1
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA structure and dynamics with deep learning and solution scattering. Biophys J 2025; 124:549-564. [PMID: 39722452 PMCID: PMC11866959 DOI: 10.1016/j.bpj.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/15/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024] Open
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle x-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce a solution conformation predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against 14 experimental data sets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Dina Schneidman-Duhovny
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Patt E, Classen S, Hammel M, Schneidman-Duhovny D. Predicting RNA Structure and Dynamics with Deep Learning and Solution Scattering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598075. [PMID: 39764023 PMCID: PMC11702515 DOI: 10.1101/2024.06.08.598075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Advanced deep learning and statistical methods can predict structural models for RNA molecules. However, RNAs are flexible, and it remains difficult to describe their macromolecular conformations in solutions where varying conditions can induce conformational changes. Small-angle X-ray scattering (SAXS) in solution is an efficient technique to validate structural predictions by comparing the experimental SAXS profile with those calculated from predicted structures. There are two main challenges in comparing SAXS profiles to RNA structures: the absence of cations essential for stability and charge neutralization in predicted structures and the inadequacy of a single structure to represent RNA's conformational plasticity. We introduce Solution Conformation Predictor for RNA (SCOPER) to address these challenges. This pipeline integrates kinematics-based conformational sampling with the innovative deep-learning model, IonNet, designed for predicting Mg2+ ion binding sites. Validated through benchmarking against fourteen experimental datasets, SCOPER significantly improved the quality of SAXS profile fits by including Mg2+ ions and sampling of conformational plasticity. We observe that an increased content of monovalent and bivalent ions leads to decreased RNA plasticity. Therefore, carefully adjusting the plasticity and ion density is crucial to avoid overfitting experimental SAXS data. SCOPER is an efficient tool for accurately validating the solution state of RNAs given an initial, sufficiently accurate structure and provides the corrected atomistic model, including ions.
Collapse
Affiliation(s)
- Edan Patt
- School of Computer Science and Engineering, The Hebrew University of Jerusalem
| | - Scott Classen
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
3
|
Schuntermann DB, Jaskolowski M, Reynolds NM, Vargas-Rodriguez O. The central role of transfer RNAs in mistranslation. J Biol Chem 2024; 300:107679. [PMID: 39154912 PMCID: PMC11415595 DOI: 10.1016/j.jbc.2024.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Transfer RNAs (tRNA) are essential small non-coding RNAs that enable the translation of genomic information into proteins in all life forms. The principal function of tRNAs is to bring amino acid building blocks to the ribosomes for protein synthesis. In the ribosome, tRNAs interact with messenger RNA (mRNA) to mediate the incorporation of amino acids into a growing polypeptide chain following the rules of the genetic code. Accurate interpretation of the genetic code requires tRNAs to carry amino acids matching their anticodon identity and decode the correct codon on mRNAs. Errors in these steps cause the translation of codons with the wrong amino acids (mistranslation), compromising the accurate flow of information from DNA to proteins. Accumulation of mutant proteins due to mistranslation jeopardizes proteostasis and cellular viability. However, the concept of mistranslation is evolving, with increasing evidence indicating that mistranslation can be used as a mechanism for survival and acclimatization to environmental conditions. In this review, we discuss the central role of tRNAs in modulating translational fidelity through their dynamic and complex interplay with translation factors. We summarize recent discoveries of mistranslating tRNAs and describe the underlying molecular mechanisms and the specific conditions and environments that enable and promote mistranslation.
Collapse
Affiliation(s)
- Dominik B Schuntermann
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Mateusz Jaskolowski
- Department of Biology, Institute of Molecular Biology and Biophysics, Zurich, Switzerland
| | - Noah M Reynolds
- School of Integrated Sciences, Sustainability, and Public Health, University of Illinois Springfield, Springfield, Illinois, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA.
| |
Collapse
|
4
|
Teran D, Zhang Y, Korostelev AA. Endogenous trans-translation structure visualizes the decoding of the first tmRNA alanine codon. Front Microbiol 2024; 15:1369760. [PMID: 38500588 PMCID: PMC10944890 DOI: 10.3389/fmicb.2024.1369760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Ribosomes stall on truncated or otherwise damaged mRNAs. Bacteria rely on ribosome rescue mechanisms to replenish the pool of ribosomes available for translation. Trans-translation, the main ribosome-rescue pathway, uses a circular hybrid transfer-messenger RNA (tmRNA) to restart translation and label the resulting peptide for degradation. Previous studies have visualized how tmRNA and its helper protein SmpB interact with the stalled ribosome to establish a new open reading frame. As tmRNA presents the first alanine codon via a non-canonical mRNA path in the ribosome, the incoming alanyl-tRNA must rearrange the tmRNA molecule to read the codon. Here, we describe cryo-EM analyses of an endogenous Escherichia coli ribosome-tmRNA complex with tRNAAla accommodated in the A site. The flexible adenosine-rich tmRNA linker, which connects the mRNA-like domain with the codon, is stabilized by the minor groove of the canonically positioned anticodon stem of tRNAAla. This ribosome complex can also accommodate a tRNA near the E (exit) site, bringing insights into the translocation and dissociation of the tRNA that decoded the defective mRNA prior to tmRNA binding. Together, these structures uncover a key step of ribosome rescue, in which the ribosome starts translating the tmRNA reading frame.
Collapse
Affiliation(s)
| | | | - Andrei A. Korostelev
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, United States
| |
Collapse
|
5
|
Wang K, Yin Z, Sang C, Xia W, Wang Y, Sun T, Xu X. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures. Int J Biol Macromol 2024; 262:130150. [PMID: 38365157 DOI: 10.1016/j.ijbiomac.2024.130150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Magnesium ions (Mg2+) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg2+-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, characterized by a continuous shape with geometric and chemical properties, is important for RNA modelling and carries essential information for understanding the interactions between RNAs and Mg2+ ions. Here, we propose an approach named RNA-magnesium ion surface interaction fingerprinting (RMSIF), a geometric deep learning-based conceptual framework to predict magnesium ion binding sites in RNA structures. To evaluate the performance of RMSIF, we systematically enumerated decoy Mg2+ ions across a full-space grid within the range of 2 to 10 Å from the RNA molecule and made predictions accordingly. Visualization techniques were used to validate the prediction results and calculate success rates. Comparative assessments against state-of-the-art methods like MetalionRNA, MgNet, and Metal3DRNA revealed that RMSIF achieved superior success rates and accuracy in predicting Mg2+-binding sites. Additionally, in terms of the spatial distribution of Mg2+ ions within the RNA structures, a majority were situated in the deep grooves, while a minority occupied the shallow grooves. Collectively, the conceptual framework developed in this study holds promise for advancing insights into drug design, RNA co-transcriptional folding, and structure prediction.
Collapse
Affiliation(s)
- Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Zuode Yin
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
6
|
Hansen LN, Kletzien OA, Urquijo M, Schwanz LT, Batey RT. Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions. J Mol Biol 2023; 435:168070. [PMID: 37003469 PMCID: PMC10152882 DOI: 10.1016/j.jmb.2023.168070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
The architecture and folding of complex RNAs is governed by a limited set of highly recurrent structural motifs that form long-range tertiary interactions. One of these motifs is the T-loop, which was first identified in tRNA but is broadly distributed across biological RNAs. While the T-loop has been examined in detail in different biological contexts, the various receptors that it interacts with are not as well defined. In this study, we use a cell-based genetic screen in concert with bioinformatic analysis to examine three different, but related, T-loop receptor motifs found in the flavin mononucleotide (FMN) and cobalamin (Cbl) riboswitches. As a host for different T-loop receptors, we employed the env8 class-II Cbl riboswitch, an RNA that uses two T-loop motifs for both folding and supporting the ligand binding pocket. A set of libraries was created in which select nucleotides that participate in the T-loop/T-loop receptor (TL/TLR) interaction were fully randomized. Library members were screened for their ability to support Cbl-dependent expression of a reporter gene. While T-loops appear to be variable in sequence, we find that the functional sequence space is more restricted in the Cbl riboswitch, suggesting that TL/TLR interactions are context dependent. Our data reveal clear sequence signatures for the different types of receptor motifs that align with phylogenic analysis of these motifs in the FMN and Cbl riboswitches. Finally, our data suggest the functional contribution of various nucleobase-mediated long-range interactions within the riboswitch subclass of TL/TLR interactions that are distinct from those found in other RNAs.
