1
|
Qureshi Z, Jamil A, Altaf F, Siddique R. Meta-analysis of Therapeutic Approaches in Acute Myeloid Leukemia: Unveiling Trends and Predictors of Treatment Response. Am J Clin Oncol 2025; 48:242-256. [PMID: 40162631 DOI: 10.1097/coc.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
OBJECTIVE To elucidate emerging trends and predictors for optimizing treatment strategies for acute myeloid leukemia (AML). METHOD A literature search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases. Bias assessment was conducted using Cochrane's risk of bias tool, while statistical analyses were performed using Review Manager and Comprehensive Meta-Analysis software. RESULTS We included 44 studies and the pooled results showed that high-dose cytarabine (HDAC) in induction therapy significantly improved the complete remission (CR) rate than standard-dose cytarabine (SDAC) in younger adults but not older adults (OR: 1.29, 95% CI: 1.12-1.49, P =0.0004 and OR: 1.02, 95% CI: 0.80-1.29, P =0.87, respectively). In consolidation therapy, HDAC showed a significant benefit in event-free survival (EFS) over SDAC (RR: 1.30, 95% CI: 1.04-1.62, P =0.02). The pooled analysis also revealed that idarubicin (IDR) was associated with improved CR rates than daunorubicin (DNR) (OR: 1.34, 95% CI: 1.02-1.76, P =0.04). However, the results do not substantiate the claim that IDR is better than mitoxantrone (MTZ) or that DNR is superior to MTZ in inducing CR (OR: 0.88, 95% CI: 0.72-1.08, P =0.22 and OR: 0.85, 95% CI: 0.72-1.01, P =0.06, respectively). The evidence has also shown that the pooled composite complete response (CRc) rates for FLT3 inhibitors such as sorafenib, gilteritinib, and quizartinib were 56%, 31%, and 36%, respectively. The pooled results further showed that the overall CRc for patients receiving IDH inhibitors and immune checkpoint inhibitors were 49.6% (95% CI: 37-63) and 26% (95% CI: 18.7-35), respectively. CONCLUSION Chemotherapy, targeted therapy, and immunotherapy are valuable treatment options for AML patients. However, the efficacy of these AML treatments may vary depending on AML status and patient characteristics such as age and cytogenetic risk.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre Watertown
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY
| | | |
Collapse
|
2
|
Hoffmann GV, Gottschlich A, Subklewe M, Kobold S. Novel approaches to CAR T cell target identification in acute myeloid leukemia. Curr Opin Pharmacol 2025; 82:102524. [PMID: 40311558 DOI: 10.1016/j.coph.2025.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Identifying safe and effective CAR T cell targets in acute myeloid leukemia (AML) is challenging due to the disease's complexity and overlap with normal hematopoiesis. This review highlights advances in target discovery for AML, emphasizing innovative approaches. Structural surfaceomics identifies tumor-specific protein conformations, while AI-driven single-cell RNA sequencing integrates multi-source data to pinpoint optimal targets. Refined cell surface capture technology maps the AML surfaceome without relying on predefined antibodies. These strategies enhance CAR T cell specificity and minimize off-tumor effects, offering promising pathways for safer and more effective AML treatments and broader cancer therapies.
Collapse
Affiliation(s)
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
3
|
Sheth AS, Chan KK, Liu S, Wan J, Angus SP, Rhodes SD, Mitchell DK, Davis C, Ridinger M, Croucher PJ, Zeidan AM, Wijeratne A, Qian S, Tran NT, Sierra Potchanant EA. PLK1 Inhibition Induces Synthetic Lethality in Fanconi Anemia Pathway-Deficient Acute Myeloid Leukemia. CANCER RESEARCH COMMUNICATIONS 2025; 5:648-667. [PMID: 40111122 PMCID: PMC12011380 DOI: 10.1158/2767-9764.crc-24-0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/29/2024] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
SIGNIFICANCE This work demonstrates that FA pathway mutations, which are frequently observed in sporadic AML, induce hypersensitivity to PLK1 inhibition, providing rationale for a novel synthetic lethal therapeutic strategy for this patient population.
Collapse
Affiliation(s)
- Aditya S. Sheth
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ka-Kui Chan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steve P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Amer M. Zeidan
- Yale University and Yale Cancer Center, New Haven, Connecticut
| | - Aruna Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ngoc Tung Tran
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth A. Sierra Potchanant
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Stefaniuk P, Muzyka-Kasietczuk J, Koczkodaj D, Hus M, Podhorecka M. Reading Between the Lines: Complete Blood Count-Derived Parameters as Prognostic Factors in Patients With Newly Diagnosed Acute Myeloid Leukemia. Clin Med Insights Oncol 2025; 19:11795549251321360. [PMID: 40144779 PMCID: PMC11938486 DOI: 10.1177/11795549251321360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/23/2025] [Indexed: 03/28/2025] Open
Abstract
Background Research proved the prognostic significance of the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and red blood cell distribution width (RDW) in some hematological malignancies. This study aimed to analyze the role of pretreatment NLR, LMR, PLR, RDW coefficient of variation (RDW-CV), and RDW standard deviation (RDW-SD) as prognostic markers for acute myeloid leukemia (AML). Methods This retrospective cohort study included 204 patients newly diagnosed with AML in the Department of Hematooncology and Bone Marrow Transplantation of the Medical University of Lublin. Results In the univariate models, higher RDW-CV and lower LMR predicted a poorer response to induction chemotherapy (odds ratio [OR] = 1.21, 95% confidence interval [CI95] = [1.09-2.36], P < .001; OR = 0.95, CI95 = [0.89-0.99], P = .045, respectively). In the multivariate model, age of diagnosis, ECOG (Performance Status Assessment by Eastern Cooperative Oncology Group) score, cytogenetic risk, NLR, and RDW-CV affected the odds of no response to chemotherapy significantly. The risk of progression was influenced by NLR and RDW-CV in the univariate analysis (hazard ratio [HR] = 1.20, CI95 = [1.09-1.33], P < .001; HR = 1.10, CI95 = [1.04-1.17], P = .002, respectively). In the multivariate settings, cytogenetic risk, leukocyte count, and RDW-CV affected progression free survival (PFS) significantly. Based on univariate models, the risk of death, when overall survival (OS) was taken into account, was influenced by NLR, LMR, and RDW-CV (HR = 1.05, CI95 = [1.00-1.09], P = .034; HR = 0.94, CI95 = [0.89-0.98], P = .010; HR = 1.06, CI95 = [1.01-1.10], P = .014, respectively). Conclusions Higher NLR, higher RDW, lower LMR, and possibly lower PLR are poor prognostic factors that may help in the risk stratification of patients with AML.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Family Medicine, Medical University of Lublin, Lublin, Poland
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Justyna Muzyka-Kasietczuk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Dorota Koczkodaj
- Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Caliskan G, Pawitan Y, Vu TN. Similarities and differences of bone marrow and peripheral blood samples from acute myeloid leukemia patients in terms of cellular heterogeneity and ex-vivo drug sensitivity. EJHAEM 2024; 5:721-727. [PMID: 39157629 PMCID: PMC11327724 DOI: 10.1002/jha2.961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/20/2024]
Abstract
Background Bone marrow (BM) evaluation is the de facto standard for diagnosis, molecular analysis, risk stratification, and therapy response assessment in acute myeloid leukemia (AML), but in patients with a high number of circulating blast cells, the peripheral blood (PB) sample could provide similar information as BM. However, there is no large-scale molecular study comparing the two specimens in terms of their gene expression profiles, cellular heterogeneities, and ex-vivo drug sensitivity. Methodology We used (i) the BEAT-AML cohort each with detailed molecular data; (ii) cell-type deconvolution to estimate leukemic and immune cell proportions between specimen types; (iii) differential expression (DE) and drug-cell type association analysis; and (iv) logistic regression models to assess the association between induction therapy response, cell-type composition and first-line drug treatment. Results Results: We identified 207 patients having BM and 116 patients having PB samples. There was a total of 1271 DE genes (false discovery rate < 0.05) between BM and PB; the top enriched pathways in terms of DE genes belong to the immune system pathways. Aggregated ex-vivo drug response profiles from the two specimens were largely similar, as were the cellular components, except for the GMP-like cell type (17% in BM vs. 5% in PB, p-value = 2 × 10-7). Among the specimen-specific results, the GMP-like subtype was associated with multiple drug resistance in BM and the ProMono-like subtype in PB. Several cell types were associated with the response to induction therapy, but the impact of specimen type on the interaction of cell type and cytarabine-associated induction therapy was not statistically significant for most cell types. Results Conclusions: Even though there are molecular and cellular differences between BM and PB samples, they show many similarities in ex-vivo drug response profiles, indicating the clinical utility of the substantially less-invasive PB samples.
