1
|
Zheng R, Zhang S, Chen S, Zha W, Li X, Li Q, He J, He S, Feng M, Shen Y. Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137217. [PMID: 39823881 DOI: 10.1016/j.jhazmat.2025.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.e., metronidazole, ornidazole, dimetridazole, and secnidazole) were quantified for multiple photoreactive species. The photolysis products of these nitroimidazoles were identified under solar irradiation, from which the reaction pathways were tentatively proposed. Furthermore, the photo-induced toxicity evolution mechanisms of TNZ were investigated by comparing phenotypic, transcriptomic, and metabolomic changes in marine medaka embryos (Oryzias melastigma) after exposure to TNZ and its photo-irradiated mixtures. Our results indicated that the photo-irradiated TNZ enhanced visual toxicity to marine medaka embryos compared to the parent compound. The photolysis mixtures induced embryonic ocular malformation and significantly affected the expression of the associated genes with the initiation/termination of the phototransduction cascade, leading to metabolite changes related to visual impairment. This work reported the first comprehensive assessment of the photolysis-mediated environmental fate and secondary risks of TNZ in seawater. The findings highlighted the necessity of including complex photolysis mixtures under solar irradiation in future chemical risk assessments of marine environments.
Collapse
Affiliation(s)
- Ruping Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengyue Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiuru Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinlin He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Chai Z, Silverman D, Li S, Bina P, Yau KW. Dark continuous noise from visual pigment as a major mechanism underlying rod-cone difference in light sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2418031121. [PMID: 39656211 PMCID: PMC11665912 DOI: 10.1073/pnas.2418031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Retinal rods and cones underlie scotopic and photopic vision, respectively. Their pigments exhibit spontaneous isomerizations (quantal noise) in darkness due to intrinsic thermal energy. This quantal noise, albeit exceedingly low in rods, dictates the light threshold for scotopic vision. The same quantal noise in cones, however, is too low to explain the much higher diurnal light threshold. Separately, a dark continuous noise is present in rods, long accepted to originate from an intrinsic random activation of the cyclic guanosine monophosphate (cGMP)-phosphodiesterase enzyme mediating phototransduction downstream of the pigment. Here, we report the surprising finding that most of this rod dark continuous noise actually originates from rhodopsin itself. Importantly, we found the same continuous noise with a much higher magnitude from cone pigments. The rod and cone continuous noises are apparently both associated with a hitherto unrecognized "metastable" pigment conformational state physiologically resembling that in apo-opsin (opsin devoid of chromophore) and is intermittently active for very brief moments. The cone holopigment's high continuous noise is expected to act as an intrinsic equivalent light and adapt the cone dramatically, accounting for a major part of the light-sensitivity difference between rods and cones in darkness.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sihan Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Parinaz Bina
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
3
|
Fain GL. The mechanism of genetically inherited night blindness. Proc Natl Acad Sci U S A 2024; 121:e2408254121. [PMID: 38768361 PMCID: PMC11145283 DOI: 10.1073/pnas.2408254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Gordon L Fain
- Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
4
|
Chai Z, Ye Y, Silverman D, Rose K, Madura A, Reed RR, Chen J, Yau KW. Dark continuous noise from mutant G90D-rhodopsin predominantly underlies congenital stationary night blindness. Proc Natl Acad Sci U S A 2024; 121:e2404763121. [PMID: 38743626 PMCID: PMC11127052 DOI: 10.1073/pnas.2404763121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Yaqing Ye
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Biochemistry, Cellular and Molecular Biology Graduate Program, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Kasey Rose
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Alana Madura
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Randall R. Reed
- Department of Molecular Biology and Genetics (Emeritus), Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jeannie Chen
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
5
|
Morshedian A, Jiang Z, Radu RA, Fain GL, Sampath AP. Genetic manipulation of rod-cone differences in mouse retina. PLoS One 2024; 19:e0300584. [PMID: 38709779 PMCID: PMC11073714 DOI: 10.1371/journal.pone.0300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 05/08/2024] Open
Abstract
Though rod and cone photoreceptors use similar phototransduction mechanisms, previous model calculations have indicated that the most important differences in their light responses are likely to be differences in amplification of the G-protein cascade, different decay rates of phosphodiesterase (PDE) and pigment phosphorylation, and different rates of turnover of cGMP in darkness. To test this hypothesis, we constructed TrUx;GapOx rods by crossing mice with decreased transduction gain from decreased transducin expression, with mice displaying an increased rate of PDE decay from increased expression of GTPase-activating proteins (GAPs). These two manipulations brought the sensitivity of TrUx;GapOx rods to within a factor of 2 of WT cone sensitivity, after correcting for outer-segment dimensions. These alterations did not, however, change photoreceptor adaptation: rods continued to show increment saturation though at a higher background intensity. These experiments confirm model calculations that rod responses can mimic some (though not all) of the features of cone responses after only a few changes in the properties of transduction proteins.