Collapse
Affiliation(s)
- Lisa N Hansen
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Otto A Kletzien
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Marcus Urquijo
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Logan T Schwanz
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA. https://twitter.com/Lschwanzbio
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA.
| |
Collapse
|
7
|
Baulin EF. Features and Functions of the A-Minor Motif, the Most Common Motif in RNA Structure. BIOCHEMISTRY (MOSCOW) 2021; 86:952-961. [PMID: 34488572 DOI: 10.1134/s000629792108006x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A-minor motifs are RNA tertiary structure motifs that generally involve a canonical base pair and an adenine base forming hydrogen bonds with the minor groove of the base pair. Such motifs are among the most common tertiary interactions in known RNA structures, comparable in number with the non-canonical base pairs. They are often found in functionally important regions of non-coding RNAs and, in particular, play a central role in protein synthesis. Here, we review local variations of the A-minor geometry and discuss difficulties associated with their annotation, as well as various structural contexts and common A-minor co-motifs, and diverse functions of A-minors in various processes in a living cell.
Collapse
Affiliation(s)
- Eugene F Baulin
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| |
Collapse
|
8
|
Torabi SF, Vaidya AT, Tycowski KT, DeGregorio SJ, Wang J, Shu MD, Steitz TA, Steitz JA. RNA stabilization by a poly(A) tail 3'-end binding pocket and other modes of poly(A)-RNA interaction. Science 2021; 371:science.abe6523. [PMID: 33414189 DOI: 10.1126/science.abe6523] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022]
Abstract
Polyadenylate [poly(A)] tail addition to the 3' end of a wide range of RNAs is a highly conserved modification that plays a central role in cellular RNA function. Elements for nuclear expression (ENEs) are cis-acting RNA elements that stabilize poly(A) tails by sequestering them in RNA triplex structures. A crystal structure of a double ENE from a rice hAT transposon messenger RNA complexed with poly(A)28 at a resolution of 2.89 angstroms reveals multiple modes of interaction with poly(A), including major-groove triple helices, extended minor-groove interactions with RNA double helices, a quintuple-base motif that transitions poly(A) from minor-groove associations to major-groove triple helices, and a poly(A) 3'-end binding pocket. Our findings both expand the repertoire of motifs involved in long-range RNA interactions and provide insights into how polyadenylation can protect an RNA's extreme 3' end.
Collapse
Affiliation(s)
- Seyed-Fakhreddin Torabi
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Anand T Vaidya
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Suzanne J DeGregorio
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mei-Di Shu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06536, USA. .,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
9
|
Pallan PS, Lybrand TP, Schlegel MK, Harp JM, Jahns H, Manoharan M, Egli M. Incorporating a Thiophosphate Modification into a Common RNA Tetraloop Motif Causes an Unanticipated Stability Boost. Biochemistry 2020; 59:4627-4637. [PMID: 33275419 DOI: 10.1021/acs.biochem.0c00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
GNRA (N = A, C, G, or U; R = A or G) tetraloops are common RNA secondary structural motifs and feature a phosphate stacked atop a nucleobase. The rRNA sarcin/ricin loop (SRL) is capped by GApGA, and the phosphate p stacks on G. We recently found that regiospecific incorporation of a single dithiophosphate (PS2) but not a monothiophosphate (PSO) instead of phosphate in the backbone of RNA aptamers dramatically increases the binding affinity for their targets. In the RNA:thrombin complex, the key contribution to the 1000-fold tighter binding stems from an edge-on contact between PS2 and a phenylalanine ring. Here we investigated the consequences of replacing the SRL phosphate engaged in a face-on interaction with guanine with either PS2 or PSO for stability. We found that PS2···G and Rp-PSO···G contacts stabilize modified SRLs compared to the parent loop to unexpected levels: up to 6.3 °C in melting temperature Tm and -4.7 kcal/mol in ΔΔG°. Crystal structures demonstrate that the vertical distance to guanine for the closest sulfur is just 0.05 Å longer on average compared to that of oxygen despite the larger van der Waals radius of the former (1.80 Å for S vs 1.52 Å for O). The higher stability is enthalpy-based, and the negative charge as assessed by a neutral methylphosphonate modification plays only a minor role. Quantum mechanical/molecular mechanical calculations are supportive of favorable dispersion attraction interactions by sulfur making the dominant contribution. A stacking interaction between phosphate and guanine (SRL) or uracil (U-turn) is also found in newly classified RNA tetraloop families besides GNRA.
Collapse
Affiliation(s)
| | | | - Mark K Schlegel
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | | - Hartmut Jahns
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 300 Third Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
10
|
Chelomina GN, Rozhkovan KV, Burundukova OL, Gorpenchenko TY, Khrolenko YA, Zhuravlev YN. Age-Dependent and Tissue-Specific Alterations in the rDNA Clusters of the Panax ginseng C. A. Meyer Cultivated Cell Lines. Biomolecules 2020; 10:biom10101410. [PMID: 33036123 PMCID: PMC7599642 DOI: 10.3390/biom10101410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/25/2023] Open
Abstract
Long-term cultivation of Panax ginseng cell lines leads to a decreasing synthesis of the biologically active substances used in traditional medicine. To gain insight into the cellular mechanisms which may influence this process, we analyzed variations within the rDNA cluster of the Oriental ginseng cell lines. The cell lines were cultivated for 6 and 24 years; the number of nucleoli and chromosomes was analyzed. The complete 18S rDNA sequences were cloned and sequenced. The nucleotide polymorphism and phylogenetic relations of the sequences were analyzed, and the secondary structures for separate 18S rRNA regions were modeled. The 18S rDNA accumulated mutations during cell cultivation that correlate well with an increase in the number of chromosomes and nucleoli. The patterns of nucleotide diversity are culture-specific and the increasing polymorphism associates with cytosine methylation sites. The secondary structures of some 18S rRNA regions and their interaction can alter during cultivation. The phylogenetic tree topologies are particular for each cell line.The observed alterations in rDNA clusters are associated with a somaclonal variation, leading to changes in the pattern of intracellular synthesis during cell cultivation. The identified divergent rRNAs could provide additional gene expression regulation in P. ginseng cells by forming heterogeneous ribosomes.
Collapse
Affiliation(s)
- Galina N. Chelomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
- Correspondence: ; Tel.: +7-(423)-231-0410
| | - Konstantin V. Rozhkovan
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
- Saint-Petersburg State University Clinic, St. Petersburg 190103, Russia
| | - Olga L. Burundukova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
| | - Tatiana Y. Gorpenchenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
| | - Yulia A. Khrolenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
| | - Yuri N. Zhuravlev
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far-Eastern Branch of Russian Academy of Science, Vladivostok 690022, Russia; (K.V.R.); (O.L.B.); (T.Y.G.); (Y.A.K.); (Y.N.Z.)
| |
Collapse
|
11
|
Voronova AN, Chelomina GN. The SSU rRNA secondary structures of the Plagiorchiida species (Digenea), its applications in systematics and evolutionary inferences. INFECTION GENETICS AND EVOLUTION 2019; 78:104042. [PMID: 31770596 DOI: 10.1016/j.meegid.2019.104042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/05/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
Abstract
The small subunit ribosomal RNA (SSU rRNA) is widely used phylogenetic marker in broad groups of organisms and its secondary structure increasingly attracts the attention of researchers as supplementary tool in sequence alignment and advanced phylogenetic studies. Its comparative analysis provides a great contribution to evolutionary biology, allowing find out how the SSU rRNA secondary structure originated, developed and evolved. Herein, we provide the first data on the putative SSU rRNA secondary structures of the Plagiorchiida species. The structures were found to be quite conserved across broad range of species studied, well compatible with those of others eukaryotic SSU rRNA and possessed some peculiarities: cross-shaped structure of the ES6b, additional shortened ES6c2 helix, and elongated ES6a helix and h39 + ES9 region. The secondary structures of variable regions ES3 and ES7 appeared to be tissue-specific while ES6 and ES9 were specific at a family level allowing considering them as promising markers for digenean systematics. Their uniqueness more depends on the length than on the nucleotide diversity of primary sequences which evolutionary rates well differ. The findings have important implications for understanding rRNA evolution, developing molecular taxonomy and systematics of Plagiorchiida as well as for constructing new anthelmintic drugs.
