1
|
Pereira M, Faivre N, Bernasconi F, Brandmeir N, Suffridge JE, Tran K, Wang S, Finomore V, Konrad P, Rezai A, Blanke O. Subcortical correlates of consciousness with human single neuron recordings. eLife 2025; 13:RP95272. [PMID: 40401631 PMCID: PMC12097786 DOI: 10.7554/elife.95272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Subcortical brain structures such as the subthalamic nucleus or the thalamus are involved in regulating motor and cognitive behavior. However, their contribution to perceptual consciousness remains unclear, due to the inherent difficulties of recording subcortical neuronal activity in humans. Here, we asked neurological patients undergoing surgery for deep brain stimulation to detect weak vibrotactile stimuli applied on their hand while recording single neuron activity from the tip of a microelectrode. We isolated putative single neurons in the subthalamic nucleus and thalamus. A significant proportion of neurons modulated their activity while participants were expecting a stimulus. We found that the firing rate of 23% of these neurons differed between detected and undetected stimuli. Our results provide direct neurophysiological evidence of the involvement of the subthalamic nucleus and the thalamus for the detection of vibrotactile stimuli, thereby calling for a less cortico-centric view of the neural correlates of consciousness.
Collapse
Affiliation(s)
- Michael Pereira
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
- University Grenoble Alpes, Inserm U1216, CHU Grenoble Alpes, Grenoble Institut NeurosciencesGrenobleFrance
| | - Nathan Faivre
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNCGrenobleFrance
| | - Fosco Bernasconi
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
| | - Nicholas Brandmeir
- Departments of Neurosurgery, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
| | - Jacob E Suffridge
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
- Department of Computer Science and Electrical Engineering, West Virginia UniversityMorgantownUnited States
| | - Kaylee Tran
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
| | - Shuo Wang
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
- Department of Computer Science and Electrical Engineering, West Virginia UniversityMorgantownUnited States
- Department of Radiology, Washington University in St. LouisSt. LouisUnited States
| | - Victor Finomore
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
| | - Peter Konrad
- Departments of Neurosurgery, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
| | - Ali Rezai
- Department of Neurosciences, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
- Departments of Neurosurgery, WVU Rockefeller Neuroscience InstituteMorgantownUnited States
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL)GenevaSwitzerland
- Department of Clinical Neurosciences, University Hospital GenevaGenevaSwitzerland
| |
Collapse
|
2
|
Tauste Campo A, Zainos A, Vázquez Y, Adell Segarra R, Álvarez M, Deco G, Díaz H, Parra S, Romo R, Rossi-Pool R. Thalamocortical interactions shape hierarchical neural variability during stimulus perception. iScience 2024; 27:110065. [PMID: 38993679 PMCID: PMC11237863 DOI: 10.1016/j.isci.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 07/13/2024] Open
Abstract
The brain is organized hierarchically to process sensory signals. But, how do functional connections within and across areas contribute to this hierarchical order? We addressed this problem in the thalamocortical network, while monkeys detected vibrotactile stimulus. During this task, we quantified neural variability and directed functional connectivity in simultaneously recorded neurons sharing the cutaneous receptive field within and across VPL and areas 3b and 1. Before stimulus onset, VPL and area 3b exhibited similar fast dynamics while area 1 showed slower timescales. During the stimulus presence, inter-trial neural variability increased along the network VPL-3b-1 while VPL established two main feedforward pathways with areas 3b and 1 to process the stimulus. This lower variability of VPL and area 3b was found to regulate feedforward thalamocortical pathways. Instead, intra-cortical interactions were only anticipated by higher intrinsic timescales in area 1. Overall, our results provide evidence of hierarchical functional roles along the thalamocortical network.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Antonio Zainos
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Yuriria Vázquez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Raul Adell Segarra
- Computational Biology and Complex Systems group, Department of Physics, Universitat Politècnica de Catalunya, Avinguda Dr. Marañón, 44-50, 08028 Barcelona, Catalonia, Spain
| | - Manuel Álvarez
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Carrer Trias I Fargas 25-27, 08005 Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Héctor Díaz
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sergio Parra
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Román Rossi-Pool
- Instituto de Fisiología Celular–Neurociencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Gao H, Ramachandran S, Yu K, He B. Transcranial focused ultrasound activates feedforward and feedback cortico-thalamo-cortical pathways by selectively activating excitatory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600794. [PMID: 38979359 PMCID: PMC11230429 DOI: 10.1101/2024.06.26.600794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Transcranial focused ultrasound stimulation (tFUS) has been proven capable of altering focal neuronal activities and neural circuits non-invasively in both animals and humans. The abilities of tFUS for cell-type selection within the targeted area like somatosensory cortex have been shown to be parameter related. However, how neuronal subpopulations across neural pathways are affected, for example how tFUS affected neuronal connections between brain areas remains unclear. In this study, multi-site intracranial recordings were used to quantify the neuronal responses to tFUS stimulation at somatosensory cortex (S1), motor cortex (M1) and posterior medial thalamic nucleus (POm) of cortico-thalamo-cortical (CTC) pathway. We found that when targeting at S1 or POm, only regular spiking units (RSUs, putative excitatory neurons) responded to specific tFUS parameters (duty cycle: 6%-60% and pulse repetition frequency: 1500 and 3000 Hz ) during sonication. RSUs from the directly connected area (POm or S1) showed a synchronized response, which changed the directional correlation between RSUs from POm and S1. The tFUS induced excitation of RSUs activated the feedforward and feedback loops between cortex and thalamus, eliciting delayed neuronal responses of RSUs and delayed activities of fast spiking units (FSUs) by affecting local network. Our findings indicated that tFUS can modulate the CTC pathway through both feedforward and feedback loops, which could influence larger cortical areas including motor cortex.