Collapse
Affiliation(s)
- Ala Morshedian
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhichun Jiang
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Roxana A. Radu
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Gordon L. Fain
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Alapakkam P. Sampath
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
6
|
Polyunsaturated Lipids in the Light-Exposed and Prooxidant Retinal Environment. Antioxidants (Basel) 2023; 12:antiox12030617. [PMID: 36978865 PMCID: PMC10044808 DOI: 10.3390/antiox12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The retina is an oxidative stress-prone tissue due to high content of polyunsaturated lipids, exposure to visible light stimuli in the 400–480 nm range, and high oxygen availability provided by choroidal capillaries to support oxidative metabolism. Indeed, lipids’ peroxidation and their conversion into reactive species promoting inflammation have been reported and connected to retinal degenerations. Here, we review recent evidence showing how retinal polyunsaturated lipids, in addition to oxidative stress and damage, may counteract the inflammatory response triggered by blue light-activated carotenoid derivatives, enabling long-term retina operation despite its prooxidant environment. These two aspects of retinal polyunsaturated lipids require tight control over their synthesis to avoid overcoming their protective actions by an increase in lipid peroxidation due to oxidative stress. We review emerging evidence on different transcriptional control mechanisms operating in retinal cells to modulate polyunsaturated lipid synthesis over the life span, from the immature to the ageing retina. Finally, we discuss the antioxidant role of food nutrients such as xanthophylls and carotenoids that have been shown to empower retinal cells’ antioxidant responses and counteract the adverse impact of prooxidant stimuli on sight.
Collapse
|
7
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
8
|
Poria D, Kolesnikov AV, Lee TJ, Salom D, Palczewski K, Kefalov VJ. Investigating the Role of Rhodopsin F45L Mutation in Mouse Rod Photoreceptor Signaling and Survival. eNeuro 2023; 10:ENEURO.0330-22.2023. [PMID: 36823167 PMCID: PMC9997694 DOI: 10.1523/eneuro.0330-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Rhodopsin is the critical receptor molecule which enables vertebrate rod photoreceptor cells to detect a single photon of light and initiate a cascade of molecular events leading to visual perception. Recently, it has been suggested that the F45L mutation in the transmembrane helix of rhodopsin disrupts its dimerization in vitro To determine whether this mutation of rhodopsin affects its signaling properties in vivo, we generated knock-in mice expressing the rhodopsin F45L mutant. We then examined the function of rods in the mutant mice versus wild-type controls, using in vivo electroretinography and transretinal and single cell suction recordings, combined with morphologic analysis and spectrophotometry. Although we did not evaluate the effect of the F45L mutation on the state of dimerization of the rhodopsin in vivo, our results revealed that F45L-mutant mice exhibit normal retinal morphology, normal rod responses as measured both in vivo and ex vivo, and normal rod dark adaptation. We conclude that the F45L mutation does not affect the signaling properties of rhodopsin in its natural setting.