Collapse
Affiliation(s)
- A N Voronova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia
| | - G N Chelomina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity FEB RAS, 7 Russia, 100-letiya Street, 159, Vladivostok 690022, Russia.
| |
Collapse
|
12
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
13
|
Torgerson CD, Hiller DA, Stav S, Strobel SA. Gene regulation by a glycine riboswitch singlet uses a finely tuned energetic landscape for helical switching. RNA (NEW YORK, N.Y.) 2018; 24:1813-1827. [PMID: 30237163 PMCID: PMC6239177 DOI: 10.1261/rna.067884.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/18/2018] [Indexed: 05/09/2023]
Abstract
Riboswitches contain structured aptamer domains that, upon ligand binding, facilitate helical switching in their downstream expression platforms to alter gene expression. To fully dissect how riboswitches function requires a better understanding of the energetic landscape for helical switching. Here, we report a sequencing-based high-throughput assay for monitoring in vitro transcription termination and use it to simultaneously characterize the functional effects of all 522 single point mutants of a glycine riboswitch type-1 singlet. Mutations throughout the riboswitch cause ligand-dependent defects, but only mutations within the terminator hairpin alter readthrough efficiencies in the absence of ligand. A comprehensive analysis of the expression platform reveals that ligand binding stabilizes the antiterminator by just 2-3 kcal/mol, indicating that the competing expression platform helices must be extremely close in energy to elicit a significant ligand-dependent response. These results demonstrate that gene regulation by this riboswitch is highly constrained by the energetics of ligand binding and conformational switching. These findings exemplify the energetic parameters of RNA conformational rearrangements driven by binding events.
Collapse
Affiliation(s)
- Chad D Torgerson
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - David A Hiller
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Shira Stav
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Scott A Strobel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
14
|
Attwater J, Raguram A, Morgunov AS, Gianni E, Holliger P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 2018; 7:35255. [PMID: 29759114 PMCID: PMC6003772 DOI: 10.7554/elife.35255] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox, we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit ‘+’ and ‘–’ strands in segments and assemble them into a new active ribozyme. Life as we know it relies on three types of molecules: DNA, which stores genetic information; proteins that carry out the chemical reactions necessary for life; and RNA, which relays information between the two. However, some scientists think that before life adopted DNA and proteins, it relied primarily on RNA. Like DNA, strands of RNA contain genetic data. Yet, some RNA strands can also fold to form ribozymes, 3D structures that could have guided life’s chemical processes the way proteins do now. For early life to be built on RNA, though, this molecule must have had the ability to make copies of itself. This duplication is a chemical reaction that could be driven by an ‘RNA replicase’ ribozyme. RNA strands are made of four different letters attached to each other in a specific order. When RNA is copied, one strand acts as a template, and a replicase ribozyme would accurately guide which letters are added to the strand under construction. However, no replicase ribozyme has been observed in existing life forms; this has led scientists to try to artificially create RNA replicase ribozymes that could copy themselves. Until now, the best approaches have assumed that a replicase would add building blocks formed of a single letter one by one to grow a new strand. Yet, although ribozymes can be made to copy straight RNA templates this way, folded RNA templates – including the replicase ribozyme itself – impede copying. In this apparent paradox, a ribozyme needs to fold to copy RNA, but when folded, is itself copied poorly. Here, Attwater et al. wondered if choosing different building blocks might overcome this contradiction. Biochemical techniques were used to engineer a ribozyme that copies RNA strands by adding letters not one-by-one, but three-by-three. Using three-letter ‘triplet’ building blocks, this new ribozyme can copy various folded RNA strands, including the active part of its own sequence. This is because triplet building blocks have different, and sometimes unexpected, chemical properties compared to single-letter blocks. For example, these triplets work together to bind tightly to RNA strands and unravel structures that block RNA copying. All life on Earth today uses a triplet RNA code to make proteins from DNA, and these experiments showed how RNA triplets might have helped RNA sustain early life forms. Further work is now needed to improve the ribozyme designed by Attwater et al. for efficient self-copying.
Collapse
Affiliation(s)
- James Attwater
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Aditya Raguram
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexey S Morgunov
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Edoardo Gianni
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
15
|
Monestier A, Aleksandrov A, Coureux PD, Panvert M, Mechulam Y, Schmitt E. The structure of an E. coli tRNA fMet A 1-U 72 variant shows an unusual conformation of the A 1-U 72 base pair. RNA (NEW YORK, N.Y.) 2017; 23:673-682. [PMID: 28143889 PMCID: PMC5393177 DOI: 10.1261/rna.057877.116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Translation initiation in eukaryotes and archaea involves a methionylated initiator tRNA delivered to the ribosome in a ternary complex with e/aIF2 and GTP. Eukaryotic and archaeal initiator tRNAs contain a highly conserved A1-U72 base pair at the top of the acceptor stem. The importance of this base pair to discriminate initiator tRNAs from elongator tRNAs has been established previously using genetics and biochemistry. However, no structural data illustrating how the A1-U72 base pair participates in the accurate selection of the initiator tRNAs by the translation initiation systems are available. Here, we describe the crystal structure of a mutant E. coli initiator tRNAfMetA1-U72, aminoacylated with methionine, in which the C1:A72 mismatch at the end of the tRNA acceptor stem has been changed to an A1-U72 base pair. Sequence alignments show that the mutant E. coli tRNA is a good mimic of archaeal initiator tRNAs. The crystal structure, determined at 2.8 Å resolution, shows that the A1-U72 pair adopts an unusual arrangement. A1 is in a syn conformation and forms a single H-bond interaction with U72 This interaction requires protonation of the N1 atom of A1 Moreover, the 5' phosphoryl group folds back into the major groove of the acceptor stem and interacts with the N7 atom of G2 A possible role of this unusual geometry of the A1-U72 pair in the recognition of the initiator tRNA by its partners during eukaryotic and archaeal translation initiation is discussed.
Collapse
Affiliation(s)
- Auriane Monestier
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Alexey Aleksandrov
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Pierre-Damien Coureux
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Michel Panvert
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire de Biochimie, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau cedex, France
| |
Collapse
|
16
|
Zhang W, Tam CP, Wang J, Szostak JW. Unusual Base-Pairing Interactions in Monomer-Template Complexes. ACS CENTRAL SCIENCE 2016; 2:916-926. [PMID: 28058281 PMCID: PMC5200924 DOI: 10.1021/acscentsci.6b00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Many high-resolution crystal structures have contributed to our understanding of the reaction pathway for catalysis by DNA and RNA polymerases, but the structural basis of nonenzymatic template-directed RNA replication has not been studied in comparable detail. Here we present crystallographic studies of the binding of ribonucleotide monomers to RNA primer-template complexes, with the goal of improving our understanding of the mechanism of nonenzymatic RNA copying, and of catalysis by polymerases. To explore how activated ribonucleotides recognize and bind to RNA templates, we synthesized an unreactive phosphonate-linked pyrazole analogue of guanosine 5'-phosphoro-2-methylimidazolide (2-MeImpG), a highly activated nucleotide that has been used extensively to study nonenzymatic primer extension. We cocrystallized this analogue with structurally rigidified RNA primer-template complexes carrying single or multiple monomer binding sites, and obtained high-resolution X-ray structures of these complexes. In addition to Watson-Crick base pairing, we repeatedly observed noncanonical guanine:cytidine base pairs in our crystal structures. In most structures, the phosphate and leaving group moieties of the monomers were highly disordered, while in others the distance from O3' of the primer to the phosphorus of the incoming monomer was too great to allow for reaction. We suggest that these effects significantly influence the rate and fidelity of nonenzymatic RNA replication, and that even primitive ribozyme polymerases could enhance RNA replication by enforcing Watson-Crick base pairing between monomers and primer-template complexes, and by bringing the reactive functional groups into closer proximity.