Collapse
|
4
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Greenspon CM, Shelchkova ND, Hobbs TG, Bensmaia SJ, Gaunt RA. Intracortical microstimulation of human somatosensory cortex is sufficient to induce perceptual biases. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.19.24305901. [PMID: 38712172 PMCID: PMC11071569 DOI: 10.1101/2024.04.19.24305901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Time-order error, a psychophysical phenomenon in which the duration in between successive stimuli alters perception, has been studied for decades by neuroscientists and psychologists. To date, however, the locus of these effects is unknown. We use intracortical microstimulation of somatosensory cortex in humans as a tool to bypass initial stages of processing and restrict the possible locations that signals could be modified. We find that, using both amplitude discrimination and magnitude estimation paradigms, intracortical microstimulation reliably evoked time-order errors across all participants. Points of subjective equality were symmetrically shifted during amplitude discrimination experiments and the intensity of a successive stimulus was perceived as being more intense when compared to single stimulus trials in magnitude estimation experiments. The error was reduced for both paradigms at longer inter-stimulus intervals. These results show that direct activation of primary somatosensory cortex is sufficient to induce time-order errors.
Collapse
Affiliation(s)
- Charles M. Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
| | | | - Taylor G. Hobbs
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Sliman J. Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL
- Neuroscience Institute, University of Chicago, Chicago, IL
| | - Robert A. Gaunt
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Han S, Helmchen F. Behavior-relevant top-down cross-modal predictions in mouse neocortex. Nat Neurosci 2024; 27:298-308. [PMID: 38177341 DOI: 10.1038/s41593-023-01534-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024]
Abstract
Animals adapt to a constantly changing world by predicting their environment and the consequences of their actions. The predictive coding hypothesis proposes that the brain generates predictions and continuously compares them with sensory inputs to guide behavior. However, how the brain reconciles conflicting top-down predictions and bottom-up sensory information remains unclear. To address this question, we simultaneously imaged neuronal populations in the mouse somatosensory barrel cortex and posterior parietal cortex during an auditory-cued texture discrimination task. In mice that had learned the task with fixed tone-texture matching, the presentation of mismatched pairing induced conflicts between tone-based texture predictions and actual texture inputs. When decisions were based on the predicted rather than the actual texture, top-down information flow was dominant and texture representations in both areas were modified, whereas dominant bottom-up information flow led to correct representations and behavioral choice. Our findings provide evidence for hierarchical predictive coding in the mouse neocortex.
Collapse
Affiliation(s)
- Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Ahissar E, Nelinger G, Assa E, Karp O, Saraf-Sinik I. Thalamocortical loops as temporal demodulators across senses. Commun Biol 2023; 6:562. [PMID: 37237075 DOI: 10.1038/s42003-023-04881-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Sensory information is coded in space and in time. The organization of neuronal activity in space maintains straightforward relationships with the spatial organization of the perceived environment. In contrast, the temporal organization of neuronal activity is not trivially related to external features due to sensor motion. Still, the temporal organization shares similar principles across sensory modalities. Likewise, thalamocortical circuits exhibit common features across senses. Focusing on touch, vision, and audition, we review their shared coding principles and suggest that thalamocortical systems include circuits that allow analogous recoding mechanisms in all three senses. These thalamocortical circuits constitute oscillations-based phase-locked loops, that translate temporally-coded sensory information to rate-coded cortical signals, signals that can integrate information across sensory and motor modalities. The loop also allows predictive locking to the onset of future modulations of the sensory signal. The paper thus suggests a theoretical framework in which a common thalamocortical mechanism implements temporal demodulation across senses.