Collapse
Affiliation(s)
- Gulser Caliskan
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Trung Nghia Vu
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| |
Collapse
|
6
|
Tin E, Lee JB, Khatri I, Na Y, Minden MD, Zhang L. Double-negative T cells utilize a TNFα-JAK1-ICAM-1 cytotoxic axis against acute myeloid leukemia. Blood Adv 2024; 8:3013-3026. [PMID: 38547431 PMCID: PMC11215209 DOI: 10.1182/bloodadvances.2023011739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/15/2024] [Indexed: 06/13/2024] Open
Abstract
ABSTRACT Allogeneic double-negative T cells (DNTs) are a rare T-cell subset that effectively target acute myeloid leukemia (AML) without inducing graft-versus-host disease in an allogeneic setting. A phase 1 clinical trial demonstrated the feasibility, safety, and potential efficacy of allogeneic DNT therapy among patients with relapsed AML. However, the molecular mechanisms of DNT-mediated cytotoxicity against AML remain elusive. Thus, we used a flow cytometry-based high throughput screening to compare the surface molecule expression profile on DNTs during their interaction with DNT-susceptible or -resistant AML cells and identified a tumor necrosis factor α (TNFα)-dependent cytotoxic pathway in DNT-AML interaction. TNFα secreted by DNTs, upon encountering susceptible AML targets, sensitized AML cells to DNT-mediated killing, including those otherwise resistant to DNTs. Mechanistically, TNFα upregulated ICAM-1 on AML cells through a noncanonical JAK1-dependent pathway. DNTs then engaged with AML cells more effectively through an ICAM-1 receptor, lymphocyte function-associated antigen 1, leading to enhanced killing. These results reveal a TNFα-JAK1-ICAM-1 axis in DNT-mediated cytotoxicity against AML to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Enoch Tin
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jong Bok Lee
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Ismat Khatri
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Yoosu Na
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Mark D. Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Li Zhang
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Jin P, Wang X, Jin Q, Zhang Y, Shen J, Jiang G, Zhu H, Zhao M, Wang D, Li Z, Zhou Y, Li W, Zhang W, Liu Y, Wang S, Jin W, Cao Y, Sheng G, Dong F, Wu S, Li X, Jin Z, He M, Liu X, Chen L, Zhang Y, Wang K, Li J. Mutant U2AF1-Induced Mis-Splicing of mRNA Translation Genes Confers Resistance to Chemotherapy in Acute Myeloid Leukemia. Cancer Res 2024; 84:1583-1596. [PMID: 38417135 DOI: 10.1158/0008-5472.can-23-2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/07/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Patients with primary refractory acute myeloid leukemia (AML) have a dismal long-term prognosis. Elucidating the resistance mechanisms to induction chemotherapy could help identify strategies to improve AML patient outcomes. Herein, we retrospectively analyzed the multiomics data of more than 1,500 AML cases and found that patients with spliceosome mutations had a higher risk of developing refractory disease. RNA splicing analysis revealed that the mis-spliced genes in refractory patients converged on translation-associated pathways, promoted mainly by U2AF1 mutations. Integrative analyses of binding and splicing in AML cell lines substantiated that the splicing perturbations of mRNA translation genes originated from both the loss and gain of mutant U2AF1 binding. In particular, the U2AF1S34F and U2AF1Q157R mutants orchestrated the inclusion of exon 11 (encoding a premature termination codon) in the eukaryotic translation initiation factor 4A2 (EIF4A2). This aberrant inclusion led to reduced eIF4A2 protein expression via nonsense-mediated mRNA decay. Consequently, U2AF1 mutations caused a net decrease in global mRNA translation that induced the integrated stress response (ISR) in AML cells, which was confirmed by single-cell RNA sequencing. The induction of ISR enhanced the ability of AML cells to respond and adapt to stress, contributing to chemoresistance. A pharmacologic inhibitor of ISR, ISRIB, sensitized U2AF1 mutant cells to chemotherapy. These findings highlight a resistance mechanism by which U2AF1 mutations drive chemoresistance and provide a therapeutic approach for AML through targeting the ISR pathway. SIGNIFICANCE U2AF1 mutations induce the integrated stress response by disrupting splicing of mRNA translation genes that improves AML cell fitness to enable resistance to chemotherapy, which can be targeted to improve AML treatment.
Collapse
Affiliation(s)
- Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Jin
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhu Li
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangying Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Olesinski EA, Bhatia KS, Wang C, Pioso MS, Lin XX, Mamdouh AM, Ng SX, Sandhu V, Jasdanwala SS, Yilma B, Bohl S, Ryan JA, Malani D, Luskin MR, Kallioniemi O, Porkka K, Adamia S, Chng WJ, Osato M, Weinstock DM, Garcia JS, Letai A, Bhatt S. Acquired Multidrug Resistance in AML Is Caused by Low Apoptotic Priming in Relapsed Myeloblasts. Blood Cancer Discov 2024; 5:180-201. [PMID: 38442309 PMCID: PMC11061585 DOI: 10.1158/2643-3230.bcd-24-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024] Open
Abstract
In many cancers, mortality is associated with the emergence of relapse with multidrug resistance (MDR). Thus far, the investigation of cancer relapse mechanisms has largely focused on acquired genetic mutations. Using acute myeloid leukemia (AML) patient-derived xenografts (PDX), we systematically elucidated a basis of MDR and identified drug sensitivity in relapsed AML. We derived pharmacologic sensitivity for 22 AML PDX models using dynamic BH3 profiling (DBP), together with genomics and transcriptomics. Using in vivo acquired resistant PDXs, we found that resistance to unrelated, narrowly targeted agents in distinct PDXs was accompanied by broad resistance to drugs with disparate mechanisms. Moreover, baseline mitochondrial apoptotic priming was consistently reduced regardless of the class of drug-inducing selection. By applying DBP, we identified drugs showing effective in vivo activity in resistant models. This study implies evasion of apoptosis drives drug resistance and demonstrates the feasibility of the DBP approach to identify active drugs for patients with relapsed AML. SIGNIFICANCE Acquired resistance to targeted therapy remains challenging in AML. We found that reduction in mitochondrial priming and common transcriptomic signatures was a conserved mechanism of acquired resistance across different drug classes in vivo. Drugs active in vivo can be identified even in the multidrug resistant state by DBP.
