1
|
Izutsu KI, Yoshida H, Abe Y, Yamamoto E, Sato Y, Ando D. Application of the Thermal Analysis of Frozen Aqueous Solutions to Assess the Miscibility of Hyaluronic Acid and Polymers Used for Dissolving Microneedles. Pharmaceutics 2024; 16:1280. [PMID: 39458610 PMCID: PMC11510125 DOI: 10.3390/pharmaceutics16101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The combination of multiple polymers is anticipated to serve as a means to diversify the physical properties and functionalities of dissolving microneedles. The mixing state of components is considered as a crucial factor in determining their suitability. Objectives: The purpose of this study was to elucidate whether thermal analysis of frozen aqueous solutions can appropriately predict the miscibility of hyaluronic acid (HA) and other polymers used for dissolving microneedles prepared by a micromolding method. Methods: Aliquots of aqueous polymer solutions were applied for thermal analysis by heating the samples from -70 °C at 5 °C/min to obtain the transition temperature of amorphous polymers and/or the crystallization/melting peaks of polymers (e.g., polyethylene glycol (PEG)). Films and dissolving microneedles were prepared by air-drying of the aqueous polymer solutions to assess the polymer miscibility in the solids. Results: The frozen aqueous single-solute HA solutions exhibited a clear Tg' (the glass transition temperature of maximally freeze-concentrated solutes) at approximately -20 °C. The combination of HA with several polymers (e.g., dextran FP40, DEAE-dextran, dextran sulfate, and gelatin) showed a single Tg' transition at temperatures that shifted according to their mass ratio, which strongly suggested the mixing of the freeze-concentrated solutes. By contrast, the observation of two Tg' transitions in a scan strongly suggested the separation of HA and polyvinylpyrrolidone (PVP) or HA and polyacrylic acid (PAA) into different freeze-concentrated phases, each of which was rich in an amorphous polymer. The combination of HA and PEG exhibited the individual physical changes of the polymers. The polymer combinations that showed phase separation in the frozen solution formed opaque films and microneedles upon their preparation by air-drying. Coacervation occurring in certain polymer combinations was also suggested as a factor contributing to the formation of cloudy films. Conclusions: Freezing aqueous polymer solutions creates a highly concentrated polymer environment that mimics the matrix of dissolving microneedles prepared through air drying. This study demonstrated that thermal analysis of the frozen solution offers insights into the mixing state of condensed polymers, which can be useful for predicting the physical properties of microneedles.
Collapse
Affiliation(s)
- Ken-ichi Izutsu
- School of Pharmacy at Narita, International University of Health and Welfare, Kozunomori 4-3, Narita 286-8686, Japan
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Hiroyuki Yoshida
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Eiichi Yamamoto
- Division of Medical Devices, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan;
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| | - Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki 210-9501, Japan; (H.Y.); (Y.A.); (Y.S.); (D.A.)
| |
Collapse
|
2
|
Zhang G, Chu X. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins. J Chem Phys 2024; 161:095102. [PMID: 39225535 DOI: 10.1063/5.0220861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) are prevalent participants in liquid-liquid phase separation due to their inherent potential for promoting multivalent binding. Understanding the underlying mechanisms of phase separation is challenging, as phase separation is a complex process, involving numerous molecules and various types of interactions. Here, we used a simplified coarse-grained model of IDPs to investigate the thermodynamic stability of the dense phase, conformational properties of IDPs, chain dynamics, and kinetic rates of forming condensates. We focused on the IDP system, in which the oppositely charged IDPs are maximally segregated, inherently possessing a high propensity for phase separation. By varying interaction strengths, salt concentrations, and temperatures, we observed that IDPs in the dense phase exhibited highly conserved conformational characteristics, which are more extended than those in the dilute phase. Although the chain motions and global conformational dynamics of IDPs in the condensates are slow due to the high viscosity, local chain flexibility at the short timescales is largely preserved with respect to that at the free state. Strikingly, we observed a non-monotonic relationship between interaction strengths and kinetic rates for forming condensates. As strong interactions of IDPs result in high stable condensates, our results suggest that the thermodynamics and kinetics of phase separation are decoupled and optimized by the speed-stability balance through underlying molecular interactions. Our findings contribute to the molecular-level understanding of phase separation and offer valuable insights into the developments of engineering strategies for precise regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Guoqing Zhang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Zhang Z, Lynch CJ, Huo Y, Chakraborty S, Cremer PS, Mozhdehi D. Modulating Phase Behavior in Fatty Acid-Modified Elastin-like Polypeptides (FAMEs): Insights into the Impact of Lipid Length on Thermodynamics