Collapse
Affiliation(s)
- Deepak Poria
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Alexander V Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO 63110
| | - David Salom
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
| | - Krzysztof Palczewski
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Chemistry, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697
| | - Vladimir J Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA 92697
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
9
|
Lamb TD. Photoreceptor physiology and evolution: cellular and molecular basis of rod and cone phototransduction. J Physiol 2022; 600:4585-4601. [PMID: 35412676 PMCID: PMC9790638 DOI: 10.1113/jp282058] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 12/30/2022] Open
Abstract
The detection of light in the vertebrate retina utilizes a duplex system of closely related rod and cone photoreceptors: cones respond extremely rapidly, and operate at 'photopic' levels of illumination, from moonlight upwards; rods respond much more slowly, thereby obtaining greater sensitivity, and function effectively only at 'scotopic' levels of moonlight and lower. Rods and cones employ distinct isoforms of many of the proteins in the phototransduction cascade, and they thereby represent a unique evolutionary system, whereby the same process (the detection of light) uses a distinct set of genes in two classes of cell. The molecular mechanisms of phototransduction activation are described, and the classical quantitative predictions for the onset phase of the electrical response to light are developed. Recent work predicting the recovery phase of the rod's response to intense flashes is then presented, that provides an accurate account of the time that the response spends in saturation. Importantly, this also provides a new estimate for the rate at which a single rhodopsin activates molecules of the G-protein, transducin, that is substantially higher than other estimates in the literature. Finally, the evolutionary origin of the phototransduction proteins in rods and cones is examined, and it is shown that most of the rod/cone differences were established at the first of the two rounds of whole-genome duplication more than 500 million years ago.
Collapse
Affiliation(s)
- Trevor D. Lamb
- Eccles Institute of NeuroscienceJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
10
|
Campla CK, Bocchero U, Strickland R, Nellissery J, Advani J, Ignatova I, Srivastava D, Aponte AM, Wang Y, Gumerson J, Martemyanov K, Artemyev NO, Pahlberg J, Swaroop A. Frmpd1 Facilitates Trafficking of G-Protein Transducin and Modulates Synaptic Function in Rod Photoreceptors of Mammalian Retina. eNeuro 2022; 9:ENEURO.0348-22.2022. [PMID: 36180221 PMCID: PMC9581579 DOI: 10.1523/eneuro.0348-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 12/15/2022] Open
Abstract
Trafficking of transducin (Gαt) in rod photoreceptors is critical for adaptive and modulatory responses of the retina to varying light intensities. In addition to fine-tuning phototransduction gain in rod outer segments (OSs), light-induced translocation of Gαt to the rod synapse enhances rod to rod bipolar synaptic transmission. Here, we show that the rod-specific loss of Frmpd1 (FERM and PDZ domain containing 1), in the retina of both female and male mice, results in delayed return of Gαt from the synapse back to outer segments in the dark, compromising the capacity of rods to recover from light adaptation. Frmpd1 directly interacts with Gpsm2 (G-protein signaling modulator 2), and the two proteins are required for appropriate sensitization of rod-rod bipolar signaling under saturating light conditions. These studies provide insight into how the trafficking and function of Gαt is modulated to optimize the photoresponse and synaptic transmission of rod photoreceptors in a light-dependent manner.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ulisse Bocchero
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ryan Strickland
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Irina Ignatova
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Dhiraj Srivastava
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Angel M Aponte
- Proteomics Core, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kirill Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Johan Pahlberg
- Photoreceptor Physiology Group, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Li RC, Molday LL, Lin CC, Ren X, Fleischmann A, Molday RS, Yau KW. Low signaling efficiency from receptor to effector in olfactory transduction: A quantified ligand-triggered GPCR pathway. Proc Natl Acad Sci U S A 2022; 119:e2121225119. [PMID: 35914143 PMCID: PMC9371729 DOI: 10.1073/pnas.2121225119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/11/2022] [Indexed: 02/03/2023] Open
Abstract
G protein-coupled receptor (GPCR) signaling is ubiquitous. As an archetype of this signaling motif, rod phototransduction has provided many fundamental, quantitative details, including a dogma that one active GPCR molecule activates a substantial number of downstream G protein/enzyme effector complexes. However, rod phototransduction is light-activated, whereas GPCR pathways are predominantly ligand-activated. Here, we report a detailed study of the ligand-triggered GPCR pathway in mammalian olfactory transduction, finding that an odorant-receptor molecule when (one-time) complexed with its most effective odorants produces on average much less than one downstream effector. Further experiments gave a nominal success probability of tentatively ∼10-4 (more conservatively, ∼10-2 to ∼10-5). This picture is potentially more generally representative of GPCR signaling than is rod phototransduction, constituting a paradigm shift.