Collapse
MESH Headings
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Humans
- Apoptosis/drug effects
- Animals
- Mice
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Multiple/genetics
- Drug Resistance, Multiple/drug effects
- Xenograft Model Antitumor Assays
- Granulocyte Precursor Cells/drug effects
- Granulocyte Precursor Cells/pathology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Elyse A. Olesinski
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Chuqi Wang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Marissa S. Pioso
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Xiao Xian Lin
- Department of Pharmacy, National University of Singapore, Singapore
| | - Ahmed M. Mamdouh
- Department of Pharmacy, National University of Singapore, Singapore
| | - Shu Xuan Ng
- Department of Pharmacy, National University of Singapore, Singapore
| | - Vedant Sandhu
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Binyam Yilma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Stephan Bohl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeremy A. Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Disha Malani
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland FIMM, Hi-Life, University of Helsinki, Helsinki, Finland
- Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institute, Solna, Sweden
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Department of Hematology, HUS, Helsinki, Finland
| | - Sophia Adamia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - Motomi Osato
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
9
|
Zhou J, Chng WJ. Unveiling novel insights in acute myeloid leukemia through single-cell RNA sequencing. Front Oncol 2024; 14:1365330. [PMID: 38711849 PMCID: PMC11070491 DOI: 10.3389/fonc.2024.1365330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex and heterogeneous group of aggressive hematopoietic stem cell disease. The presence of diverse and functionally distinct populations of leukemia cells within the same patient's bone marrow or blood poses a significant challenge in diagnosing and treating AML. A substantial proportion of AML patients demonstrate resistance to induction chemotherapy and a grim prognosis upon relapse. The rapid advance in next generation sequencing technologies, such as single-cell RNA-sequencing (scRNA-seq), has revolutionized our understanding of AML pathogenesis by enabling high-resolution interrogation of the cellular heterogeneity in the AML ecosystem, and their transcriptional signatures at a single-cell level. New studies have successfully characterized the inextricably intertwined interactions among AML cells, immune cells and bone marrow microenvironment and their contributions to the AML development, therapeutic resistance and relapse. These findings have deepened and broadened our understanding the complexity and heterogeneity of AML, which are difficult to detect with bulk RNA-seq. This review encapsulates the burgeoning body of knowledge generated through scRNA-seq, providing the novel insights and discoveries it has unveiled in AML biology. Furthermore, we discuss the potential implications of scRNA-seq in therapeutic opportunities, focusing on immunotherapy. Finally, we highlight the current limitations and future direction of scRNA-seq in the field.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, Center for Translational Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Center for Translational Medicine, Singapore, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore, Singapore
| |
Collapse
|
10
|
Miari KE, Williams MTS. Stromal bone marrow fibroblasts and mesenchymal stem cells support acute myeloid leukaemia cells and promote therapy resistance. Br J Pharmacol 2024; 181:216-237. [PMID: 36609915 DOI: 10.1111/bph.16028] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/09/2023] Open
Abstract
The bone marrow (BM) is the primary site of adult haematopoiesis, where stromal elements (e.g. fibroblasts and mesenchymal stem cells [MSCs]) work in concert to support blood cell development. However, the establishment of an abnormal clone can lead to a blood malignancy, such as acute myeloid leukaemia (AML). Despite our increased understanding of the pathophysiology of the disease, patient survival remains suboptimal, mainly driven by the development of therapy resistance. In this review, we highlight the importance of bone marrow fibroblasts and MSCs in health and acute myeloid leukaemia and their impact on patient prognosis. We discuss how stromal elements reduce the killing effects of therapies via a combination of contact-dependent (e.g. integrins) and contact-independent (i.e. secreted factors) mechanisms, accompanied by the establishment of an immunosuppressive microenvironment. Importantly, we underline the challenges of therapeutically targeting the bone marrow stroma to improve acute myeloid leukaemia patient outcomes, due to the inherent heterogeneity of stromal cell populations. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Katerina E Miari
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Mark T S Williams
- Charles Oakley Laboratories, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
11
|
Gottesman MM, Robey RW, Ambudkar SV. New mechanisms of multidrug resistance: an introduction to the Cancer Drug Resistance special collection. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:590-595. [PMID: 37842242 PMCID: PMC10571052 DOI: 10.20517/cdr.2023.86] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 10/17/2023]
Abstract
Cancer Drug Resistance publishes contributions to understanding the biology and consequences of mechanisms that interfere with successful treatment of cancer. Since virtually all patients who die of metastatic cancer have multidrug-resistant tumors, improved treatment will require an understanding of the mechanisms of resistance to design therapies that circumvent these mechanisms, exploit these mechanisms, or inactivate these multidrug resistance mechanisms. One example of a resistance mechanism is the expression of ATP-binding cassette efflux pumps, but unfortunately, inhibition of these transporters has not proved to be the solution to overcome multidrug resistance in cancer. Other mechanisms that confer multidrug resistance, and the confluence of multiple different mechanisms (multifactorial multidrug resistance) have been identified, and it is the goal of this Special Collection to expand this catalog of potential multidrug resistance mechanisms, to explore novel ways to overcome resistance, and to present thoughtful reviews on the problem of multidrug resistance in cancer.
Collapse
Affiliation(s)
- Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
12
|
Egbuna C, Patrick‐Iwuanyanwu KC, Onyeike EN, Khan J, Palai S, Patel SB, Parmar VK, Kushwaha G, Singh O, Jeevanandam J, Kumarasamy S, Uche CZ, Narayanan M, Rudrapal M, Odoh U, Chikeokwu I, Găman M, Saravanan K, Ifemeje JC, Ezzat SM, Olisah MC, Chikwendu CJ, Adedokun KA, Imodoye SO, Bello IO, Twinomuhwezi H, Awuchi CG. Phytochemicals and bioactive compounds effective against acute myeloid leukemia: A systematic review. Food Sci Nutr 2023; 11:4191-4210. [PMID: 37457145 PMCID: PMC10345688 DOI: 10.1002/fsn3.3420] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
This systematic review identified various bioactive compounds which have the potential to serve as novel drugs or leads against acute myeloid leukemia. Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy that arises from the dysregulation of cell differentiation, proliferation, and cell death. The risk factors associated with the onset of AML include long-term exposure to radiation and chemicals such as benzene, smoking, genetic disorders, blood disorders, advancement in age, and others. Although novel strategies to manage AML, including a refinement of the conventional chemotherapy regimens, hypomethylating agents, and molecular targeted drugs, have been developed in recent years, resistance and relapse remain the main clinical problems. In this study, three databases, PubMed/MEDLINE, ScienceDirect, and Google Scholar, were systematically searched to identify various bioactive compounds with antileukemic properties. A total of 518 articles were identified, out of which 59 were viewed as eligible for the current report. From the data extracted, over 60 bioactive compounds were identified and divided into five major groups: flavonoids, alkaloids, organosulfur compounds, terpenes, and terpenoids, and other known and emerging bioactive compounds. The mechanism of actions of the analyzed individual bioactive molecules differs remarkably and includes disrupting chromatin structure, upregulating the synthesis of certain DNA repair proteins, inducing cell cycle arrest and apoptosis, and inhibiting/regulating Hsp90 activities, DNA methyltransferase 1, and histone deacetylase 1.