and Kinetics of Phase Separation. J Am Chem Soc 2024; 146:5383-5392. [PMID: 38353994 PMCID: PMC10910508 DOI: 10.1021/jacs.3c12791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Although post-translational lipidation is prevalent in eukaryotes, its impact on the liquid-liquid phase separation of disordered proteins is still poorly understood. Here, we examined the thermodynamic phase boundaries and kinetics of aqueous two-phase system (ATPS) formation for a library of elastin-like polypeptides modified with saturated fatty acids of different chain lengths. By systematically altering the physicochemical properties of the attached lipids, we were able to correlate the molecular properties of lipids to changes in the thermodynamic phase boundaries and the kinetic stability of droplets formed by these proteins. We discovered that increasing the chain length lowers the phase separation temperature in a sigmoidal manner due to alterations in the unfavorable interactions between protein and water and changes in the entropy of phase separation. Our kinetic studies unveiled remarkable sensitivity to lipid length, which we propose is due to the temperature-dependent interactions between lipids and the protein. Strikingly, we found that the addition of just a single methylene group is sufficient to allow tuning of these interactions as a function of temperature, with proteins modified with C7-C9 lipids exhibiting non-Arrhenius dependence in their phase separation, a behavior that is absent for both shorter and longer fatty acids. This work advances our theoretical understanding of protein-lipid interactions and opens avenues for the rational design of lipidated proteins in biomedical paradigms, where precise control over the phase separation is pivotal.
Collapse
Affiliation(s)
- Zhe Zhang
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Christopher J. Lynch
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Ying Huo
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Somya Chakraborty
- Fayetteville-Manlius
High School, Manlius, New York 13104, United States
| | - Paul S. Cremer
- Department
of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Davoud Mozhdehi
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- BioInspired
Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
4
|
Cai C, Ma S, Li F, Tan Z. Aqueous two-phase system based on pH-responsive polymeric deep eutectic solvent for efficient extraction of aromatic amino acids. Food Chem 2024; 430:137029. [PMID: 37523819 DOI: 10.1016/j.foodchem.2023.137029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Recently, more and more attention has been paid to the construction of stimulus-responsive aqueous two-phase systems (ATPSs) for the extraction and separation of various bioactive compounds. In this work, an ATPS based on a pH-responsive polymeric deep eutectic solvent (PDES) and phosphate salt was constructed for the first time. The pH-response properties of the PDES were studied through a series of experiments. Additionally, the phase formation mechanism was studied through experiments and simulations. This novel PDES-based ATPS was used to extract aromatic amino acids (AAAs). The extraction efficiencies for tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) reached 95.25%, 99.05%, and 99.10%, respectively. By adjusting pH, PDES was recycled and reused. This novel and recyclable PDES-based ATPS could be an efficient method for the extraction of AAAs, which could also be applied used as a versatile and sustainable method for the extraction of other bioactive compounds in the future.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shaoping Ma
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
5
|
Degoulange D, Pandya R, Deschamps M, Skiba D, Gallant B, Gigan S, de Aguiar H, Grimaud A. Direct imaging of micrometer-thick interfaces in salt-salt aqueous biphasic systems. Proc Natl Acad Sci U S A 2023; 120:e2220662120. [PMID: 37068232 PMCID: PMC10151592 DOI: 10.1073/pnas.2220662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023] Open
Abstract
Unlike the interface between two immiscible electrolyte solutions (ITIES) formed between water and polar solvents, molecular understanding of the liquid-liquid interface formed for aqueous biphasic systems (ABSs) is relatively limited and mostly relies on surface tension measurements and thermodynamic models. Here, high-resolution Raman imaging is used to provide spatial and chemical resolution of the interface of lithium chloride - lithium bis(trifluoromethanesulfonyl)imide - water (LiCl-LiTFSI-water) and HCl-LiTFSI-water, prototypical salt-salt ABSs found in a range of electrochemical applications. The concentration profiles of both TFSI anions and water are found to be sigmoidal thus not showing any signs of a positive adsorption for both salts and solvent. More striking, however, is the length at which the concentration profiles extend, ranging from 11 to 2 µm with increasing concentrations, compared to a few nanometers for ITIES. We thus reveal that unlike ITIES, salt-salt ABSs do not have a molecularly sharp interface but rather form an interphase with a gradual change of environment from one phase to the other. This knowledge represents a major stepping-stone in the understanding of aqueous interfaces, key for mastering ion or electron transfer dynamics in a wide range of biological and technological settings including novel battery technologies such as membraneless redox flow and dual-ion batteries.