Collapse
Affiliation(s)
- Rong-Chang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Laurie L. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chih-Chun Lin
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Neuroscience Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xiaozhi Ren
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
12
|
Kojima K, Matsutani Y, Yanagawa M, Imamoto Y, Yamano Y, Wada A, Shichida Y, Yamashita T. Evolutionary adaptation of visual pigments in geckos for their photic environment. SCIENCE ADVANCES 2021; 7:eabj1316. [PMID: 34597144 PMCID: PMC10938493 DOI: 10.1126/sciadv.abj1316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Vertebrates generally have a single type of rod for scotopic vision and multiple types of cones for photopic vision. Noteworthily, nocturnal geckos transmuted ancestral photoreceptor cells into rods containing not rhodopsin but cone pigments, and, subsequently, diurnal geckos retransmuted these rods into cones containing cone pigments. High sensitivity of scotopic vision is underlain by the rod’s low background noise, which originated from a much lower spontaneous activation rate of rhodopsin than of cone pigments. Here, we revealed that nocturnal gecko cone pigments decreased their spontaneous activation rates to mimic rhodopsin, whereas diurnal gecko cone pigments recovered high rates similar to those of typical cone pigments. We also identified amino acid residues responsible for the alterations of the spontaneous activation rates. Therefore, we concluded that the switch between diurnality and nocturnality in geckos required not only morphological transmutation of photoreceptors but also adjustment of the spontaneous activation rates of visual pigments.
Collapse
Affiliation(s)
- Keiichi Kojima
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yuki Matsutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masataka Yanagawa
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization for Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
A hybrid stochastic/deterministic model of single photon response and light adaptation in mouse rods. Comput Struct Biotechnol J 2021; 19:3720-3734. [PMID: 34285774 PMCID: PMC8258797 DOI: 10.1016/j.csbj.2021.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
A hybrid stochastic/deterministic model of mouse rod phototransduction is presented. Rod photocurrent to photovoltage conversion in darkness is accurately characterized. Photoresponses to dim and bright stimuli and in various mutants are well reproduced. Recently debated molecular mechanisms of the phototransduction cascade are examined.