Collapse
Affiliation(s)
- Wen Zhang
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chun Pong Tam
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Jiawei Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department
of Molecular Biology and Center for Computational and Integrative
Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
- Department
of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department
of Chemistry and Chemical Biology, Harvard
University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
17
|
Zhou H, Kimsey IJ, Nikolova EN, Sathyamoorthy B, Grazioli G, McSally J, Bai T, Wunderlich CH, Kreutz C, Andricioaei I, Al-Hashimi HM. m(1)A and m(1)G disrupt A-RNA structure through the intrinsic instability of Hoogsteen base pairs. Nat Struct Mol Biol 2016; 23:803-10. [PMID: 27478929 PMCID: PMC5016226 DOI: 10.1038/nsmb.3270] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/05/2016] [Indexed: 12/13/2022]
Abstract
The B-DNA double helix can dynamically accommodate G-C and A-T base pairs in either Watson-Crick or Hoogsteen configurations. Here, we show that G-C(+) (in which + indicates protonation) and A-U Hoogsteen base pairs are strongly disfavored in A-RNA. As a result,N(1)-methyladenosine and N(1)-methylguanosine, which occur in DNA as a form of alkylation damage and in RNA as post-transcriptional modifications, have dramatically different consequences. Whereas they create G-C(+) and A-T Hoogsteen base pairs in duplex DNA, thereby maintaining the structural integrity of the double helix, they block base-pairing and induce local duplex melting in RNA. These observations provide a mechanism for disrupting RNA structure through post-transcriptional modifications. The different propensities to form Hoogsteen base pairs in B-DNA and A-RNA may help cells meet the opposing requirements of maintaining genome stability, on the one hand, and of dynamically modulating the structure of the epitranscriptome, on the other.
Collapse
Affiliation(s)
- Huiqing Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | - Isaac J. Kimsey
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | - Evgenia N. Nikolova
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California USA
| | | | - Gianmarc Grazioli
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - James McSally
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - Tianyu Bai
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
| | | | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck Austria
| | - Ioan Andricioaei
- Department of Chemistry, University of California Irvine, Irvine, California USA
| | - Hashim M. Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina USA
- Department of Chemistry, Duke University, Durham, North Carolina USA
| |
Collapse
|
18
|
Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc Natl Acad Sci U S A 2016; 113:E4956-65. [PMID: 27493222 DOI: 10.1073/pnas.1525082113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The past decade has seen a wealth of 3D structural information about complex structured RNAs and identification of functional intermediates. Nevertheless, developing a complete and predictive understanding of the folding and function of these RNAs in biology will require connection of individual rate and equilibrium constants to structural changes that occur in individual folding steps and further relating these steps to the properties and behavior of isolated, simplified systems. To accomplish these goals we used the considerable structural knowledge of the folded, unfolded, and intermediate states of P4-P6 RNA. We enumerated structural states and possible folding transitions and determined rate and equilibrium constants for the transitions between these states using single-molecule FRET with a series of mutant P4-P6 variants. Comparisons with simplified constructs containing an isolated tertiary contact suggest that a given tertiary interaction has a stereotyped rate for breaking that may help identify structural transitions within complex RNAs and simplify the prediction of folding kinetics and thermodynamics for structured RNAs from their parts. The preferred folding pathway involves initial formation of the proximal tertiary contact. However, this preference was only ∼10 fold and could be reversed by a single point mutation, indicating that a model akin to a protein-folding contact order model will not suffice to describe RNA folding. Instead, our results suggest a strong analogy with a modified RNA diffusion-collision model in which tertiary elements within preformed secondary structures collide, with the success of these collisions dependent on whether the tertiary elements are in their rare binding-competent conformations.
Collapse
|
19
|
Meehan RE, Torgerson CD, Gaffney BL, Jones RA, Strobel SA. Nuclease-Resistant c-di-AMP Derivatives That Differentially Recognize RNA and Protein Receptors. Biochemistry 2016; 55:837-49. [PMID: 26789423 DOI: 10.1021/acs.biochem.5b00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability of bacteria to sense environmental cues and adapt is essential for their survival. The use of second-messenger signaling molecules to translate these cues into a physiological response is a common mechanism employed by bacteria. The second messenger 3'-5'-cyclic diadenosine monophosphate (c-di-AMP) has been linked to a diverse set of biological processes involved in maintaining cell viability and homeostasis, as well as pathogenicity. A complex network of both protein and RNA receptors inside the cell activates specific pathways and mediates phenotypic outputs in response to c-di-AMP. Structural analysis of these RNA and protein receptors has revealed the different recognition elements employed by these effectors to bind the same small molecule. Herein, using a series of c-di-AMP analogues, we probed the interactions made with a riboswitch and a phosphodiesterase protein to identify the features important for c-di-AMP binding and recognition. We found that the ydaO riboswitch binds c-di-AMP in two discrete sites with near identical affinity and a Hill coefficient of 1.6. The ydaO riboswitch distinguishes between c-di-AMP and structurally related second messengers by discriminating against an amine at the C2 position more than a carbonyl at the C6 position. We also identified phosphate-modified analogues that bind both the ydaO RNA and GdpP protein with high affinity, whereas symmetrically modified ribose analogues exhibited a substantial decrease in ydaO affinity but retained high affinity for GdpP. These ligand modifications resulted in increased resistance to enzyme-catalyzed hydrolysis by the GdpP enzyme. Together, these data suggest that these c-di-AMP analogues could be useful as chemical tools to specifically target subsections of second-messenger signaling pathways.
Collapse
Affiliation(s)
| | | | - Barbara L Gaffney
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Roger A Jones
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | | |
Collapse
|
20
|
Crucial steps to life: From chemical reactions to code using agents. Biosystems 2016; 140:49-57. [DOI: 10.1016/j.biosystems.2015.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
|
21
|
Abstract
More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted to the translocation channel. Mammalian SRP is a ribonucleoprotein complex consisting of an SRP RNA of 300 nucleotides and 6 proteins bound to it. Assembly occurs in a hierarchical manner mainly in the nucleolus and only SRP54, which recognizes the signal sequence and regulates the targeting process, is added as the last component in the cytosol. Here we present an update on recent insights in the structure, function and dynamics of SRP RNA in SRP assembly with focus on the S domain, and present SRP as an example for the complex biogenesis of a rather small ribonucleoprotein particle.
Collapse
Affiliation(s)
- Klemens Wild
- a Heidelberg University Biochemistry Center (BZH) ; Heidelberg , Germany
| | | |
Collapse
|
22
|
Mustoe AM, Al-Hashimi HM, Brooks CL. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme. Nucleic Acids Res 2015; 44:402-12. [PMID: 26481360 PMCID: PMC4705646 DOI: 10.1093/nar/gkv1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/03/2015] [Indexed: 12/20/2022] Open
Abstract
A requirement for specific RNA folding is that the free-energy landscape discriminate against non-native folds. While tertiary interactions are critical for stabilizing the native fold, they are relatively non-specific, suggesting additional mechanisms contribute to tertiary folding specificity. In this study, we use coarse-grained molecular dynamics simulations to explore how secondary structure shapes the tertiary free-energy landscape of the Azoarcus ribozyme. We show that steric and connectivity constraints posed by secondary structure strongly limit the accessible conformational space of the ribozyme, and that these so-called topological constraints in turn pose strong free-energy penalties on forming different tertiary contacts. Notably, native A-minor and base-triple interactions form with low conformational free energy, while non-native tetraloop/tetraloop–receptor interactions are penalized by high conformational free energies. Topological constraints also give rise to strong cooperativity between distal tertiary interactions, quantitatively matching prior experimental measurements. The specificity of the folding landscape is further enhanced as tertiary contacts place additional constraints on the conformational space, progressively funneling the molecule to the native state. These results indicate that secondary structure assists the ribozyme in navigating the otherwise rugged tertiary folding landscape, and further emphasize topological constraints as a key force in RNA folding.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Chemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles L Brooks
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Svidritskiy E, Korostelev AA. Ribosome Structure Reveals Preservation of Active Sites in the Presence of a P-Site Wobble Mismatch. Structure 2015; 23:2155-61. [PMID: 26412335 DOI: 10.1016/j.str.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/07/2015] [Accepted: 08/13/2015] [Indexed: 11/17/2022]
Abstract
Translation initiation in the P site occasionally occurs at atypical (non-AUG) start codons, including those forming a mismatch in the third (wobble) position. During elongation, however, a pyrimidine-pyrimidine wobble mismatch may trigger a translation quality-control mechanism, whereby the P-site mismatch is thought to perturb the downstream A-site codon or the decoding center, thereby reducing translation fidelity and inducing termination of aberrant translation. We report a crystal structure of the 70S initiation complex containing an AUC codon in the ribosomal P site. Remarkably, the ribosome stabilizes the mismatched codon-anticodon helix, arranging a normally disruptive cytosine-cytosine pair into a Watson-Crick-like conformation. Translation-competent conformations of the tRNA, mRNA, and decoding center suggest that a P-site wobble-position mismatch in the 70S initiation complex does not pre-arrange the mRNA or decoding center to favor subsequent miscoding events.