Collapse
Affiliation(s)
- Ehud Ahissar
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel.
| | - Guy Nelinger
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Eldad Assa
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Ofer Karp
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| | - Inbar Saraf-Sinik
- Department of Brain Sciences, Weizmann Institute, Rehovot, 76100, Israel
| |
Collapse
|
8
|
Hemodynamic transient and functional connectivity follow structural connectivity and cell type over the brain hierarchy. Proc Natl Acad Sci U S A 2023; 120:e2202435120. [PMID: 36693103 PMCID: PMC9945945 DOI: 10.1073/pnas.2202435120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure-function relationship is projection-, cell-type- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing.
Collapse
|
9
|
Koren V, Bondanelli G, Panzeri S. Computational methods to study information processing in neural circuits. Comput Struct Biotechnol J 2023; 21:910-922. [PMID: 36698970 PMCID: PMC9851868 DOI: 10.1016/j.csbj.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings. We review how these computational approaches reveal mechanisms of essential functions performed by neural circuits. These functions include efficiently encoding sensory information and facilitating the transmission of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further progress and insights can be achieved, in particular by studying how competing requirements of neural encoding and readout may be optimally traded off to optimize neural information processing.
Collapse
Affiliation(s)
- Veronika Koren
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Falkenried 94, Hamburg 20251, Germany
- Istituto Italiano di Tecnologia, Via Melen 83, Genova 16152, Italy
| |
Collapse
|
10
|
Parra S, Díaz H, Zainos A, Alvarez M, Zizumbo J, Rivera-Yoshida N, Pujalte S, Bayones L, Romo R, Rossi-Pool R. Hierarchical unimodal processing within the primary somatosensory cortex during a bimodal detection task. Proc Natl Acad Sci U S A 2022; 119:e2213847119. [PMID: 36534792 PMCID: PMC9907144 DOI: 10.1073/pnas.2213847119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022] Open
Abstract
Do sensory cortices process more than one sensory modality? To answer these questions, scientists have generated a wide variety of studies at distinct space-time scales in different animal models, and often shown contradictory conclusions. Some conclude that this process occurs in early sensory cortices, but others that this occurs in areas central to sensory cortices. Here, we sought to determine whether sensory neurons process and encode physical stimulus properties of different modalities (tactile and acoustic). For this, we designed a bimodal detection task where the senses of touch and hearing compete from trial to trial. Two Rhesus monkeys performed this novel task, while neural activity was recorded in areas 3b and 1 of the primary somatosensory cortex (S1). We analyzed neurons' coding properties and variability, organizing them by their receptive field's position relative to the stimulation zone. Our results indicate that neurons of areas 3b and 1 are unimodal, encoding only the tactile modality in both the firing rate and variability. Moreover, we found that neurons in area 3b carried more information about the periodic stimulus structure than those in area 1, possessed lower response and coding latencies, and had a lower intrinsic time scale. In sum, these differences reveal a hidden processing-based hierarchy. Finally, using a powerful nonlinear dimensionality reduction algorithm, we show that the activity from areas 3b and 1 can be separated, establishing a clear division in the functionality of these two subareas of S1.
Collapse
Affiliation(s)
- Sergio Parra
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Héctor Díaz
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Antonio Zainos
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Manuel Alvarez
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Jerónimo Zizumbo
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Natsuko Rivera-Yoshida
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Sebastián Pujalte
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Lucas Bayones
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
| | - Ranulfo Romo
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City04510, Mexico
- El Colegio Nacional, Mexico City06020, Mexico
| | - Román Rossi-Pool
- Instituto de Fisiología Celular, Departamento de Neurociencia Cognitiva, Universidad Nacional Autónoma de México, 04510México City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, México City04510, Mexico
| |
Collapse
|
11
|
Gokcen E, Jasper AI, Semedo JD, Zandvakili A, Kohn A, Machens CK, Yu BM. Disentangling the flow of signals between populations of neurons. NATURE COMPUTATIONAL SCIENCE 2022; 2:512-525. [PMID: 38177794 PMCID: PMC11442031 DOI: 10.1038/s43588-022-00282-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/21/2022] [Indexed: 01/06/2024]
Abstract
Technological advances now allow us to record from large populations of neurons across multiple brain areas. These recordings may illuminate how communication between areas contributes to brain function, yet a substantial barrier remains: how do we disentangle the concurrent, bidirectional flow of signals between populations of neurons? We propose here a dimensionality reduction framework, delayed latents across groups (DLAG), that disentangles signals relayed in each direction, identifies how these signals are represented by each population and characterizes how they evolve within and across trials. We demonstrate that DLAG performs well on synthetic datasets similar in scale to current neurophysiological recordings. Then we study simultaneously recorded populations in primate visual areas V1 and V2, where DLAG reveals signatures of bidirectional yet selective communication. Our framework lays a foundation for dissecting the intricate flow of signals across populations of neurons, and how this signalling contributes to cortical computation.