Collapse
Affiliation(s)
- Chukwuebuka Egbuna
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kingsley C. Patrick‐Iwuanyanwu
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Eugene N. Onyeike
- Africa Centre of Excellence for Public Health and Toxicological Research (ACE‐PUTOR)University of Port HarcourtPort HarcourtNigeria
- Department of Biochemistry, Faculty of ScienceUniversity of Port HarcourtPort HarcourtNigeria
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAl MajmaahSaudi Arabia
| | - Santwana Palai
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary Science and Animal HusbandryOUATOdishaBhubaneswarIndia
| | - Sandip B. Patel
- Department of PharmacologyL.M. College of Pharmacy, NavrangpuraAhmedabadIndia
| | | | - Garima Kushwaha
- Department of BiotechnologyIndian Institute of TechnologyRoorkeeIndia
| | - Omkar Singh
- Department of Chemical EngineeringIndian Institute of Technology MadrasChennaiIndia
| | - Jaison Jeevanandam
- CQM—Centro de Química da MadeiraUniversidade da Madeira, Campus da PenteadaFunchalPortugal
| | | | - Chukwuemelie Zedech Uche
- Department of Medical Biochemistry and Molecular Biology, Faculty of Basic Medical SciencesUniversity of NigeriaEnuguNsukkaNigeria
| | - Mathiyazhagan Narayanan
- Division of Research and InnovationDepartment of Biotecnology, Saveetha School of Engineering SIMATSTamil NaduChennaiIndia
| | - Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical SciencesVignan’s Foundation for Science, Technology & ResearchGunturIndia
| | - Uchenna Odoh
- Department of Pharmacognosy and Environmental Medicines, Faculty of Pharmaceutical SciencesUniversity of NigeriaNsukkaNigeria
| | - Ikenna Chikeokwu
- Department of PharmacognosyEnugu State University of Science and Technology (ESUT)Agbani Enugu StateEnuguNigeria
| | - Mihnea‐Alexandru Găman
- Faculty of Medicine"Carol Davila" University of Medicine and PharmacyBucharestRomania
- Department of HematologyCenter of Hematology and Bone Marrow TransplantationBucharestRomania
| | - Kaliyaperumal Saravanan
- PG and Research Department of ZoologyNehru Memorial College (Autonomous), Puthanampatti (Affiliated to Bharathidasan University)Tamil NaduTiruchirappalliIndia
| | - Jonathan C. Ifemeje
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Shahira M. Ezzat
- Department of Pharmacognosy, Faculty of PharmacyCairo UniversityCairoEgypt
- Department of Pharmacognosy, Faculty of PharmacyOctober University for Modern Sciences and Arts (MSA)GizaEgypt
| | - Michael C. Olisah
- Department of Medical Biochemistry, Faculty of Basic Medical SciencesChukwuemeka Odumegwu Ojukwu University, Uli CampusAnambraNigeria
| | - Chukwudi Jude Chikwendu
- Department of Biochemistry, Faculty of Natural SciencesChukwuemeka Odumegwu Ojukwu UniversityAnambraNigeria
| | - Kamoru A. Adedokun
- Department of ImmunologyRoswell Park Comprehensive Cancer CenterNew YorkBuffaloUSA
| | - Sikiru O. Imodoye
- Department of Oncological Sciences, Huntsman Cancer InstituteUniversity of UtahUtahSalt Lake CityUSA
| | - Ibrahim O. Bello
- Department of Biological SciencesSouthern Illinois University EdwardsvilleIllinoisEdwardsvilleUSA
| | - Hannington Twinomuhwezi
- Department of ChemistryKyambogo University, KyambogoKampalaUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | | |
Collapse
|
13
|
Guo Y, Cen K, Yang S, Mai Y, Hong K. Development and validation of an inflammatory response-related signature in triple negative breast cancer for predicting prognosis and immunotherapy. Front Oncol 2023; 13:1175000. [PMID: 37397391 PMCID: PMC10311032 DOI: 10.3389/fonc.2023.1175000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Inflammation is one of the most important characteristics of tumor tissue. Signatures based on inflammatory response-related genes (IRGs) can predict prognosis and treatment response in a variety of tumors. However, the clear function of IRGs in the triple negative breast cancer (TNBC) still needs to be explored. Methods IRGs clusters were discovered via consensus clustering, and the prognostic differentially expressed genes (DEGs) across clusters were utilized to develop a signature using a least absolute shrinkage and selection operator (LASSO). Verification analyses were conducted to show the robustness of the signature. The expression of risk genes was identified by RT-qPCR. Lastly, we formulated a nomogram to improve the clinical efficacy of our predictive tool. Results The IRGs signature, comprised of four genes, was developed and was shown to be highly correlated with the prognoses of TNBC patients. In contrast with the performance of the other individual predictors, we discovered that the IRGs signature was remarkably superior. Also, the ImmuneScores were elevated in the low-risk group. The immune cell infiltration showed significant difference between the two groups, as did the expression of immune checkpoints. Conclusion The IRGs signature could act as a biomarker and provide a momentous reference for individual therapy of TNBC.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Kenan Cen
- Department of Geriatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shi Yang
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yifeng Mai
- Department of Geriatrics, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Kai Hong
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
14
|
Deng X, Zeng Y, Qiu X, Zhong M, Xiong X, Luo M, Zhang J, Chen X. CRIP1 supports the growth and migration of AML-M5 subtype cells by activating Wnt/β-catenin pathway. Leuk Res 2023; 130:107312. [PMID: 37224580 DOI: 10.1016/j.leukres.2023.107312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous hematopoietic disorder. To effectively eradicate AML, it is urgent to develop new therapeutic approaches and identify novel molecular targets. In silico analysis indicated that the expression of cysteine-rich intestinal protein 1 (CRIP1) was significantly elevated in AML cells and correlated with worse overall survival of the AML patients. However, its specific roles in AML remain elusive. Here we demonstrated that CRIP1 acted as a key oncogene to support AML cell survival and migration. Using a loss-of-function analysis, we found that CRIP1 silencing in U937 and THP1 cells by lentivirus-mediated shRNAs resulted in a decrease in cell growth, migration and colony formation, and an increase in chemosensitivity to Ara-C. CRIP1 silencing induced cell apoptosis and G1/S transition arrest. Mechanically, CRIP1 silencing caused inactivation of Wnt/β-catenin pathway through upregulating axin1 protein. The Wnt/β-catenin agonist SKL2001 markedly rescued the cell growth and migration defect induced by CRIP1 silencing. Our findings reveals that CRIP1 may contribute to AML-M5 pathogenesis and represent a novel target for AML-M5 treatment.
Collapse
Affiliation(s)
- Xiaoling Deng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmei Zeng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaofen Qiu
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Mingxing Zhong
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mansheng Luo
- Clinical laboratory, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingdong Zhang
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
15
|
Xia Y, An J, Li J, Gu W, Zhang Y, Zhao S, Zhao C, Xu Y, Li B, Zhong Z, Meng F. Transferrin-guided intelligent nanovesicles augment the targetability and potency of clinical PLK1 inhibitor to acute myeloid leukemia. Bioact Mater 2023; 21:499-510. [PMID: 36185744 PMCID: PMC9494038 DOI: 10.1016/j.bioactmat.2022.08.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022] Open
Abstract
Acute myeloid leukemia (AML) remains a most lethal hematological malignancy, partly because of its slow development of targeted therapies compared with other cancers. PLK1 inhibitor, volasertib (Vol), is among the few molecular targeted drugs granted breakthrough therapy status for AML; however, its fast clearance and dose-limiting toxicity greatly restrain its clinical benefits. Here, we report that transferrin-guided polymersomes (TPs) markedly augment the targetability, potency and safety of Vol to AML. Vol-loaded TPs (TPVol) with 4% transferrin exhibited best cellular uptake, effective down-regulation of p-PLK1, p-PTEN and p-AKT and superior apoptotic activity to free Vol in MV-4-11 leukemic cells. Intravenous injection of TPVol gave 6-fold higher AUC than free Vol and notable accumulation in AML-residing bone marrow. The efficacy studies in orthotopic MV-4-11 leukemic model demonstrated that TPVol significantly reduced leukemic cell proportions in periphery blood, bone marrow, liver and spleen, effectively enhanced mouse survival rate, and impeded bone loss. This transferrin-guided nano-delivery of molecular targeted drugs appears to be an interesting strategy towards the development of novel treatments for AML.
Collapse
Affiliation(s)
- Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Jingnan An
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, PR China
| | - Jiaying Li
- Orthopedic Institute, Soochow University, Suzhou, 215007, PR China
| | - Wenxing Gu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Songsong Zhao
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
| | - Cenzhu Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, PR China
| | - Yang Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, PR China
| | - Bin Li
- Orthopedic Institute, Soochow University, Suzhou, 215007, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, PR China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
16
|
Teixeira A, Carreira L, Abalde-Cela S, Sampaio-Marques B, Areias AC, Ludovico P, Diéguez L. Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review. Cancers (Basel) 2023; 15:cancers15051362. [PMID: 36900154 PMCID: PMC10000116 DOI: 10.3390/cancers15051362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a group of hematologic neoplasms characterized by abnormal differentiation and proliferation of myeloid progenitor cells. AML is associated with poor outcome due to the lack of efficient therapies and early diagnostic tools. The current gold standard diagnostic tools are based on bone marrow biopsy. These biopsies, apart from being very invasive, painful, and costly, have low sensitivity. Despite the progress uncovering the molecular pathogenesis of AML, the development of novel detection strategies is still poorly explored. This is particularly important for patients that check the criteria for complete remission after treatment, since they can relapse through the persistence of some leukemic stem cells. This condition, recently named as measurable residual disease (MRD), has severe consequences for disease progression. Hence, an early and accurate diagnosis of MRD would allow an appropriate therapy to be tailored, improving a patient's prognosis. Many novel techniques with high potential in disease prevention and early detection are being explored. Among them, microfluidics has flourished in recent years due to its ability at processing complex samples as well as its demonstrated capacity to isolate rare cells from biological fluids. In parallel, surface-enhanced Raman scattering (SERS) spectroscopy has shown outstanding sensitivity and capability for multiplex quantitative detection of disease biomarkers. Together, these technologies can allow early and cost-effective disease detection as well as contribute to monitoring the efficiency of treatments. In this review, we aim to provide a comprehensive overview of AML disease, the conventional techniques currently used for its diagnosis, classification (recently updated in September 2022), and treatment selection, and we also aim to present how novel technologies can be applied to improve the detection and monitoring of MRD.