Collapse
Affiliation(s)
- Damien Degoulange
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
| | - Raj Pandya
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
- Department of Physics, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, United Kingdom
| | - Michael Deschamps
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- CNRS, Conditions Extrêmes et Matériaux : Haute Température et Irradiation, UPR3079, Université d'Orléans,45071Orléans, France
| | - Dhyllan A. Skiba
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Betar M. Gallant
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sylvain Gigan
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Hilton B. de Aguiar
- Laboratoire Kastler Brossel, Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Collège de France,75005Paris, France
| | - Alexis Grimaud
- Chimie du Solide et de l’Energie, UMR 8260, Collège de France,75231 Cedex 05Paris, France
- Sorbonne Université,75006Paris, France
- Réseau sur le Stockage Electrochimique de l’Energie, CNRS FR3459,80039Amiens Cedex, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA02467
| |
Collapse
|
6
|
Learning the relationship between nanoscale chemical patterning and hydrophobicity. Proc Natl Acad Sci U S A 2022; 119:e2200018119. [PMID: 36409904 PMCID: PMC9860318 DOI: 10.1073/pnas.2200018119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hydrophobicity of proteins and similar surfaces, which display chemical heterogeneity at the nanoscale, drives countless aqueous interactions and assemblies. However, predicting how surface chemical patterning influences hydrophobicity remains a challenge. Here, we address this challenge by using molecular simulations and machine learning to characterize and model the hydrophobicity of a diverse library of patterned surfaces, spanning a wide range of sizes, shapes, and chemical compositions. We find that simple models, based only on polar content, are inaccurate, whereas complex neural network models are accurate but challenging to interpret. However, by systematically incorporating chemical correlations between surface groups into our models, we are able to construct a series of minimal models of hydrophobicity, which are both accurate and interpretable. Our models highlight that the number of proximal polar groups is a key determinant of hydrophobicity and that polar neighbors enhance hydrophobicity. Although our minimal models are trained on particular patch size and shape, their interpretability enables us to generalize them to rectangular patches of all shapes and sizes. We also demonstrate how our models can be used to predict hot-spot locations with the largest marginal contributions to hydrophobicity and to design chemical patterns that have a fixed polar content but vary widely in their hydrophobicity. Our data-driven models and the principles they furnish for modulating hydrophobicity could facilitate the design of novel materials and engineered proteins with stronger interactions or enhanced solubilities.
Collapse
|
7
|
Sun S, GrandPre T, Limmer DT, Groves JT. Kinetic frustration by limited bond availability controls the LAT protein condensation phase transition on membranes. SCIENCE ADVANCES 2022; 8:eabo5295. [PMID: 36322659 PMCID: PMC9629719 DOI: 10.1126/sciadv.abo5295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
LAT is a membrane-linked scaffold protein that undergoes a phase transition to form a two-dimensional protein condensate on the membrane during T cell activation. Governed by tyrosine phosphorylation, LAT recruits various proteins that ultimately enable condensation through a percolation network of discrete and selective protein-protein interactions. Here, we describe detailed kinetic measurements of the phase transition, along with coarse-grained model simulations, that reveal that LAT condensation is kinetically frustrated by the availability of bonds to form the network. Unlike typical miscibility transitions in which compact domains may coexist at equilibrium, the LAT condensates are dynamically arrested in extended states, kinetically trapped out of equilibrium. Modeling identifies the structural basis for this kinetic arrest as the formation of spindle arrangements, favored by limited multivalent binding interactions along the flexible, intrinsically disordered LAT protein. These results reveal how local factors controlling the kinetics of LAT condensation enable formation of different, stable condensates, which may ultimately coexist within the cell.