The phototransduction cascade is paradigmatic for signaling pathways initiated by G protein-coupled receptors and is characterized by a fine regulation of photoreceptor sensitivity and electrical response to a broad range of light stimuli. Here, we present a biochemically comprehensive model of phototransduction in mouse rods based on a hybrid stochastic and deterministic mathematical framework, and a quantitatively accurate description of the rod impedance in the dark. The latter, combined with novel patch clamp recordings from rod outer segments, enables the interconversion of dim flash responses between photovoltage and photocurrent and thus direct comparison with the simulations. The model reproduces the salient features of the experimental photoresponses at very dim and bright stimuli, for both normal photoreceptors and those with genetically modified cascade components. Our modelling approach recapitulates a number of recent findings in vertebrate phototransduction. First, our results are in line with the recently established requirement of dimeric activation of PDE6 by transducin and further show that such conditions can be fulfilled at the expense of a significant excess of G protein activated by rhodopsin. Secondly, simulations suggest a crucial role of the recoverin-mediated Ca2+-feedback on rhodopsin kinase in accelerating the shutoff, when light flashes are delivered in the presence of a light background. Finally, stochastic simulations suggest that transient complexes between dark rhodopsin and transducin formed prior to light stimulation increase the reproducibility of single photon responses. Current limitations of the model are likely associated with the yet unknown mechanisms governing the shutoff of the cascade.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine-5′-triphosphate
- Arr, arrestin
- BG, background illumination
- CNG, cyclic nucleotide-gated (channel)
- CSM, completely substituted mutant of rhodopsin
- CV, coefficient of variation
- DM, deterministic model
- Dynamic modeling
- E, effector of the phototransduction cascade, activated PDE
- FFT, fast Fourier-transform
- GC, guanylate cyclase
- GCAPs, guanylate cyclase-activating proteins
- GDP, guanosine-5′-diphosphate
- GPCR, G protein-coupled receptor
- GTP, guanosine-5′-triphosphate
- Gt, G protein/transducin
- Gα, α-subunit of the G protein
- Gβγ, β- and γ-subunit of the G protein
- HSDM, hybrid stochastic/deterministic model
- Light adaptation
- MPR, multiple photon response
- PDE, phosphodiesterase 6
- Ph, photons
- Phototransduction
- R, rhodopsin
- RGS, regulator of G protein signaling
- RK, rhodopsin kinase
- ROS, rod outer segment
- Rec, recoverin
- Rn, activated rhodopsin that has been phosphorylated n times
- SD, standard deviation
- SPR, single photon response
- Stochastic simulation
- Systems biology
- TTP, time to peak
- cGMP, cyclic guanosine monophosphate
- ΔJ, photocurrent
- ΔU, photovoltage
Collapse
|
14
|
Gulati S, Palczewski K. New focus on regulation of the rod photoreceptor phosphodiesterase. Curr Opin Struct Biol 2021; 69:99-107. [PMID: 33945959 DOI: 10.1016/j.sbi.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Rod photoreceptor phosphodiesterase (PDE6) is the key catalytic enzyme of visual phototransduction. PDE6 is the only member of the phosphodiesterase family that consists of a heterodimeric catalytic core composed of PDE6α and PDE6β subunits and two inhibitory PDE6γ subunits. Both PDE6α and PDE6β contain two regulatory GAF domains and one catalytic domain. GAF domains and the tightly bound PDE6γ subunits allosterically regulate the activity of the catalytic domain in association with the GTP-bound transducin alpha subunit (Gtα-GTP). Recent cryo-electron microscopy structures of the PDE6αγβγ and PDE6αγβγ-(Gtα-GTP)2 complexes have provided valuable knowledge shedding additional light on the allosteric activation of PDE6 by Gtα-GTP. Here we discuss recent developments in our understanding of the mechanism of PDE6 activation.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, University of California, 829 Health Sciences Road, Irvine, CA 92617, USA; The Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; The Department of Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Photoreceptor phosphodiesterase (PDE6): activation and inactivation mechanisms during visual transduction in rods and cones. Pflugers Arch 2021; 473:1377-1391. [PMID: 33860373 DOI: 10.1007/s00424-021-02562-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 01/16/2023]
Abstract
Rod and cone photoreceptors of the vertebrate retina utilize cGMP as the primary intracellular messenger for the visual signaling pathway that converts a light stimulus into an electrical response. cGMP metabolism in the signal-transducing photoreceptor outer segment reflects the balance of cGMP synthesis (catalyzed by guanylyl cyclase) and degradation (catalyzed by the photoreceptor phosphodiesterase, PDE6). Upon light stimulation, rapid activation of PDE6 by the heterotrimeric G-protein (transducin) triggers a dramatic drop in cGMP levels that lead to cell hyperpolarization. Following cessation of the light stimulus, the lifetime of activated PDE6 is also precisely regulated by additional processes. This review summarizes recent advances in the structural characterization of the rod and cone PDE6 catalytic and regulatory subunits in the context of previous biochemical studies of the enzymological properties and allosteric regulation of PDE6. Emphasis is given to recent advances in understanding the structural and conformational changes underlying the mechanism by which the activated transducin α-subunit binds to-and relieves inhibition of-PDE6 catalysis that is controlled by its intrinsically disordered, inhibitory γ-subunit. The role of the regulator of G-protein signaling 9-1 (RGS9-1) in regulating the lifetime of the transducin-PDE6 is also briefly covered. The therapeutic potential of pharmacological compounds acting as inhibitors or activators targeting PDE6 is discussed in the context of inherited retinal diseases resulting from mutations in rod and cone PDE6 genes as well as other inherited defects that arise from excessive cGMP accumulation in retinal photoreceptor cells.