Collapse
Affiliation(s)
- Alexandra Teixeira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luís Carreira
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Sara Abalde-Cela
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Anabela C. Areias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| | - Lorena Diéguez
- International Iberian Nanotechnology Laboratory (INL), Avda Mestre José Veiga, 4715-310 Braga, Portugal
- Correspondence: (P.L.); (L.D.)
| |
Collapse
|
17
|
Jiang G, Jin P, Xiao X, Shen J, Li R, Zhang Y, Li X, Xue K, Li J. Identification and validation of a novel CD8+ T cell-associated prognostic model based on ferroptosis in acute myeloid leukemia. Front Immunol 2023; 14:1149513. [PMID: 37138885 PMCID: PMC10150955 DOI: 10.3389/fimmu.2023.1149513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive cancer with great heterogeneity and variability in prognosis. Though European Leukemia Net (ELN) 2017 risk classification has been widely used, nearly half of patients were stratified to "intermediate" risk and requires more accurate classification via excavating biological features. As new evidence showed that CD8+ T cell can kill cancer cells through ferroptosis pathway. We firstly use CIBERSORT algorithm to divide AMLs into CD8+ high and CD8+ low T cell groups, then 2789 differentially expressed genes (DEGs) between groups were identified, of which 46 ferroptosis-related genes associated with CD8+ T cell were sorted out. GO, KEGG analysis and PPI network were conducted based on these 46 DEGs. By jointly using LASSO algorithm and Cox univariate regression, we generated a 6-gene prognostic signature comprising VEGFA, KLHL24, ATG3, EIF2AK4, IDH1 and HSPB1. Low-risk group shows a longer overall survival. We then validated the prognostic value of this 6-gene signature using two independent external datasets and patient sample collection dataset. We also proved that incorporation of the 6-gene signature obviously enhanced the accuracy of ELN risk classification. Finally, gene mutation analysis, drug sensitive prediction, GSEA and GSVA analysis were conducted between high-risk and low-risk AML patients. Collectively, our findings suggested that the prognostic signature based on CD8+ T cell-related ferroptosis genes can optimize the risk stratification and prognostic prediction of AML patients.
Collapse
Affiliation(s)
- Ge Jiang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Xiao
- Department of Orthopedic, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Shen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunxiang Zhang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| | - Kai Xue
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| | - Junmin Li
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kai Xue, ; Xiaoyang Li, ; Junmin Li,
| |
Collapse
|
18
|
Leshchiner D, Vo TV, Horibata S. Sample Preparation and Differential Gene Expression Analysis of Human Cancer Cell Lines by RNA Sequencing. Methods Mol Biol 2023; 2660:23-41. [PMID: 37191788 DOI: 10.1007/978-1-0716-3163-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
RNA sequencing (RNA-seq) is a method used for the high-throughput quantification of mRNA in a biological sample. It is widely used to investigate differential gene expression between drug-resistant and sensitive cancers to identify genetic mediators of drug resistance. Here, we describe a comprehensive experimental and bioinformatic pipeline to isolate mRNA from human cell lines, prepare mRNA libraries for next-generation sequencing, and perform post-sequencing bioinformatics analyses.
Collapse
Affiliation(s)
- Dmitry Leshchiner
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Tommy V Vo
- Department of Biochemistry and Molecular Biology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| | - Sachi Horibata
- Precision Health Program, Michigan State University, East Lansing, MI, USA.
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
19
|
Wang H, Chan KYY, Cheng CK, Ng MH, Lee PY, Cheng FWT, Lam GKS, Chow TW, Ha SY, Chiang AK, Leung WH, Leung AY, Wang CC, Zhang T, Zhang XB, So CC, Yuen YP, Sun Q, Zhang C, Xu Y, Cheung JTK, Ng WH, Tang PMK, Kang W, To KF, Lee WYW, Wong RS, Poon ENY, Zhao Q, Huang J, Chen C, Yuen PMP, Li CK, Leung AWK, Leung KT. Pharmacogenomic Profiling of Pediatric Acute Myeloid Leukemia to Identify Therapeutic Vulnerabilities and Inform Functional Precision Medicine. Blood Cancer Discov 2022; 3:516-535. [PMID: 35960210 PMCID: PMC9894568 DOI: 10.1158/2643-3230.bcd-22-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the expanding portfolio of targeted therapies for adults with acute myeloid leukemia (AML), direct implementation in children is challenging due to inherent differences in underlying genetics. Here we established the pharmacologic profile of pediatric AML by screening myeloblast sensitivity to approved and investigational agents, revealing candidates of immediate clinical relevance. Drug responses ex vivo correlated with patient characteristics, exhibited age-specific alterations, and concorded with activities in xenograft models. Integration with genomic data uncovered new gene-drug associations, suggesting actionable therapeutic vulnerabilities. Transcriptome profiling further identified gene-expression signatures associated with on- and off-target drug responses. We also demonstrated the feasibility of drug screening-guided treatment for children with high-risk AML, with two evaluable cases achieving remission. Collectively, this study offers a high-dimensional gene-drug clinical data set that could be leveraged to research the unique biology of pediatric AML and sets the stage for realizing functional precision medicine for the clinical management of the disease. SIGNIFICANCE We conducted integrated drug and genomic profiling of patient biopsies to build the functional genomic landscape of pediatric AML. Age-specific differences in drug response and new gene-drug interactions were identified. The feasibility of functional precision medicine-guided management of children with high-risk AML was successfully demonstrated in two evaluable clinical cases. This article is highlighted in the In This Issue feature, p. 476.
Collapse
Affiliation(s)
- Han Wang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret H.L. Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Po Yi Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Frankie Wai Tsoi Cheng
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Grace Kee See Lam
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Tin Wai Chow
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Shau Yin Ha
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Alan K.S. Chiang
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wing Hang Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Anskar Y.H. Leung
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao-Bing Zhang
- Department of Medicine, Loma Linda University, Loma Linda, California
| | - Chi Chiu So
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Yuet Ping Yuen
- Department of Pathology, Hong Kong Children's Hospital, Kowloon, Hong Kong
| | - Qiwei Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yaqun Xu
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - John Tak Kit Cheung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wing Hei Ng
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Raymond S.M. Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Zhao
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Patrick Man Pan Yuen
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi-kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong.,Corresponding Authors: Kam Tong Leung, E-mail: ; Chi-kong Li, Hong Kong Children's Hospital, 1 Shing Cheong Road, Kowloon Bay, Kowloon, Hong Kong. Phone: 852-3513-3176; Fax: 852-2636-0020; E-mail: ; and Alex Wing Kwan Leung, E-mail:
| |
Collapse
|
20
|
Rutella S, Vadakekolathu J, Mazziotta F, Reeder S, Yau TO, Mukhopadhyay R, Dickins B, Altmann H, Kramer M, Knaus HA, Blazar BR, Radojcic V, Zeidner JF, Arruda A, Wang B, Abbas HA, Minden MD, Tasian SK, Bornhäuser M, Gojo I, Luznik L. Immune dysfunction signatures predict outcomes and define checkpoint blockade-unresponsive microenvironments in acute myeloid leukemia. J Clin Invest 2022; 132:e159579. [PMID: 36099049 PMCID: PMC9621145 DOI: 10.1172/jci159579] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
BackgroundImmune exhaustion and senescence are dominant dysfunctional states of effector T cells and major hurdles for the success of cancer immunotherapy. In the current study, we characterized how acute myeloid leukemia (AML) promotes the generation of senescent-like CD8+ T cells and whether they have prognostic relevance.METHODSWe analyzed NanoString, bulk RNA-Seq and single-cell RNA-Seq data from independent clinical cohorts comprising 1,896 patients treated with chemotherapy and/or immune checkpoint blockade (ICB).ResultsWe show that senescent-like bone marrow CD8+ T cells were impaired in killing autologous AML blasts and that their proportion negatively correlated with overall survival (OS). We defined what we believe to be new immune effector dysfunction (IED) signatures using 2 gene expression profiling platforms and reported that IED scores correlated with adverse-risk molecular lesions, stemness, and poor outcomes; these scores were a more powerful predictor of OS than 2017-ELN risk or leukemia stem cell (LSC17) scores. IED expression signatures also identified an ICB-unresponsive tumor microenvironment and predicted significantly shorter OS.ConclusionThe IED scores provided improved AML-risk stratification and could facilitate the delivery of personalized immunotherapies to patients who are most likely to benefit.TRIAL REGISTRATIONClinicalTrials.gov; NCT02845297.FUNDINGJohn and Lucille van Geest Foundation, Nottingham Trent University's Health & Wellbeing Strategic Research Theme, NIH/NCI P01CA225618, Genentech-imCORE ML40354, Qatar National Research Fund (NPRP8-2297-3-494).