Collapse
Affiliation(s)
- Simou Sun
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| | - Trevor GrandPre
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David T. Limmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Kunz P, Stuckenberger E, Hausmann K, Gentiluomo L, Neustrup M, Michalakis S, Rieser R, Romeijn S, Wichmann C, Windisch R, Hawe A, Jiskoot W, Menzen T. Understanding opalescence measurements of biologics – A comparison study of methods, standards, and molecules. Int J Pharm 2022; 628:122321. [DOI: 10.1016/j.ijpharm.2022.122321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
9
|
Multivalent interactions between molecular components involved in fast endophilin mediated endocytosis drive protein phase separation. Nat Commun 2022; 13:5017. [PMID: 36028485 PMCID: PMC9418313 DOI: 10.1038/s41467-022-32529-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
A specific group of transmembrane receptors, including the β1-adrenergic receptor (β1-AR), is internalized through a non-clathrin pathway known as Fast Endophilin Mediated Endocytosis (FEME). A key question is: how does the endocytic machinery assemble and how is it modulated by activated receptors during FEME. Here we show that endophilin, a major regulator of FEME, undergoes a phase transition into liquid-like condensates, which facilitates the formation of multi-protein assemblies by enabling the phase partitioning of endophilin binding proteins. The phase transition can be triggered by specific multivalent binding partners of endophilin in the FEME pathway such as the third intracellular loop (TIL) of the β1-AR, and the C-terminal domain of lamellipodin (LPD). Other endocytic accessory proteins can either partition into, or target interfacial regions of, these condensate droplets, and LPD also phase separates with the actin polymerase VASP. On the membrane, TIL promotes protein clustering in the presence of endophilin and LPD C-terminal domain. Our results demonstrate how the multivalent interactions between endophilin, LPD, and TIL regulate protein assembly formation on the membrane, providing mechanistic insights into the priming and initiation steps of FEME. Here the authors show that protein phase separation is a key mechanism in cellular receptor internalization via fast endophilin mediated endocytosis (FEME). Phase separation facilitates multivalent FEME-protein assembly in this clathrin-independent pathway.
Collapse
|
10
|
Ali S, Mao Y, Prabhu VM. Pinhole mirror-based ultra-small angle light scattering setup for simultaneous measurement of scattering and transmission. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:044104. [PMID: 35489920 DOI: 10.1063/5.0086146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
An ultra-small angle light scattering setup with the ability of simultaneous registration of scattered light by a charge-coupled device camera and the transmitted direct beam by a pin photodiode was developed. A pinhole mirror was used to reflect the scattered light; the transmitted direct beam was focused and passed through the central pinhole with a diameter of 500 μm. Time-resolved static light scattering measurement was carried out over the angular range 0.2° ≤θ≤ 8.9° with a time resolution of ∼33 ms. The measured scattering pattern in the q-range between 5 × 10-5 and 1.5 × 10-3 nm-1 enables investigating structures of few micrometers to submillimeter, where q is the scattering vector. A LabVIEW-based graphical user interface was developed, which integrates the data acquisition of the scattering pattern and the transmitted intensity. The Peltier temperature-controlled sample cells of varying thicknesses allow for a rapid temperature equilibration and minimization of multiple scattering. The spinodal decomposition for coacervation (phase separation) kinetics of an aqueous mixture of oppositely charged polyelectrolytes was demonstrated.
Collapse
Affiliation(s)
- Samim Ali
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Yimin Mao
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| | - Vivek M Prabhu
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
11
|
Khodaverdi M, Hossain MS, Zhang Z, Martino RP, Nehls CW, Mozhdehi D. Pathway‐Selection for Programmable Assembly of Genetically Encoded Amphiphiles by Thermal Processing. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Masoumeh Khodaverdi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Md Shahadat Hossain
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Zhe Zhang
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Robert P. Martino
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Connor W. Nehls
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
| | - Davoud Mozhdehi
- Department of Chemistry Syracuse University Center for Science and Technology, 111 Syracuse NY 13244 USA
- BioInspired Syracuse Institute for Material and Living Systems Syracuse University Syracuse NY 13244 USA
| |
Collapse
|
12
|
Scannell MJ, Hyatt MW, Budyak IL, Woldeyes MA, Wang Y. Revisit PEG-Induced Precipitation Assay for Protein Solubility Assessment of Monoclonal Antibody Formulations. Pharm Res 2021; 38:1947-1960. [PMID: 34647231 DOI: 10.1007/s11095-021-03119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Protein solubility is an important attribute of pharmaceutical monoclonal antibody (MAb) formulations, particularly at high MAb concentrations. PEG-induced protein precipitation has been routinely used to assess protein solubility. To provide insights for better understanding and implementation of PEG-induced protein precipitation assay, this work compares different solubility measures and examines their relevance to loss of protein solubility in concentrated formulations. METHODS Solubility of a MAb in 15 formulations was evaluated using PEG-induced precipitation assay. Three apparent protein solubility measures, the middle-point and onset PEG concentrations (cmid and conset) as well as the binding free energy (μB), were obtained from the PEG-induced protein precipitation assay and compared to the DLS protein interaction parameter (kD). Visual inspection of loss of protein solubility in concentrated formulations during storage was used to further examine the discrepancy of protein solubility ranking by these measures. RESULTS PEG-induced precipitation assay predicted overall protein solubility ranking similar to that by DLS kD. However, for three formulations with ionic excipients NaCl, Arg·Cl, and Arg·Glu·Cl, PEG-induced precipitation assay yielded more accurate predictions compared to DLS kD measurements. Furthermore, μB showed superior ability in distinguishing protein solubility for these formulations. CONCLUSIONS This study demonstrated good correlations between the protein solubility measures obtained from PEG-induced precipitation experiments and DLS kD measurement. It also provides one example in which protein solubility ranking by binding free energy is more accurate than the other measures. The results support the theoretical proposition that μB has a potential to serve as standard protein solubility measure.