Collapse
Affiliation(s)
- Egor Svidritskiy
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Andrei A Korostelev
- RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
The importance of codon–anticodon interactions in translation elongation. Biochimie 2015; 114:72-9. [DOI: 10.1016/j.biochi.2015.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
|
25
|
Conserved residues in yeast initiator tRNA calibrate initiation accuracy by regulating preinitiation complex stability at the start codon. Genes Dev 2014; 28:502-20. [PMID: 24589778 PMCID: PMC3950347 DOI: 10.1101/gad.236547.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Eukaryotic initiator tRNA (tRNAi) contains several highly conserved, unique sequence features, yet their importance in accurate start codon selection is unknown. Using genetic and biochemical analyses, Dong et al. show that conserved bases throughout tRNAi, from the anticodon stem to the acceptor stem, play key roles in ensuring the fidelity of start codon recognition. This work delineates specific molecular functions for signature initiator tRNA residues and establishes their importance for initiation accuracy in living eukaryotic cells. Eukaryotic initiator tRNA (tRNAi) contains several highly conserved unique sequence features, but their importance in accurate start codon selection was unknown. Here we show that conserved bases throughout tRNAi, from the anticodon stem to acceptor stem, play key roles in ensuring the fidelity of start codon recognition in yeast cells. Substituting the conserved G31:C39 base pair in the anticodon stem with different pairs reduces accuracy (the Sui− [suppressor of initiation codon] phenotype), whereas eliminating base pairing increases accuracy (the Ssu− [suppressor of Sui−] phenotype). The latter defect is fully suppressed by a Sui− substitution of T-loop residue A54. These genetic data are paralleled by opposing effects of Sui− and Ssu− substitutions on the stability of methionylated tRNAi (Met-tRNAi) binding (in the ternary complex [TC] with eIF2-GTP) to reconstituted preinitiation complexes (PICs). Disrupting the C3:G70 base pair in the acceptor stem produces a Sui− phenotype and also reduces the rate of TC binding to 40S subunits in vitro and in vivo. Both defects are suppressed by an Ssu− substitution in eIF1A that stabilizes the open/POUT conformation of the PIC that exists prior to start codon recognition. Our data indicate that these signature sequences of tRNAi regulate accuracy by distinct mechanisms, promoting the open/POUT conformation of the PIC (for C3:G70) or destabilizing the closed/PIN state (for G31:C39 and A54) that is critical for start codon recognition.
Collapse
|
26
|
Chaulk SG, Xu Z, Glover MJN, Fahlman RP. MicroRNA miR-92a-1 biogenesis and mRNA targeting is modulated by a tertiary contact within the miR-17~92 microRNA cluster. Nucleic Acids Res 2014; 42:5234-44. [PMID: 24520115 PMCID: PMC4005684 DOI: 10.1093/nar/gku133] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
While functional mature microRNAs (miRNAs) are small ∼22 base oligonucleotides that target specific mRNAs, miRNAs are initially expressed as long transcripts (pri-miRNAs) that undergo sequential processing to yield the mature miRNAs. We have previously reported that the pri-miR-17∼92 cluster adopts a compact globular folded structure that internalizes a 3' core domain resulting in reduced miRNA maturation and subsequent mRNA targeting. Using a site-specific photo-cross-linker we have identified a tertiary contact within the 3' core domain of the pri-miRNA between a non-miRNA stem-loop and the pre-miR-19b hairpin. This tertiary contact is involved in the formation of the compact globular fold of the cluster while its disruption enhances miR-92a expression and mRNA targeting. We propose that this tertiary contact serves as a molecular scaffold to restrict expression of the proposed antiangiogenic miR-92a, allowing for the overall pro-angiogenic effect of miR-17∼92 expression.
Collapse
Affiliation(s)
- Steven G Chaulk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
27
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
28
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
29
|
Khade PK, Shi X, Joseph S. Steric complementarity in the decoding center is important for tRNA selection by the ribosome. J Mol Biol 2013; 425:3778-89. [PMID: 23542008 DOI: 10.1016/j.jmb.2013.02.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/23/2013] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Abstract
Accurate tRNA selection by the ribosome is essential for the synthesis of functional proteins. Previous structural studies indicated that the ribosome distinguishes between cognate and near-cognate tRNAs by monitoring the geometry of the codon-anticodon helix in the decoding center using the universally conserved 16S ribosomal RNA bases G530, A1492 and A1493. These bases form hydrogen bonds with the 2'-hydroxyl groups of the codon-anticodon helix, which are expected to be disrupted with a near-cognate codon-anticodon helix. However, a recent structural study showed that G530, A1492 and A1493 form hydrogen bonds in a manner identical with that of both cognate and near-cognate codon-anticodon helices. To understand how the ribosome discriminates between cognate and near-cognate tRNAs, we made 2'-deoxynucleotide and 2'-fluoro substituted mRNAs, which disrupt the hydrogen bonds between the A site codon and G530, A1492 and A1493. Our results show that multiple 2'-deoxynucleotide substitutions in the mRNA substantially inhibit tRNA selection, whereas multiple 2'-fluoro substitutions in the mRNA have only modest effects on tRNA selection. Furthermore, the miscoding antibiotics paromomycin and streptomycin rescue the defects in tRNA selection with the multiple 2'-deoxynucleotide substituted mRNA. These results suggest that steric complementarity in the decoding center is more important than the hydrogen bonds between the A site codon and G530, A1492 and A1493 for tRNA selection.
Collapse
Affiliation(s)
- Prashant K Khade
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0314, USA
| | | | | |
Collapse
|
30
|
Behrouzi R, Roh JH, Kilburn D, Briber RM, Woodson SA. Cooperative tertiary interaction network guides RNA folding. Cell 2012; 149:348-57. [PMID: 22500801 DOI: 10.1016/j.cell.2012.01.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/02/2011] [Accepted: 01/26/2012] [Indexed: 01/06/2023]
Abstract
Noncoding RNAs form unique 3D structures, which perform many regulatory functions. To understand how RNAs fold uniquely despite a small number of tertiary interaction motifs, we mutated the major tertiary interactions in a group I ribozyme by single-base substitutions. The resulting perturbations to the folding energy landscape were measured using SAXS, ribozyme activity, hydroxyl radical footprinting, and native PAGE. Double- and triple-mutant cycles show that most tertiary interactions have a small effect on the stability of the native state. Instead, the formation of core and peripheral structural motifs is cooperatively linked in near-native folding intermediates, and this cooperativity depends on the native helix orientation. The emergence of a cooperative interaction network at an early stage of folding suppresses nonnative structures and guides the search for the native state. We suggest that cooperativity in noncoding RNAs arose from natural selection of architectures conducive to forming a unique, stable fold.
