULAR BIOLOGY 2024; 33:69-80. [PMID: 37792400 DOI: 10.1111/imb.12878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The abdominal appendages of larval insects have a complex evolutionary history of gain and loss, but the regulatory mechanisms underlying the abdominal appendage development remain largely unclear. Here, we investigated the embryogenesis of abdominal prolegs in the scorpionfly Panorpa liui Hua (Mecoptera: Panorpidae) using in situ hybridization and parental RNA interference. The results show that RNAi-mediated knockdown of Ultrabithorax (Ubx) led to a homeotic transformation of the first abdominal segment (A1) into the third thoracic segment (T3) and changed the distributions of the downstream target Distal-less (Dll) expression but did not affect the expression levels of Dll. Knockdown of abdominal-A (abd-A) resulted in malformed segments, abnormal prolegs and disrupted Dll expression. The results demonstrate that the gene Ubx maintains an ancestral role of modulating A1 appendage fate without preventing Dll initiation, and a secondary adaptation of abd-A evolves the ability to specify abdominal segments and proleg identity. We conclude that changes in abdominal Hox gene expression and their target genes regulate abdominal appendage morphology during the evolutionary course of holometabolous larvae.
Collapse
Affiliation(s)
- Bing-Peng Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
6
|
Mito T, Ishimaru Y, Watanabe T, Nakamura T, Ylla G, Noji S, Extavour CG. Cricket: The third domesticated insect. Curr Top Dev Biol 2022; 147:291-306. [PMID: 35337452 DOI: 10.1016/bs.ctdb.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many researchers are using crickets to conduct research on various topics related to development and regeneration in addition to brain function, behavior, and biological clocks, using advanced functional and perturbational technologies such as genome editing. Recently, crickets have also been attracting attention as a food source for the next generation of humans. In addition, crickets are increasingly being used as disease models and biological factories for pharmaceuticals. Cricket research has thus evolved over the last century from use primarily in highly important basic research, to use in a variety of applications and practical uses. These insects are now a state-of-the-art model animal that can be obtained and maintained in large quantities at low cost. We therefore suggest that crickets are useful as a third domesticated insect for scientific research, after honeybees and silkworms, contributing to the achievement of global sustainable development goals.
Collapse
Affiliation(s)
- Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Taro Nakamura
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Guillem Ylla
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Laboratory of Bioinformatics and Genome Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima City, Tokushima, Japan
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, United States; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, United States; Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
7
|
Nakao H. Early embryonic development of Bombyx. Dev Genes Evol 2021; 231:95-107. [PMID: 34296338 DOI: 10.1007/s00427-021-00679-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/09/2021] [Indexed: 11/25/2022]
Abstract
Decades have passed since the early molecular embryogenesis of Drosophila melanogaster was outlined. During this period, the molecular mechanisms underlying early embryonic development in other insects, particularly the flour beetle, Tribolium castaneum, have been described in more detail. The information clearly demonstrated that Drosophila embryogenesis is not representative of other insects and has highly distinctive characteristics. At the same time, this new data has been gradually clarifying ancestral operating mechanisms. The silk moth, Bombyx mori, is a lepidopteran insect and, as a representative of the order, has many unique characteristics found in early embryonic development that have not been identified in other insect groups. Herein, some of these characteristics are introduced and discussed in the context of recent information obtained from other insects.
Collapse
Affiliation(s)
- Hajime Nakao
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Oowashi, Tsukuba, Ibaraki, 305-8634, Japan.
| |
Collapse
|