Collapse
Affiliation(s)
- Evren Gokcen
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anna I Jasper
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - João D Semedo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Amin Zandvakili
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, New York, NY, USA
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Byron M Yu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Feedforward and feedback interactions between visual cortical areas use different population activity patterns. Nat Commun 2022; 13:1099. [PMID: 35232956 PMCID: PMC8888615 DOI: 10.1038/s41467-022-28552-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Brain function relies on the coordination of activity across multiple, recurrently connected brain areas. For instance, sensory information encoded in early sensory areas is relayed to, and further processed by, higher cortical areas and then fed back. However, the way in which feedforward and feedback signaling interact with one another is incompletely understood. Here we investigate this question by leveraging simultaneous neuronal population recordings in early and midlevel visual areas (V1-V2 and V1-V4). Using a dimensionality reduction approach, we find that population interactions are feedforward-dominated shortly after stimulus onset and feedback-dominated during spontaneous activity. The population activity patterns most correlated across areas were distinct during feedforward- and feedback-dominated periods. These results suggest that feedforward and feedback signaling rely on separate "channels", which allows feedback signals to not directly affect activity that is fed forward.
Collapse
|
13
|
Dalla Porta L, Castro DM, Copelli M, Carelli PV, Matias FS. Feedforward and feedback influences through distinct frequency bands between two spiking-neuron networks. Phys Rev E 2021; 104:054404. [PMID: 34942789 DOI: 10.1103/physreve.104.054404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Several studies on brain signals suggested that bottom-up and top-down influences are exerted through distinct frequency bands among visual cortical areas. It was recently shown that theta and gamma rhythms subserve feedforward, whereas the feedback influence is dominated by the alpha-beta rhythm in primates. A few theoretical models for reproducing these effects have been proposed so far. Here we show that a simple but biophysically plausible two-network motif composed of spiking-neuron models and chemical synapses can exhibit feedforward and feedback influences through distinct frequency bands. Different from previous studies, this kind of model allows us to study directed influences not only at the population level, by using a proxy for the local field potential, but also at the cellular level, by using the neuronal spiking series.
Collapse
Affiliation(s)
- Leonardo Dalla Porta
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Daniel M Castro
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Mauro Copelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Pedro V Carelli
- Departamento de Física, Universidade Federal de Pernambuco, Recife PE 50670-901, Brazil
| | - Fernanda S Matias
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-970, Brazil
| |
Collapse
|
14
|
Song Y, Su Q, Yang Q, Zhao R, Yin G, Qin W, Iannetti GD, Yu C, Liang M. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. Neuroimage 2021; 234:117957. [PMID: 33744457 DOI: 10.1016/j.neuroimage.2021.117957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nociceptive and tactile information is processed in the somatosensory system via reciprocal (i.e., feedforward and feedback) projections between the thalamus, the primary (S1) and secondary (S2) somatosensory cortices. The exact hierarchy of nociceptive and tactile information processing within this 'thalamus-S1-S2' network and whether the processing hierarchy differs between the two somatosensory submodalities remains unclear. In particular, two questions related to the ascending and descending pathways have not been addressed. For the ascending pathways, whether tactile or nociceptive information is processed in parallel (i.e., 'thalamus-S1' and 'thalamus-S2') or in serial (i.e., 'thalamus-S1-S2') remains controversial. For the descending pathways, how corticothalamic feedback regulates nociceptive and tactile processing also remains elusive. Here, we aimed to investigate the hierarchical organization for the processing of nociceptive and tactile information in the 'thalamus-S1-S2' network using dynamic causal modeling (DCM) combined with high-temporal-resolution fMRI. We found that, for both nociceptive and tactile information processing, both S1 and S2 received inputs from thalamus, indicating a parallel structure of ascending pathways for nociceptive and tactile information processing. Furthermore, we observed distinct corticothalamic feedback regulations from S1 and S2, showing that S1 generally exerts inhibitory feedback regulation independent of external stimulation whereas S2 provides additional inhibition to the thalamic activity during nociceptive and tactile information processing in humans. These findings revealed that nociceptive and tactile information processing have similar hierarchical organization within the somatosensory system in the human brain.