Collapse
Affiliation(s)
- Sergio Rutella
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Jayakumar Vadakekolathu
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Francesco Mazziotta
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen Reeder
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Tung-On Yau
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Rupkatha Mukhopadhyay
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin Dickins
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Heidi Altmann
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Michael Kramer
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
| | - Hanna A. Knaus
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, Medical University of Vienna, Vienna, Austria
| | - Bruce R. Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood & Marrow Transplant and Cellular Therapy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Vedran Radojcic
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Joshua F. Zeidner
- Division of Hematology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Andrea Arruda
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Bofei Wang
- Department of Leukemia, Division of Cancer Medicine and
| | - Hussein A. Abbas
- Department of Leukemia, Division of Cancer Medicine and
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark D. Minden
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Sarah K. Tasian
- Department of Pediatrics, Division of Oncology and Centre for Childhood Cancer Research, Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Martin Bornhäuser
- Department of Medicine, Universitätsklinikum Carl Gustav Carus, Technische Universität (TU) Dresden, Dresden, Germany
- National Center for Tumor Diseases and German Cancer Consortium, Partner Site Dresden, Dresden, Germany
- German Cancer Research Centre, Heidelberg, Germany
| | - Ivana Gojo
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Leo Luznik
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Sumphanapai T, Chester K, Sawatnatee S, Yeung J, Yamabhai M. Targeting acute myeloid cell surface using a recombinant antibody isolated from whole-cell biopanning of a phage display human scFv antibody library. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:205. [PMID: 36175701 DOI: 10.1007/s12032-022-01806-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
To discover new therapeutic antibodies for treatment of acute myeloid leukemia (AML) without the requirement of a known antigen, a human single-chain variable fragment (scFv) library was used to isolate novel antibody fragments recognizing HL-60 AML cells. After three rounds of biopanning, scFv-expressing phages were selected to test for binding to the target cell by flow cytometry. The clone with highest binding specificity to HL-60 cells (designated y1HL63D6) was further investigated. Fluorescent staining indicated that y1HL63D6 scFv bound to a target located on the cell surface. Whole immunoglobulin, IgG-y1HL63D6 was then generated and tested for the binding against bone marrow mononuclear cells (BMMCs) from AML patients. Significantly higher fluorescent signals were observed for some patient samples when compared to normal BMMCs or non-AML patients' BMMCs. Next, the IgG-y1HL63D6 format was tested for antibody-dependent cell cytotoxicity (ADCC). The results demonstrated that IgG-y1HL63D6 but not the control antibody, trastuzumab, could mediate specific killing of HL-60 target cells. In conclusion, our results indicate that specific antibodies can be isolated by biopanning whole cells with a non-immunized human scFv antibody phage display library and that the isolated antibody against HL-60 cells showed therapeutic potential.
Collapse
Affiliation(s)
- Thitima Sumphanapai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand
| | - Kerry Chester
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
| | - Surasak Sawatnatee
- Hematology Unit, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Jenny Yeung
- University College London Cancer Institute, 72 Huntley Street, London, WC1E 6BT, UK
- University College London Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
22
|
Li J, Chen H, Zhao S, Wen D, Bi L. Patient-derived intrafemoral orthotopic xenografts of peripheral blood or bone marrow from acute myeloid and acute lymphoblastic leukemia patients: clinical characterization, methodology, and validation. Clin Exp Med 2022:10.1007/s10238-022-00884-3. [PMID: 36121505 PMCID: PMC10390355 DOI: 10.1007/s10238-022-00884-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
Acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) are malignant clonal diseases of the hematopoietic system with an unsatisfactory overall prognosis. The main obstacle is the increased resistance of AML and ALL cells to chemotherapy. The development and validation of new therapeutic strategies for acute leukemia require preclinical models that accurately recapitulate the genetic, pathological, and clinical features of acute leukemia. A patient-derived orthotopic xenograft (PDOX) model is established using surgical orthotopic implantation. They closely resemble human tumor progression and microenvironment and are more reliable translational research tools than subcutaneous-transplant models. In this study, we established PDOX models by direct intrafemoral injection of bone marrow and peripheral blood cells from AML and ALL patients, characterized their pathology, cytology, and genetics, and compared the model's characteristics and drug responsiveness with those of the corresponding patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, Jilin, 130033, China
| | - Hongkui Chen
- Shanghai LIDE Biotech, Co. Ltd, No. 77-78, Lane 887, Zuchongzhi Road, Pudong, Shanghai, China
| | - ShiZhu Zhao
- Shanghai LIDE Biotech, Co. Ltd, No. 77-78, Lane 887, Zuchongzhi Road, Pudong, Shanghai, China
| | - Danyi Wen
- Shanghai LIDE Biotech, Co. Ltd, No. 77-78, Lane 887, Zuchongzhi Road, Pudong, Shanghai, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, No. 126 XianTai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
23
|
Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K, Abel M, Agarwal A, Avaylon S, Benton E, Blucher A, Borate U, Braun TP, Brown J, Bryant J, Burke R, Carlos A, Chang BH, Cho HJ, Christy S, Coblentz C, Cohen AM, d'Almeida A, Cook R, Danilov A, Dao KHT, Degnin M, Dibb J, Eide CA, English I, Hagler S, Harrelson H, Henson R, Ho H, Joshi SK, Junio B, Kaempf A, Kosaka Y, Laderas T, Lawhead M, Lee H, Leonard JT, Lin C, Lind EF, Liu SQ, Lo P, Loriaux MM, Luty S, Maxson JE, Macey T, Martinez J, Minnier J, Monteblanco A, Mori M, Morrow Q, Nelson D, Ramsdill J, Rofelty A, Rogers A, Romine KA, Ryabinin P, Saultz JN, Sampson DA, Savage SL, Schuff R, Searles R, Smith RL, Spurgeon SE, Sweeney T, Swords RT, Thapa A, Thiel-Klare K, Traer E, Wagner J, Wilmot B, Wolf J, Wu G, Yates A, Zhang H, Cogle CR, Collins RH, Deininger MW, Hourigan CS, Jordan CT, Lin TL, Martinez ME, Pallapati RR, Pollyea DA, Pomicter AD, Watts JM, Weir SJ, Druker BJ, McWeeney SK, Tyner JW. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 2022; 40:850-864.e9. [PMID: 35868306 PMCID: PMC9378589 DOI: 10.1016/j.ccell.2022.07.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.