Collapse
|
16
|
Luo DG, Silverman D, Frederiksen R, Adhikari R, Cao LH, Oatis JE, Kono M, Cornwall MC, Yau KW. Apo-Opsin and Its Dark Constitutive Activity across Retinal Cone Subtypes. Curr Biol 2020; 30:4921-4931.e5. [PMID: 33065015 PMCID: PMC8561704 DOI: 10.1016/j.cub.2020.09.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Retinal rod and cone photoreceptors mediate vision in dim and bright light, respectively, by transducing absorbed photons into neural electrical signals. Their phototransduction mechanisms are essentially identical. However, one difference is that, whereas a rod visual pigment remains stable in darkness, a cone pigment has some tendency to dissociate spontaneously into apo-opsin and retinal (the chromophore) without isomerization. This cone-pigment property is long known but has mostly been overlooked. Importantly, because apo-opsin has weak constitutive activity, it triggers transduction to produce electrical noise even in darkness. Currently, the precise dark apo-opsin contents across cone subtypes are mostly unknown, as are their dark activities. We report here a study of goldfish red (L), green (M), and blue (S) cones, finding with microspectrophotometry widely different apo-opsin percentages in darkness, being ∼30% in L cones, ∼3% in M cones, and negligible in S cones. L and M cones also had higher dark apo-opsin noise than holo-pigment thermal isomerization activity. As such, given the most likely low signal amplification at the pigment-to-transducin/phosphodiesterase phototransduction step, especially in L cones, apo-opsin noise may not be easily distinguishable from light responses and thus may affect cone vision near threshold.
Collapse
Affiliation(s)
- Dong-Gen Luo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rikard Frederiksen
- Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajan Adhikari
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - Li-Hui Cao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John E Oatis
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Masahiro Kono
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - M Carter Cornwall
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Chai Z, Silverman D, Li G, Williams D, Raviola E, Yau KW. Light-dependent photoreceptor orientation in mouse retina. SCIENCE ADVANCES 2020; 6:6/51/eabe2782. [PMID: 33328242 PMCID: PMC7744070 DOI: 10.1126/sciadv.abe2782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/04/2020] [Indexed: 05/25/2023]
Abstract
Almost a century ago, Stiles and Crawford reported that the human eye is more sensitive to light entering through the pupil center than through its periphery (Stiles-Crawford effect). This psychophysical phenomenon, later found to correlate with photoreceptor orientation toward the pupil, was dynamically phototropic, adjustable within days to an eccentrically displaced pupil. For decades, this phototropism has been speculated to involve coordinated movements of the rectilinear photoreceptor outer and inner segments. We report here that, unexpectedly, the murine photoreceptor outer segment has a seemingly light-independent orientation, but the inner segment's orientation undergoes light-dependent movement, giving rise to nonrectilinear outer and inner segments in adult mice born and reared in darkness. Light during an early critical period (~P0 to P8), however, largely sets the correct photoreceptor orientation permanently afterward. Unexpectedly, abolishing rod and cone phototransductions did not mimic darkness in early life, suggesting photosignaling extrinsic to rods and cones is involved.