Collapse
Affiliation(s)
- Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Qingqing Yang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Rui Zhao
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
15
|
Semedo JD, Gokcen E, Machens CK, Kohn A, Yu BM. Statistical methods for dissecting interactions between brain areas. Curr Opin Neurobiol 2020; 65:59-69. [PMID: 33142111 PMCID: PMC7935404 DOI: 10.1016/j.conb.2020.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
The brain is composed of many functionally distinct areas. This organization supports distributed processing, and requires the coordination of signals across areas. Our understanding of how populations of neurons in different areas interact with each other is still in its infancy. As the availability of recordings from large populations of neurons across multiple brain areas increases, so does the need for statistical methods that are well suited for dissecting and interrogating these recordings. Here we review multivariate statistical methods that have been, or could be, applied to this class of recordings. By leveraging population responses, these methods can provide a rich description of inter-areal interactions. At the same time, these methods can introduce interpretational challenges. We thus conclude by discussing how to interpret the outputs of these methods to further our understanding of inter-areal interactions.
Collapse
Affiliation(s)
- João D Semedo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Evren Gokcen
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Christian K Machens
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Adam Kohn
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Byron M Yu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
16
|
O'Reilly C, Elsabbagh M. Intracranial recordings reveal ubiquitous in-phase and in-antiphase functional connectivity between homotopic brain regions in humans. J Neurosci Res 2020; 99:887-897. [PMID: 33190333 DOI: 10.1002/jnr.24748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/26/2020] [Accepted: 10/18/2020] [Indexed: 02/02/2023]
Abstract
Whether neuronal populations exhibit zero-lag (in-phase or in-antiphase) functional connectivity is a fundamental question when conceptualizing communication between cell assemblies. It also has profound implications on how we assess such interactions. Given that the brain is a delayed network due to the finite conduction velocity of the electrical impulses traveling across its fibers, the existence of long-distance zero-lag functional connectivity may be considered improbable. However, in this study, using human intracranial recordings we demonstrate that most interhemispheric connectivity between homotopic cerebral regions is zero-lagged and that this type of connectivity is ubiquitous. Volume conduction can be safely discarded as a confounding factor since it is known to drop almost completely within short interelectrode distances (<20 mm) in intracranial recordings. This finding should guide future electrophysiological connectivity studies and highlight the importance of considering the role of zero-lag connectivity in our understanding of communication between cell assemblies.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| | - Mayada Elsabbagh
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Tauste Campo A. Inferring neural information flow from spiking data. Comput Struct Biotechnol J 2020; 18:2699-2708. [PMID: 33101608 PMCID: PMC7548302 DOI: 10.1016/j.csbj.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
The brain can be regarded as an information processing system in which neurons store and propagate information about external stimuli and internal processes. Therefore, estimating interactions between neural activity at the cellular scale has significant implications in understanding how neuronal circuits encode and communicate information across brain areas to generate behavior. While the number of simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise statistical dependencies still suffer from a number of conceptual and technical challenges that preclude experimental breakthroughs describing neural information flows. In this review, we examine the evolution of the field over the years, starting from descriptive statistics to model-based and model-free approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estimation perspective. Finally, we discuss directions for future research, including the development of theoretical information flow models and the use of dimensionality reduction techniques to extract relevant interactions from large-scale recording datasets.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Centre for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas 25, 08018 Barcelona, Spain
| |
Collapse
|
18
|
Romo R, Rossi-Pool R. Turning Touch into Perception. Neuron 2020; 105:16-33. [PMID: 31917952 DOI: 10.1016/j.neuron.2019.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Many brain areas modulate their activity during vibrotactile tasks. The activity from these areas may code the stimulus parameters, stimulus perception, or perceptual reports. Here, we discuss findings obtained in behaving monkeys aimed to understand these processes. In brief, neurons from the somatosensory thalamus and primary somatosensory cortex (S1) only code the stimulus parameters during the stimulation periods. In contrast, areas downstream of S1 code the stimulus parameters during not only the task components but also perception. Surprisingly, the midbrain dopamine system is an actor not considered before in perception. We discuss the evidence that it codes the subjective magnitude of a sensory percept. The findings reviewed here may help us to understand where and how sensation transforms into perception in the brain.
Collapse
Affiliation(s)
- Ranulfo Romo
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; El Colegio Nacional, 06020 Mexico City, Mexico.
| | - Román Rossi-Pool
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|