Collapse
Affiliation(s)
- Martha J Scannell
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA
| | - Matthew W Hyatt
- Lilly Research Laboratories, Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ivan L Budyak
- Lilly Research Laboratories, Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Mahlet A Woldeyes
- Lilly Research Laboratories, Bioproduct Research and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Ying Wang
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC, 28403, USA.
| |
Collapse
|
13
|
Ahmed T, Yamanishi C, Kojima T, Takayama S. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:231-255. [PMID: 33950741 DOI: 10.1146/annurev-anchem-091520-101759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phase separation is a common occurrence in nature. Synthetic and natural polymers, salts, ionic liquids, surfactants, and biomacromolecules phase separate in water, resulting in an aqueous two-phase system (ATPS). This review discusses the properties, handling, and uses of ATPSs. These systems have been used for protein, nucleic acid, virus, and cell purification and have in recent years found new uses for small organics, polysaccharides, extracellular vesicles, and biopharmaceuticals. Analytical biochemistry applications such as quantifying protein-protein binding, probing for conformational changes, or monitoring enzyme activity have been performed with ATPSs. Not only are ATPSs biocompatible, they also retain their properties at the microscale, enabling miniaturization experiments such as droplet microfluidics, bacterial quorum sensing, multiplexed and point-of-care immunoassays, and cell patterning. ATPSs include coacervates and may find wider interest in the context of intracellular phase separation and origin of life. Recent advances in fundamental understanding and in commercial application are also considered.
Collapse
Affiliation(s)
- Tasdiq Ahmed
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Cameron Yamanishi
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Taisuke Kojima
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
| | - Shuichi Takayama
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA;
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
14
|
Fahim A, Annunziata O. Effect of a Good buffer on the fate of metastable protein-rich droplets near physiological composition. Int J Biol Macromol 2021; 186:519-527. [PMID: 34265335 DOI: 10.1016/j.ijbiomac.2021.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Metastable protein-rich microdroplets are produced from liquid-liquid phase separation (LLPS) of protein aqueous solutions. These globules can be intermediates for the formation of other protein-rich phases. Lysozyme aqueous solutions undergo LLPS around 0 °C in the presence of NaCl near physiological conditions. Here, it is shown that insertion of small amounts of 4-(2-hydroxyethyl)-1-piperazineethanesulfonate (HEPES, 0.1 M) as a second additive to lysozyme-NaCl-water solutions near physiological ionic strength (0.2 M) is an essential step for triggering conversion of protein-rich droplets into another phase. Specifically, LLPS induced by cooling reproducibly leads to a rapid and high-yield formation of compact tetragonal crystalline microparticles only in the presence of HEPES. These microcrystals exhibit small size (1-3 μm), narrow size distribution and guest-binding properties. The temperature-concentration phase diagram shows a characteristic topology with LLPS boundary metastable with respect to tetragonal microcrystals, which in turn become less stable than rod-shaped orthorhombic crystals above 40 °C. Interestingly, dynamic light scattering, hydrogen-ion titrations and isothermal titration calorimetry reveal that lysozyme-HEPES interactions were found to be weakly attractive and exothermic. Our findings indicate that additives of salting-in type can represent an important factor controlling the fate of metastable protein-rich microdroplets relevant to drug formulations, femtosecond crystallography, and potential implications in protein-driven cytoplasmic compartmentalization.