Collapse
Affiliation(s)
- Reza Behrouzi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
31
|
Molecular mechanism of scanning and start codon selection in eukaryotes. Microbiol Mol Biol Rev 2012; 75:434-67, first page of table of contents. [PMID: 21885680 DOI: 10.1128/mmbr.00008-11] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The correct translation of mRNA depends critically on the ability to initiate at the right AUG codon. For most mRNAs in eukaryotic cells, this is accomplished by the scanning mechanism, wherein the small (40S) ribosomal subunit attaches to the 5' end of the mRNA and then inspects the leader base by base for an AUG in a suitable context, using complementarity with the anticodon of methionyl initiator tRNA (Met-tRNAiMet) as the key means of identifying AUG. Over the past decade, a combination of yeast genetics, biochemical analysis in reconstituted systems, and structural biology has enabled great progress in deciphering the mechanism of ribosomal scanning. A robust molecular model now exists, describing the roles of initiation factors, notably eukaryotic initiation factor 1 (eIF1) and eIF1A, in stabilizing an "open" conformation of the 40S subunit with Met-tRNAiMet bound in a low-affinity state conducive to scanning and in triggering rearrangement into a "closed" conformation incompatible with scanning, which features Met-tRNAiMet more tightly bound to the "P" site and base paired with AUG. It has also emerged that multiple DEAD-box RNA helicases participate in producing a single-stranded "landing pad" for the 40S subunit and in removing the secondary structure to enable the mRNA to traverse the 40S mRNA-binding channel in the single-stranded form for base-by-base inspection in the P site.
Collapse
|
32
|
Forconi M, Schwans JP, Porecha RH, Sengupta RN, Piccirilli JA, Herschlag D. 2'-Fluoro substituents can mimic native 2'-hydroxyls within structured RNA. ACTA ACUST UNITED AC 2011; 18:949-54. [PMID: 21867910 DOI: 10.1016/j.chembiol.2011.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/20/2011] [Accepted: 07/06/2011] [Indexed: 10/17/2022]
Abstract
The ability of fluorine in a C-F bond to act as a hydrogen bond acceptor is controversial. To test such ability in complex RNA macromolecules, we have replaced native 2'-OH groups with 2'-F and 2'-H groups in two related systems, the Tetrahymena group I ribozyme and the ΔC209 P4-P6 RNA domain. In three cases the introduced 2'-F mimics the native 2'-OH group, suggesting that the fluorine atom can accept a hydrogen bond. In each of these cases the native hydroxyl group interacts with a purine exocyclic amine. Our results give insight about the properties of organofluorine and suggest a possible general biochemical signature for tertiary interactions between 2'-hydroxyl groups and exocyclic amino groups within RNA.
Collapse
Affiliation(s)
- Marcello Forconi
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
33
|
Greenfeld M, Solomatin SV, Herschlag D. Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J Biol Chem 2011; 286:19872-9. [PMID: 21478155 DOI: 10.1074/jbc.m111.235465] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA folding landscapes have been described alternately as simple and as complex. The limited diversity of RNA residues and the ability of RNA to form stable secondary structures prior to adoption of a tertiary structure would appear to simplify folding relative to proteins. Nevertheless, there is considerable evidence for long-lived misfolded RNA states, and these observations have suggested rugged energy landscapes. Recently, single molecule fluorescence resonance energy transfer (smFRET) studies have exposed heterogeneity in many RNAs, consistent with deeply furrowed rugged landscapes. We turned to an RNA of intermediate complexity, the P4-P6 domain from the Tetrahymena group I intron, to address basic questions in RNA folding. P4-P6 exhibited long-lived heterogeneity in smFRET experiments, but the inability to observe exchange in the behavior of individual molecules led us to probe whether there was a non-conformational origin to this heterogeneity. We determined that routine protocols in RNA preparation and purification, including UV shadowing and heat annealing, cause covalent modifications that alter folding behavior. By taking measures to avoid these treatments and by purifying away damaged P4-P6 molecules, we obtained a population of P4-P6 that gave near-uniform behavior in single molecule studies. Thus, the folding landscape of P4-P6 lacks multiple deep furrows that would trap different P4-P6 molecules in different conformations and contrasts with the molecular heterogeneity that has been seen in many smFRET studies of structured RNAs. The simplicity of P4-P6 allowed us to reliably determine the thermodynamic and kinetic effects of metal ions on folding and to now begin to build more detailed models for RNA folding behavior.
Collapse
Affiliation(s)
- Max Greenfeld
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
34
|
Westhof E, Masquida B, Jossinet F. Predicting and modeling RNA architecture. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003632. [PMID: 20504963 DOI: 10.1101/cshperspect.a003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.
| | | | | |
Collapse
|
35
|
Leung AKW, Kambach C, Kondo Y, Kampmann M, Jinek M, Nagai K. Use of RNA tertiary interaction modules for the crystallisation of the spliceosomal snRNP core domain. J Mol Biol 2010; 402:154-64. [PMID: 20643141 DOI: 10.1016/j.jmb.2010.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/25/2010] [Accepted: 07/07/2010] [Indexed: 10/19/2022]
Abstract
RNA is known to perform diverse roles in the cell, often as ribonucleoprotein (RNP) particles. While the crystal structure of these RNP particles could provide crucial insights into their functions, crystallographic work on RNP complexes is often hampered by difficulties in obtaining well-diffracting crystals. The small nuclear ribonucleoprotein (snRNP) core domain, acting as an assembly nucleus for the maturation of snRNPs, plays a crucial role in the biogenesis of four of the spliceosomal snRNPs. We have succeeded in crystallising the human U4 snRNP core domain containing seven Sm proteins and a truncated U4 snRNA variant. The most critical factor in our success in the crystallisation was the introduction of various tertiary interaction modules into the RNA that could promote crystal packing without altering the core structure. Here, we describe various strategies employed in our crystallisation effort that could be applied to crystallisation of other RNP particles.
Collapse
|
36
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 499] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
37
|
Wu JC, Gardner DP, Ozer S, Gutell RR, Ren P. Correlation of RNA secondary structure statistics with thermodynamic stability and applications to folding. J Mol Biol 2009; 391:769-83. [PMID: 19540243 PMCID: PMC2778063 DOI: 10.1016/j.jmb.2009.06.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/05/2009] [Accepted: 06/12/2009] [Indexed: 11/15/2022]
Abstract
The accurate prediction of the secondary and tertiary structure of an RNA with different folding algorithms is dependent on several factors, including the energy functions. However, an RNA higher-order structure cannot be predicted accurately from its sequence based on a limited set of energy parameters. The inter- and intramolecular forces between this RNA and other small molecules and macromolecules, in addition to other factors in the cell such as pH, ionic strength, and temperature, influence the complex dynamics associated with transition of a single stranded RNA to its secondary and tertiary structure. Since all of the factors that affect the formation of an RNAs 3D structure cannot be determined experimentally, statistically derived potential energy has been used in the prediction of protein structure. In the current work, we evaluate the statistical free energy of various secondary structure motifs, including base-pair stacks, hairpin loops, and internal loops, using their statistical frequency obtained from the comparative analysis of more than 50,000 RNA sequences stored in the RNA Comparative Analysis Database (rCAD) at the Comparative RNA Web (CRW) Site. Statistical energy was computed from the structural statistics for several datasets. While the statistical energy for a base-pair stack correlates with experimentally derived free energy values, suggesting a Boltzmann-like distribution, variation is observed between different molecules and their location on the phylogenetic tree of life. Our statistical energy values calculated for several structural elements were utilized in the Mfold RNA-folding algorithm. The combined statistical energy values for base-pair stacks, hairpins and internal loop flanks result in a significant improvement in the accuracy of secondary structure prediction; the hairpin flanks contribute the most.