Collapse
Affiliation(s)
- Zuying Chai
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guang Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Williams
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Elio Raviola
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - King-Wai Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Abstract
Numerous rhodopsin mutations have been implicated in night blindness and retinal degeneration, often with unclear etiology. D190N-rhodopsin (D190N-Rho) is a well-known inherited human mutation causing retinitis pigmentosa. Both higher-than-normal spontaneous-isomerization activity and misfolding/mistargeting of the mutant protein have been proposed as causes of the disease, but neither explanation has been thoroughly examined. We replaced wild-type rhodopsin (WT-Rho) in RhoD190N/WT mouse rods with a largely "functionally silenced" rhodopsin mutant to isolate electrical responses triggered by D190N-Rho activity, and found that D190N-Rho at the single-molecule level indeed isomerizes more frequently than WT-Rho by over an order of magnitude. Importantly, however, this higher molecular dark activity does not translate into an overall higher cellular dark noise, owing to diminished D190N-Rho content in the rod outer segment. Separately, we found that much of the degeneration and shortened outer-segment length of RhoD190N/WT mouse rods was not averted by ablating rod transducin in phototransduction-also consistent with D190N-Rho's higher isomerization activity not being the primary cause of disease. Instead, the low pigment content, shortened outer-segment length, and a moderate unfolded protein response implicate protein misfolding as the major pathogenic problem. Finally, D190N-Rho also provided some insight into the mechanism of spontaneous pigment excitation.
Collapse
|
19
|
Chen NS, Ingram NT, Frederiksen R, Sampath AP, Chen J, Fain GL. Diminished Cone Sensitivity in cpfl3 Mice Is Caused by Defective Transducin Signaling. Invest Ophthalmol Vis Sci 2020; 61:26. [PMID: 32315379 PMCID: PMC7401474 DOI: 10.1167/iovs.61.4.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Purpose Cone photoreceptor function loss 3 (Gnat2cpfl3/cpfl3 or cpfl3) is a mouse model commonly used as a functional cones null from a naturally occurring mutation in the α-subunit of cone transducin (Gnat2). We nevertheless detected robust cone-mediated light responses from cpfl3 animals, which we now explore. Methods Recordings were made from whole retina and from identified cones with whole-cell patch clamp in retinal slices. Relative levels of GNAT2 protein and numbers of cones in isolated retinas were compared between cpfl3, rod transducin knockout (Gnat1-/-), cpfl3/Gnat1-/- double mutants, and control C57Bl/6J age-matched mice at 4, 9, and 14 weeks of age. Results Cones from cpfl3 and cpfl3/Gnat1-/- mice 2 to 3 months of age displayed normal dark currents but greatly reduced sensitivity and amplification constants. Responses decayed more slowly than in control (C57Bl/6J) mice, indicating an altered mechanism of inactivation. At dim light intensities rod responses could be recorded from cpfl3 cones, indicating intact rod/cone gap junctions. The cpfl3 and cpfl3/Gnat1-/- mice express two-fold less GNAT2 protein compared with C57 at 4 weeks, and a four-fold decrease by 14 weeks. This is accompanied by a small decrease in the number of cones. Conclusions Cplf3 cones can respond to light with currents of normal amplitude and cannot be assumed to be a Gnat2 null. The decreased sensitivity and amplification rate of cones is not explained by a reduction in GNAT2 protein level, but instead by abnormal interactions of the mutant transducin with rhodopsin and the effector molecule, cGMP phosphodiesterase.