Collapse
Affiliation(s)
- Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anna Reister Schultz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Kurtz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kara Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa Abel
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sammantha Avaylon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erik Benton
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aurora Blucher
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Uma Borate
- Division of Hematology, Department of Internal Medicine, James Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jordana Brown
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jade Bryant
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Russell Burke
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Carlos
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hyun Jun Cho
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen Christy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cody Coblentz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aaron M Cohen
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda d'Almeida
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Cook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexey Danilov
- Department of Hematology and Hematopoietic Stem Cell Transplant, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Michie Degnin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Dibb
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabel English
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stuart Hagler
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heath Harrelson
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Henson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hibery Ho
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian Junio
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yoko Kosaka
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Matt Lawhead
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hyunjung Lee
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jessica T Leonard
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chenwei Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evan F Lind
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Selina Qiuying Liu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pierrette Lo
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc M Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel Luty
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tara Macey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Martinez
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jessica Minnier
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA; OHSU-PSU School of Public Health, VA Portland Health Care System, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrea Monteblanco
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Quinlan Morrow
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Ramsdill
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Angela Rofelty
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexandra Rogers
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle A Romine
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Ryabinin
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jennifer N Saultz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - David A Sampson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha L Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Robert Searles
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca L Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Spurgeon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tyler Sweeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ronan T Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aashis Thapa
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Karina Thiel-Klare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jake Wagner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joelle Wolf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Yates
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Haijiao Zhang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher R Cogle
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Robert H Collins
- Department of Internal Medicine/ Hematology Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8565, USA
| | - Michael W Deininger
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher S Hourigan
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814-1476, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Denver, CO 80045, USA
| | - Tara L Lin
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas, Kansas City, KS 66205, USA
| | - Micaela E Martinez
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rachel R Pallapati
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado, Denver, CO 80045, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Justin M Watts
- Division of Hematology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Scott J Weir
- Department of Cancer Biology, Division of Medical Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
24
|
Gladbach YS, Sklarz LM, Roolf C, Beck J, Schütz E, Fuellen G, Junghanss C, Murua Escobar H, Hamed M. Molecular Characterization of the Response to Conventional Chemotherapeutics in Pro-B-ALL Cell Lines in Terms of Tumor Relapse. Genes (Basel) 2022; 13:genes13071240. [PMID: 35886023 PMCID: PMC9316692 DOI: 10.3390/genes13071240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Little is known about optimally applying chemotherapeutic agents in a specific temporal sequence to rapidly reduce the tumor load and to improve therapeutic efficacy. The clinical optimization of drug efficacy while reducing side effects is still restricted due to an incomplete understanding of the mode of action and related tumor relapse mechanisms on the molecular level. The molecular characterization of transcriptomic drug signatures can help to identify the affected pathways, downstream regulated genes and regulatory interactions related to tumor relapse in response to drug application. We tried to outline the dynamic regulatory reprogramming leading to tumor relapse in relapsed MLL-rearranged pro-B-cell acute lymphoblastic leukemia (B-ALL) cells in response to two first-line treatments: dexamethasone (Dexa) and cytarabine (AraC). We performed an integrative molecular analysis of whole transcriptome profiles of each treatment, specifically considering public knowledge of miRNA regulation via a network-based approach to unravel key driver genes and miRNAs that may control the relapse mechanisms accompanying each treatment. Our results gave hints to the crucial regulatory roles of genes leading to Dexa-resistance and related miRNAs linked to chemosensitivity. These genes and miRNAs should be further investigated in preclinical models to obtain more hints about relapse processes.
Collapse
Affiliation(s)
- Yvonne Saara Gladbach
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Madeleine Sklarz
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Catrin Roolf
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Julia Beck
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Ekkehard Schütz
- Chronix Biomedical GmbH, 37073 Göttingen, Germany; (J.B.); (E.S.)
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
| | - Christian Junghanss
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
| | - Hugo Murua Escobar
- Clinic III—Hematology, Oncology, Palliative Medicine, Center for Internal Medicine, Rostock University Medical Center, 18057 Rostock, Germany; (L.-M.S.); (C.R.); (C.J.); (H.M.E.)
- Comprehensive Cancer Center Mecklenburg-Vorpommern (CCC-MV), Campus Rostock, Rostock University Medical Center, 18057 Rostock, Germany
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany; (Y.S.G.); (G.F.)
- Correspondence:
| |
Collapse
|
25
|
Mesbahi Y, Trahair TN, Lock RB, Connerty P. Exploring the Metabolic Landscape of AML: From Haematopoietic Stem Cells to Myeloblasts and Leukaemic Stem Cells. Front Oncol 2022; 12:807266. [PMID: 35223487 PMCID: PMC8867093 DOI: 10.3389/fonc.2022.807266] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 12/13/2022] Open
Abstract
Despite intensive chemotherapy regimens, up to 60% of adults with acute myeloid leukaemia (AML) will relapse and eventually succumb to their disease. Recent studies suggest that leukaemic stem cells (LSCs) drive AML relapse by residing in the bone marrow niche and adapting their metabolic profile. Metabolic adaptation and LSC plasticity are novel hallmarks of leukemogenesis that provide important biological processes required for tumour initiation, progression and therapeutic responses. These findings highlight the importance of targeting metabolic pathways in leukaemia biology which might serve as the Achilles' heel for the treatment of AML relapse. In this review, we highlight the metabolic differences between normal haematopoietic cells, bulk AML cells and LSCs. Specifically, we focus on four major metabolic pathways dysregulated in AML; (i) glycolysis; (ii) mitochondrial metabolism; (iii) amino acid metabolism; and (iv) lipid metabolism. We then outline established and emerging drug interventions that exploit metabolic dependencies of leukaemic cells in the treatment of AML. The metabolic signature of AML cells alters during different biological conditions such as chemotherapy and quiescence. Therefore, targeting the metabolic vulnerabilities of these cells might selectively eradicate them and improve the overall survival of patients with AML.
Collapse
Affiliation(s)
- Yashar Mesbahi
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Patrick Connerty
- Children's Cancer Institute, Lowy Cancer Centre, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
26
|
Stratmann S, Yones SA, Garbulowski M, Sun J, Skaftason A, Mayrhofer M, Norgren N, Herlin MK, Sundström C, Eriksson A, Höglund M, Palle J, Abrahamsson J, Jahnukainen K, Munthe-Kaas MC, Zeller B, Tamm KP, Cavelier L, Komorowski J, Holmfeldt L. Transcriptomic analysis reveals proinflammatory signatures associated with acute myeloid leukemia progression. Blood Adv 2022; 6:152-164. [PMID: 34619772 PMCID: PMC8753201 DOI: 10.1182/bloodadvances.2021004962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Numerous studies have been performed over the last decade to exploit the complexity of genomic and transcriptomic lesions driving the initiation of acute myeloid leukemia (AML). These studies have helped improve risk classification and treatment options. Detailed molecular characterization of longitudinal AML samples is sparse, however; meanwhile, relapse and therapy resistance represent the main challenges in AML care. To this end, we performed transcriptome-wide RNA sequencing of longitudinal diagnosis, relapse, and/or primary resistant samples from 47 adult and 23 pediatric AML patients with known mutational background. Gene expression analysis revealed the association of short event-free survival with overexpression of GLI2 and IL1R1, as well as downregulation of ST18. Moreover, CR1 downregulation and DPEP1 upregulation were associated with AML relapse both in adults and children. Finally, machine learning-based and network-based analysis identified overexpressed CD6 and downregulated INSR as highly copredictive genes depicting important relapse-associated characteristics among adult patients with AML. Our findings highlight the importance of a tumor-promoting inflammatory environment in leukemia progression, as indicated by several of the herein identified differentially expressed genes. Together, this knowledge provides the foundation for novel personalized drug targets and has the potential to maximize the benefit of current treatments to improve cure rates in AML.