Collapse
MESH Headings
- Algorithms
- Base Pairing
- Base Sequence
- Models, Molecular
- Models, Statistical
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- RNA, Ribosomal, 5S/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Johnny C. Wu
- The Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712-1062
| | - David P. Gardner
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology in the School of Biological Sciences, and the Institute for Cellular and Molecular Biology, University of Texas at Austin, 2401 Speedway, Austin, TX 78712, USA
| | - Stuart Ozer
- Microsoft, 1 Microsoft Way, Redmond, WA 98052
| | - Robin R. Gutell
- Center for Computational Biology and Bioinformatics, Section of Integrative Biology in the School of Biological Sciences, and the Institute for Cellular and Molecular Biology, University of Texas at Austin, 2401 Speedway, Austin, TX 78712, USA
| | - Pengyu Ren
- The Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712-1062
| |
Collapse
|
38
|
The dimeric proto-ribosome: Structural details and possible implications on the origin of life. Int J Mol Sci 2009; 10:2921-2934. [PMID: 19742176 PMCID: PMC2738903 DOI: 10.3390/ijms10072921] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/25/2009] [Indexed: 11/16/2022] Open
Abstract
A symmetric pocket-like entity, composed of two L-shaped RNA units, encircles the peptide synthesis site within the contemporary ribosome. This entity was suggested to be the vestige of a dimeric proto-ribosome, which could have formed spontaneously in the prebiotic world, catalyzing non-coded peptide bond formation and elongation. This structural element, beyond offering the initial step in the evolution of translation, is hypothesized here to be linked to the origin of life. By catalyzing the production of random peptide chains, the proto-ribosome could have enabled the formation of primary enzymes, launching a process of co-evolution of the translation apparatus and the proteins, thus presenting an alternative to the RNA world hypothesis.
Collapse
|
39
|
Šponer J, Zgarbová M, Jurečka P, Riley KE, Šponer JE, Hobza P. Reference Quantum Chemical Calculations on RNA Base Pairs Directly Involving the 2′-OH Group of Ribose. J Chem Theory Comput 2009; 5:1166-79. [DOI: 10.1021/ct800547k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Marie Zgarbová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Petr Jurečka
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Kevin E. Riley
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Judit E. Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| | - Pavel Hobza
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Department of Physical Chemistry, Palacky University, tr. Svobody 26, 771 46 Olomouc, Czech Republic, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center of Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic, Department of Chemistry, P.O. Box 23346, University of Puerto Rico, Rio Piedras, Puerto
| |
Collapse
|
40
|
Kieft JS. Comparing the three-dimensional structures of Dicistroviridae IGR IRES RNAs with other viral RNA structures. Virus Res 2009; 139:148-56. [PMID: 18672012 PMCID: PMC2673954 DOI: 10.1016/j.virusres.2008.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 11/17/2022]
Abstract
The intergenic region (IGR) internal ribosome entry site (IRES) RNAs do not require any of the canonical translation initiation factors to recruit the ribosome to the viral RNA, they eliminate the need for initiator tRNA, and they begin translation from the A-site. The function of these IRESs depends on a specific three-dimensional folded RNA structure. Thus, a complete understanding of the mechanisms of action of these IRESs requires that we understand their structure in detail. Recently, the structures of both domains of the IGR IRES RNAs were solved by X-ray crystallography, providing the first glimpse into an entire IRES RNA structure. Here, I present an analysis of these structures, emphasizing how the structures explain many aspects of IGR IRES function, discussing how these structures have similarities to motifs found in other viral RNAs, and illustrating how these structures give rise to new mechanistic hypotheses.
Collapse
Affiliation(s)
- Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Mail Stop 8101, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
41
|
Xin Y, Laing C, Leontis NB, Schlick T. Annotation of tertiary interactions in RNA structures reveals variations and correlations. RNA (NEW YORK, N.Y.) 2008; 14:2465-2477. [PMID: 18957492 PMCID: PMC2590958 DOI: 10.1261/rna.1249208] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 08/30/2008] [Indexed: 05/27/2023]
Abstract
RNA tertiary motifs play an important role in RNA folding and biochemical functions. To help interpret the complex organization of RNA tertiary interactions, we comprehensively analyze a data set of 54 high-resolution RNA crystal structures for motif occurrence and correlations. Specifically, we search seven recognized categories of RNA tertiary motifs (coaxial helix, A-minor, ribose zipper, pseudoknot, kissing hairpin, tRNA D-loop/T-loop, and tetraloop-tetraloop receptor) by various computer programs. For the nonredundant RNA data set, we find 613 RNA tertiary interactions, most of which occur in the 16S and 23S rRNAs. An analysis of these motifs reveals the diversity and variety of A-minor motif interactions and the various possible loop-loop receptor interactions that expand upon the tetraloop-tetraloop receptor. Correlations between motifs, such as pseudoknot or coaxial helix with A-minor, reveal higher-order patterns. These findings may ultimately help define tertiary structure restraints for RNA tertiary structure prediction. A complete annotation of the RNA diagrams for our data set is available at http://www.biomath.nyu.edu/motifs/.
Collapse
Affiliation(s)
- Yurong Xin
- Department of Chemistry, New York University, New York, New York 10012, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Analysis of individual RNA folding reactions reveals that, as in proteins, cooperative interactions selectively drive RNA toward its biologically active, native conformation. This new work establishes a platform for future investigations of the physical principles underlying the assembly of large RNA enzymes.
Collapse
|
43
|
Sattin BD, Zhao W, Travers K, Chu S, Herschlag D. Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc 2008; 130:6085-7. [PMID: 18429611 PMCID: PMC2835547 DOI: 10.1021/ja800919q] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All structured biological macromolecules must overcome the thermodynamic folding problem to populate a unique functional state among a vast ensemble of unfolded and alternate conformations. The exploration of cooperativity in protein folding has helped reveal and distinguish the underlying mechanistic solutions to this folding problem. Analogous dissections of RNA tertiary stability remain elusive, however, despite the central biological importance of folded RNA molecules and the potential to reveal fundamental properties of structured macromolecules via comparisons of protein and RNA folding. We report a direct quantitative measure of tertiary contact cooperativity in a folded RNA. We precisely measured the stability of an independently folding P4-P6 domain from the Tetrahymena thermophila group I intron by single molecule fluorescence resonance energy transfer (smFRET). Using wild-type and mutant RNAs, we found that cooperativity between the two tertiary contacts enhances P4-P6 stability by 3.2 +/- 0.2 kcal/mol.
Collapse
|
44
|
Geary C, Baudrey S, Jaeger L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 2008; 36:1138-52. [PMID: 18158305 PMCID: PMC2275092 DOI: 10.1093/nar/gkm1048] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 10/24/2007] [Accepted: 11/05/2007] [Indexed: 11/21/2022] Open
Abstract
Specific recognitions of GNRA tetraloops by small helical receptors are among the most widespread long-range packing interactions in large ribozymes. However, in contrast to GYRA and GAAA tetraloops, very few GNRA/receptor interactions have yet been identified to involve GGAA tetraloops in nature. A novel in vitro selection scheme based on a rigid self-assembling tectoRNA scaffold designed for isolation of intermolecular interactions with A-minor motifs has yielded new GGAA tetraloop-binding receptors with affinity in the nanomolar range. One of the selected receptors is a novel 12 nt RNA motif, (CCUGUG ... AUCUGG), that recognizes GGAA tetraloop hairpin with a remarkable specificity and affinity. Its physical and chemical characteristics are comparable to those of the well-studied '11nt' GAAA tetraloop receptor motif. A second less specific motif (CCCAGCCC ... GAUAGGG) binds GGRA tetraloops and appears to be related to group IC3 tetraloop receptors. Mutational, thermodynamic and comparative structural analysis suggests that natural and in vitro selected GNRA receptors can essentially be grouped in two major classes of GNRA binders. New insights about the evolution, recognition and structural modularity of GNRA and A-minor RNA-RNA interactions are proposed.
Collapse
Affiliation(s)
| | | | - Luc Jaeger
- Department of Chemistry and Biochemistry, Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106-9510, USA
| |
Collapse
|
45
|
Gilbert SD, Rambo RP, Van Tyne D, Batey RT. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 2008; 15:177-82. [PMID: 18204466 DOI: 10.1038/nsmb.1371] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 11/21/2007] [Indexed: 02/08/2023]
Abstract
In bacteria, numerous genes harbor regulatory elements in the 5' untranslated regions of their mRNA, termed riboswitches, which control gene expression by binding small-molecule metabolites. These sequences influence the secondary and tertiary structure of the RNA in a ligand-dependent manner, thereby directing its transcription or translation. The crystal structure of an S-adenosylmethionine-responsive riboswitch found predominantly in proteobacteria, SAM-II, has been solved to reveal a second means by which RNA interacts with this important cellular metabolite. Notably, this is the first structure of a complete riboswitch containing all sequences associated with both the ligand binding aptamer domain and the regulatory expression platform. Chemical probing of this RNA in the absence and presence of ligand shows how the structure changes in response to S-adenosylmethionine to sequester the ribosomal binding site and affect translational gene regulation.