Collapse
Affiliation(s)
- Natalie S. Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Norianne T. Ingram
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| | - Rikard Frederiksen
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Alapakkam P. Sampath
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States
| | - Jeannie Chen
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| | - Gordon L. Fain
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, Los Angeles, California, United States,Department of Integrative Biology and Physiology, University of California, Los Angeles, California,United States
| |
Collapse
|
20
|
Phototransduction gain at the G-protein, transducin, and effector protein, phosphodiesterase-6, stages in retinal rods. Proc Natl Acad Sci U S A 2020; 116:8653-8654. [PMID: 31040258 DOI: 10.1073/pnas.1904017116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Cell-autonomous light sensitivity via Opsin3 regulates fuel utilization in brown adipocytes. PLoS Biol 2020; 18:e3000630. [PMID: 32040503 PMCID: PMC7034924 DOI: 10.1371/journal.pbio.3000630] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
Opsin3 (Opn3) is a transmembrane heptahelical G protein–coupled receptor (GPCR) with the potential to produce a nonvisual photoreceptive effect. Interestingly, anatomical profiling of GPCRs reveals that Opn3 mRNA is highly expressed in adipose tissue. The photosensitive functions of Opn3 in mammals are poorly understood, and whether Opn3 has a role in fat is entirely unknown. In this study, we found that Opn3-knockout (Opn3-KO) mice were prone to diet-induced obesity and insulin resistance. At the cellular level, Opn3-KO brown adipocytes cultured in darkness had decreased glucose uptake and lower nutrient-induced mitochondrial respiration than wild-type (WT) cells. Light exposure promoted mitochondrial activity and glucose uptake in WT adipocytes but not in Opn3-KO cells. Brown adipocytes carrying a defective mutation in Opn3’s putative G protein–binding domain also exhibited a reduction in glucose uptake and mitochondrial respiration in darkness. Using RNA-sequencing, we identified several novel light-sensitive and Opn3-dependent molecular signatures in brown adipocytes. Importantly, direct exposure of brown adipose tissue (BAT) to light in living mice significantly enhanced thermogenic capacity of BAT, and this effect was diminished in Opn3-KO animals. These results uncover a previously unrecognized cell-autonomous, light-sensing mechanism in brown adipocytes via Opn3-GPCR signaling that can regulate fuel metabolism and mitochondrial respiration. Our work also provides a molecular basis for developing light-based treatments for obesity and its related metabolic disorders. Brown adipose tissue plays a pivotal role in energy homeostasis and serves as a metabolic sink for glucose and fatty acid. This study demonstrates a novel light-sensing mechanism in mice via the photoreceptor Opsin3 that regulates fuel utilization and mitochondrial activity of brown adipocytes.
Collapse
|
22
|
Lamb TD, Kraft TW. A quantitative account of mammalian rod phototransduction with PDE6 dimeric activation: responses to bright flashes. Open Biol 2020; 10:190241. [PMID: 31910741 PMCID: PMC7014685 DOI: 10.1098/rsob.190241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We develop an improved quantitative model of mammalian rod phototransduction, and we apply it to the prediction of responses to bright flashes of light. We take account of the recently characterized dimeric nature of PDE6 activation, where the configuration of primary importance has two transducin molecules bound. We simulate the stochastic nature of the activation and shut-off reactions to generate the predicted kinetics of the active molecular species on the disc membrane surfaces, and then we integrate the differential equations for the downstream cytoplasmic reactions to obtain the predicted electrical responses. The simulated responses recover the qualitative form of bright-flash response families recorded from mammalian rod photoreceptors. Furthermore, they provide an accurate description of the relationship between the time spent in saturation and flash intensity, predicting the transition between first and second ‘dominant time constants’ to occur at an intensity around 5000 isomerizations per flash, when the rate of transducin activation is taken to be 1250 transducins s−1 per activated rhodopsin. This rate is consistent with estimates from light-scattering experiments, but is around fourfold higher than has typically been assumed in other studies. We conclude that our model and parameters provide a compelling description of rod photoreceptor bright-flash responses.
Collapse
Affiliation(s)
- Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Timothy W Kraft
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
23
|
Yau KW, Yue WWS, Silverman D. Reply to Heck et al.: Signal amplification at the rhodopsin-to-transducin·phosphodiesterase step in rod phototransduction. Proc Natl Acad Sci U S A 2019; 116:8655-8656. [PMID: 31040259 PMCID: PMC6500114 DOI: 10.1073/pnas.1904339116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Affiliation(s)
- K-W Yau
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205;
| | - W W S Yue
- Department of Physiology, University of California, San Francisco, CA 94158
| | - D Silverman
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|