Collapse
Affiliation(s)
- Aisha Fahim
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie St., Sid Richardson Bldg. #438, Fort Worth, TX 76129, USA
| | - Onofrio Annunziata
- Department of Chemistry and Biochemistry, Texas Christian University, 2950 W. Bowie St., Sid Richardson Bldg. #438, Fort Worth, TX 76129, USA..
| |
Collapse
|
15
|
Kingsbury JS, Lantz MM, Saini A, Wang MZ, Gokarn YR. Characterization of Opalescence in low Volume Monoclonal Antibody Solutions Enabled by Microscale Nephelometry. J Pharm Sci 2021; 110:3176-3182. [PMID: 34004217 DOI: 10.1016/j.xphs.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/16/2022]
Abstract
Monoclonal antibody (mAb)-based drugs are often prone to unfavorable solution behaviors including high viscosity, opalescence, phase separation, and aggregation at the high concentrations needed to enable patient-centric subcutaneous dosage forms. Given that these can have a detrimental impact on manufacturability, stability, and delivery, approaches to identifying, monitoring, and controlling these behaviors during drug development are critical. Opalescence presents a significant challenge due to its relationship to liquid-liquid phase separation. Quantitative characterization of opalescence via turbidimetry is often restrictive due to large volume requirements (>2 mL) and alternative microscale approaches based on light transmittance (Eckhardt et al., J Pharm Sci Technol. 1994, 48: 64-70) may pose challenging with respect to accuracy. To address the need for accurate and quantitative microscale opalescence measurements, we have evaluated the use of a 'de-tuned' static light scattering detector which requires <10 μL sample per measurement. We show that tuning of the laser power to a range far below that of traditional light scattering measurements results in a stable detector response that can be accurately calibrated to the nephelometric turbidity unit (NTU) scale using appropriate standards. The calibrated detector signal yields NTU values for mAbs and other protein solutions that are comparable to a commercial turbidimeter. We used this microscale approach to characterize the opalescence of 48 commercial mAb drug products and found that the majority have opalescence below 15 NTU. However, in products with mAb concentrations greater than 75 mg/mL, a broad range of opalescence was observed, in a few cases greater than 20 NTU. These measurements as well as nephelometric characterization of several IgG1 and IgG4 mAbs across a broad pH range highlight subclass-specific tendencies toward opalescence in high concentration solutions.
Collapse
Affiliation(s)
| | | | - Amandeep Saini
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA
| | - Michael Z Wang
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA.
| | - Yatin R Gokarn
- Global CMC Development, Sanofi, Framingham, MA, 01701 USA
| |
Collapse
|
16
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
17
|
The effects of cosolutes and crowding on the kinetics of protein condensate formation based on liquid-liquid phase separation: a pressure-jump relaxation study. Sci Rep 2020; 10:17245. [PMID: 33057154 PMCID: PMC7566631 DOI: 10.1038/s41598-020-74271-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Biomolecular assembly processes based on liquid-liquid phase separation (LLPS) are ubiquitous in the biological cell. To fully understand the role of LLPS in biological self-assembly, it is necessary to characterize also their kinetics of formation and dissolution. Here, we introduce the pressure-jump relaxation technique in concert with UV/Vis and FTIR spectroscopy as well as light microscopy to characterize the evolution of LLPS formation and dissolution in a time-dependent manner. As a model system undergoing LLPS we used the globular eye-lens protein γD-crystallin. As cosolutes and macromolecular crowding are known to affect the stability and dynamics of biomolecular condensates in cellulo, we extended our kinetic study by addressing also the impact of urea, the deep-sea osmolyte trimethylamine-N-oxide (TMAO) and a crowding agent on the transformation kinetics of the LLPS system. As a prerequisite for the kinetic studies, the phase diagram of γD-crystallin at the different solution conditions also had to be determined. The formation of the droplet phase was found to be a very rapid process and can be switched on and off on the 1-4 s timescale. Theoretical treatment using the Johnson-Mehl-Avrami-Kolmogorov model indicates that the LLPS proceeds via a diffusion-limited nucleation and growth mechanism at subcritical protein concentrations, a scenario which is also expected to prevail within biologically relevant crowded systems. Compared to the marked effect the cosolutes take on the stability of the LLPS region, their effect at biologically relevant concentrations on the phase transformation kinetics is very small, which might be a particular advantage in the cellular context, as a fast switching capability of the transition should not be compromised by the presence of cellular cosolutes.
Collapse
|
18
|
Chao Y, Shum HC. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chem Soc Rev 2020; 49:114-142. [DOI: 10.1039/c9cs00466a] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes recent advances of aqueous two-phase systems (ATPSs), particularly their interfaces, with a focus on biomedical applications.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| | - Ho Cheung Shum
- Department of Mechanical Engineering
- The University of Hong Kong
- China
| |
Collapse
|