Collapse
Affiliation(s)
- Sunny D Gilbert
- Department of Chemistry and Biochemistry, Campus Box 215, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
46
|
Kwon M, Strobel SA. Chemical basis of glycine riboswitch cooperativity. RNA (NEW YORK, N.Y.) 2008; 14:25-34. [PMID: 18042658 PMCID: PMC2151043 DOI: 10.1261/rna.771608] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 10/05/2007] [Indexed: 05/21/2023]
Abstract
The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers. Mutation of these residues altered both the cooperativity and binding affinity of the riboswitch. The data support a model in which the P1 helix of the first aptamer participates in a tertiary interaction important for cooperativity, while nucleotides in the P1 helix of the second aptamer interface with the expression platform. These data have direct analogy to well-characterized mutations in hemoglobin, which provides a framework for considering cooperativity in this RNA-based system.
Collapse
Affiliation(s)
- Miyun Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
47
|
Bhaskaran H, Russell R. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 2007; 449:1014-8. [PMID: 17960235 PMCID: PMC2581903 DOI: 10.1038/nature06235] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Accepted: 09/11/2007] [Indexed: 11/09/2022]
Abstract
DExD/H-box proteins are ubiquitously involved in RNA-mediated processes and use ATP to accelerate conformational changes in RNA. However, their mechanisms of action, and what determines which RNA species are targeted, are not well understood. Here we show that the DExD/H-box protein CYT-19, a general RNA chaperone, mediates ATP-dependent unfolding of both the native conformation and a long-lived misfolded conformation of a group I catalytic RNA with efficiencies that depend on the stabilities of the RNA species but not on specific structural features. CYT-19 then allows the RNA to refold, changing the distribution from equilibrium to kinetic control. Because misfolding is favoured kinetically, conditions that allow unfolding of the native RNA yield large increases in the population of misfolded species. Our results suggest that DExD/H-box proteins act with sufficient breadth and efficiency to allow structured RNAs to populate a wider range of conformations than would be present at equilibrium. Thus, RNAs may face selective pressure to stabilize their active conformations relative to inactive ones to avoid significant redistribution by DExD/H-box proteins. Conversely, RNAs whose functions depend on forming multiple conformations may rely on DExD/H-box proteins to increase the populations of less stable conformations, thereby increasing their overall efficiencies.
Collapse
Affiliation(s)
- Hari Bhaskaran
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
48
|
Travers KJ, Boyd N, Herschlag D. Low specificity of metal ion binding in the metal ion core of a folded RNA. RNA (NEW YORK, N.Y.) 2007; 13:1205-13. [PMID: 17616553 PMCID: PMC1924890 DOI: 10.1261/rna.566007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The structure and activity of nucleic acids depend on their interactions with metal ions. Fundamental to these interactions is the degree of specificity observed between the metal ions and nucleic acids, and a complete description of nucleic acid folding requires that we understand the nature of the interactions with metal ions, including specificity. The prior demonstration that high concentrations of monovalent cations prevent nonspecific association of divalent ions with nucleic acids provides a novel and powerful means to examine site-specific metal ion binding isolated from complicating effects of the ion atmosphere. Using these high monovalent cation solution conditions we have monitored the affinity of a series of divalent metal ions for two site-specific metal ion binding sites in the P4-P6 domain of the Tetrahymena group I intron ribozyme. The metal ion core of this highly structured RNA binds two divalent metal ions under these conditions. Despite multiple metal ion-RNA interactions observed in the X-ray crystallographic structure of P4-P6 RNA at the metal ion binding sites, these sites exhibit low specificity among Mn(2+), Mg(2+), Ca(2+), Ni(2+), and Zn(2+). Nevertheless, the largest divalent metal ions tested, Sr(2+) and Ba(2+), were excluded from binding, exhibiting affinities at least two orders of magnitude weaker than observed for the other metal ions. Thus, a picture emerges of two metal ion binding sites, each with a high tolerance for metal ions with different properties but also with limits to accommodation. These limits presumably arise from steric or electrostatic features of the metal ion binding sites.
Collapse
Affiliation(s)
- Kevin J Travers
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5307, USA
| | | | | |
Collapse
|
49
|
Sponer JE, Réblova K, Mokdad A, Sychrovský V, Leszczynski J, Sponer J. Leading RNA tertiary interactions: structures, energies, and water insertion of A-minor and P-interactions. A quantum chemical view. J Phys Chem B 2007; 111:9153-64. [PMID: 17602515 DOI: 10.1021/jp0704261] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complex molecular shapes of ribosomal RNA molecules are stabilized by recurrent types of tertiary interactions involving highly specific and conserved non-Watson-Crick base pairs, triplets, and quartets. We analyzed the intrinsic structure and stability of the P-motif and the four basic types of A-minor interactions (types I, II, III, and 0), which represent the most prominent RNA tertiary interaction patterns refined in the course of evolution. In the studied interactions, the electron correlation component of the stabilization usually exceeds the Hartree-Fock (HF) term, leading to a strikingly different balance of forces as compared to standard base pairing stabilized primarily by the HF term. In other words, the A-minor and P-interactions are considerably more influenced by the dispersion energy as compared to canonical base pairs, which makes them particularly suitable to zip the folded RNA structures that are substantially hydrated even in their interior. Continuum solvent COSMO calculations confirm that the stability of the canonical GC base pair is affected (reduced) by the continuum solvent screening considerably more than the stability of the A-minor interaction. Among the studied systems, the strong A-minor II and weak A-minor III interactions require water molecules to stabilize the experimental geometry. Gas-phase optimization of the canonical A-minor II A/CG triplet without water results in a geometry that is clearly inconsistent with the RNA structure. The gas-phase structure of the P-interaction and the most stable A-minor I interaction nicely agrees with the geometries occurring in the ribosome. A-minor I can also adopt an alternative water-mediated substate rather often observed in X-ray and molecular dynamics studies. The A-minor I water bridge, however, does not appear to stabilize the tertiary contact, and its role is to provide structural flexibility to this binding pattern within the context of the RNA structure. Interestingly, the insertion of a polar water molecule in the A-minor I A/CG tertiary contact occurring in the A/C tertiary pair is stabilized primarily by the HF (electrostatic) interaction energy, while the dispersion-controlled A/G contact remains firmly bound. Thus, the intrinsic balance of forces as revealed by quantum mechanics (QM) calculations nicely correlates with many behavioral aspects of the studied interactions inside RNA. The comparison of interaction energies computed using quantum chemistry and an AMBER force field reveals that common molecular mechanics calculations perform rather well, except that the strength of the P-interaction is modestly overestimated. We also briefly discuss the non-negligible methodological differences when evaluating simple base-base nucleic acids base pairs and the complex RNA tertiary base pairing patterns using QM procedures.
Collapse
Affiliation(s)
- Judit E Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 61265 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Ace K, Sutherland JD. Exploratory studies to investigate a linked prebiotic origin of RNA and coded peptides. 3rd communication. Behaviour of 5-amino-1H-imidazole-4-carbonitrile derivatives. Chem Biodivers 2007; 1:1678-93. [PMID: 17191808 DOI: 10.1002/cbdv.200490126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potentially prebiotic synthesis of pyrimidine ribonucleotides by stepwise nucleobase assembly on arabinose-3-phosphate derivatives has been demonstrated in previous work. The generation of xylose-2-phosphate derivatives by aldolisation, and the behaviour of these compounds under the conditions of pyrimidine nucleobase assembly have also been described. In this paper, the scope for generation of purine nucleotides via 3,3'-anhydro-xylo-nucleotides is investigated. In neutral D2O solution, the potential intermediate 47 (Schemes 6 and 8) undergoes H-C2 --> D-C2 exchange, but no appreciable reaction with cyanide or cyanamide occurs. The exchange chemistry expands options for purine nucleobase assembly on sugar phosphate scaffolds.
Collapse
Affiliation(s)
- Karl Ace
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | |
Collapse
|