Collapse
Affiliation(s)
| | - Sara A. Yones
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mateusz Garbulowski
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jitong Sun
- Department of Immunology, Genetics and Pathology and
| | - Aron Skaftason
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Mayrhofer
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nina Norgren
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Morten Krogh Herlin
- Department of Clinical Medicine and
- Department of Pediatrics and Adolescent Medicine, Aarhus University, Aarhus, Denmark
| | | | | | | | - Josefine Palle
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kirsi Jahnukainen
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Monica Cheng Munthe-Kaas
- Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Bernward Zeller
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Katja Pokrovskaja Tamm
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Komorowski
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
- Department of Clinical Medicine and
- Department of Pediatrics and Adolescent Medicine, Aarhus University, Aarhus, Denmark
- Department of Medical Sciences and
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Children’s Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Oncology and Pathology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Swedish Collegium for Advanced Study, Uppsala, Sweden
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
- Washington National Primate Research Center, Seattle, WA; and
| | - Linda Holmfeldt
- Department of Immunology, Genetics and Pathology and
- The Beijer Laboratory, Uppsala, Sweden
| |
Collapse
|
27
|
Acute Myeloid Leukemia-Related Proteins Modified by Ubiquitin and Ubiquitin-like Proteins. Int J Mol Sci 2022; 23:ijms23010514. [PMID: 35008940 PMCID: PMC8745615 DOI: 10.3390/ijms23010514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML), the most common form of an acute leukemia, is a malignant disorder of stem cell precursors of the myeloid lineage. Ubiquitination is one of the post-translational modifications (PTMs), and the ubiquitin-like proteins (Ubls; SUMO, NEDD8, and ISG15) play a critical role in various cellular processes, including autophagy, cell-cycle control, DNA repair, signal transduction, and transcription. Also, the importance of Ubls in AML is increasing, with the growing research defining the effect of Ubls in AML. Numerous studies have actively reported that AML-related mutated proteins are linked to Ub and Ubls. The current review discusses the roles of proteins associated with protein ubiquitination, modifications by Ubls in AML, and substrates that can be applied for therapeutic targets in AML.
Collapse
|
28
|
Yang C, Wang K, Liang Q, Tian TT, Zhong Z. Role of NSD1 as potential therapeutic target in tumor. Pharmacol Res 2021; 173:105888. [PMID: 34536546 DOI: 10.1016/j.phrs.2021.105888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/29/2022]
Abstract
Nuclear receptor binding SET Domain Protein 1 (NSD1) is a bifunctional transcriptional regulatory protein that encodes histone methyltransferase. Mono- and di-methylation of H3K36 by NSD1 is mainly primarily involved in the regulation of gene expression, DNA repair, alternative splicing, and other important biological processes. Many types of cancers, including acute myelogenous leukemia (AML), liver cancer, lung cancer, endometrial carcinoma, colorectal cancer, and pancreatic cancer, are associated with NSD1 fusion, missense mutation, nonsense mutation, silent mutation, deletion, and insertion of frameshift, and deletion in a frame. Therefore, targeting NSD1 may be a potential strategy for tumor therapy. An in-depth study of the structure and biological activities of NSD1 sets the groundwork for improving tumor therapy and creating NSD1 inhibitors. This article emphasizes the role of NSD1 in tumorigenesis and the development of NSD1 targeted small-molecule inhibitors.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - Kai Wang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province 524001, China
| | - Tian-Tian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province 519087, China.
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
29
|
Gynn LE, Anderson E, Robinson G, Wexler SA, Upstill-Goddard G, Cox C, May JE. Primary mesenchymal stromal cells in co-culture with leukaemic HL-60 cells are sensitised to cytarabine-induced genotoxicity, whilst leukaemic cells are protected. Mutagenesis 2021; 36:419-428. [PMID: 34505878 PMCID: PMC8633936 DOI: 10.1093/mutage/geab033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Tumour microenvironments are hallmarked in many cancer types. In haematological malignancies, bone marrow (BM) mesenchymal stromal cells (MSC) protect malignant cells from drug-induced cytotoxicity. However, less is known about malignant impact on supportive stroma. Notably, it is unknown whether these interactions alter long-term genotoxic damage in either direction. The nucleoside analogue cytarabine (ara-C), common in haematological therapies, remains the most effective agent for acute myeloid leukaemia, yet one third of patients develop resistance. This study aimed to evaluate the bidirectional effect of MSC and malignant cell co-culture on ara-C genotoxicity modulation. Primary MSC, isolated from patient BM aspirates for haematological investigations, and malignant haematopoietic cells (leukaemic HL-60) were co-cultured using trans-well inserts, prior to treatment with physiological dose ara-C. Co-culture genotoxic effects were assessed by micronucleus and alkaline comet assays. Patient BM cells from chemotherapy-treated patients had reduced ex vivo survival (P = 0.0049) and increased genotoxicity (P = 0.3172) than untreated patients. It was shown for the first time that HL-60 were protected by MSC from ara-C-induced genotoxicity, with reduced MN incidence in co-culture as compared to mono-culture (P = 0.0068). Comet tail intensity also significantly increased in ara-C-treated MSC with HL-60 influence (P = 0.0308). MSC sensitisation to ara-C genotoxicity was also demonstrated following co-culture with HL60 (P = 0.0116), which showed significantly greater sensitisation when MSC-HL-60 co-cultures were exposed to ara-C (P = 0.0409). This study shows for the first time that malignant HSC and MSC bidirectionally modulate genotoxicity, providing grounding for future research identifying mechanisms of altered genotoxicity in leukaemic microenvironments. MSC retain long-term genotoxic and functional damage following chemotherapy exposure. Understanding the interactions perpetuating such damage may inform modifications to reduce therapy-related complications, such as secondary malignancies and BM failure.
Collapse
Affiliation(s)
- Liana E Gynn
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Elizabeth Anderson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gareth Robinson
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Sarah A Wexler
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Gillian Upstill-Goddard
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Christine Cox
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.,Royal United Hospitals Bath NHS Foundation Trust, Bath, BA1 3NG, UK
| | - Jennifer E May
- Centre for Research in Biosciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
30
|
Konopleva MY. Mechanisms for resistance in AML insights into molecular pathways mediating resistance to venetoclax. Best Pract Res Clin Haematol 2021; 34:101251. [PMID: 33762105 DOI: 10.1016/j.beha.2021.101251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to therapy continues to pose hurdles in the therapeutic management of acute myeloid leukemia (AML). Although the approval and development of therapies such as venetoclax, was expected to overcome this issue, resistance remains a common occurrence in AML treatment. This review has summarized evidence that will provide insights into acquired mutations that influence response to venetoclax therapy and the utility of novel combination approaches in improving outcomes.
Collapse
Affiliation(s)
- Marina Y Konopleva
- Department of Leukemia, MD Anderson Cancer Center, 6767 Bertner Ave, Mitchell Basic Science Research Building, Houston, TX, 77030, USA.
| |
Collapse
|
31
|
Gu W, Liu T, Fan D, Zhang J, Xia Y, Meng F, Xu Y, Cornelissen JJ, Liu Z, Zhong Z. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+ acute myeloid leukemia. J Control Release 2021; 329:706-716. [DOI: 10.1016/j.jconrel.2020.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
|
32
|
Maganti H, Visram A, Shorr R, Fulcher J, Sabloff M, Allan DS. Plerixafor in combination with chemotherapy and/or hematopoietic cell transplantation to treat acute leukemia: A systematic review and metanalysis of preclinical and clinical studies. Leuk Res 2020; 97:106442. [PMID: 32877869 DOI: 10.1016/j.leukres.2020.106442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia-initiating cells localize to bone marrow niches via cell surface CXCR4 binding to stromal-derived factor 1 (SDF-1). Plerixafor, a CXCR4 antagonist, can mobilize and sensitize leukemia cells to cytotoxic therapy, and/or enhance the engraftment of healthy donor stem cells in the context of hematopoietic cell transplantation (HCT). A systematic review of preclinical and clinical studies was performed (updated May 1, 2020) to inform the design of definitive clinical trials and identified 19 studies. Pooled data from 10 preclinical in-vivo studies of AML and ALL in mouse models of leukemia revealed significant mobilization of leukemia cells into the peripheral circulation, decreased total blast burden and increased survival with plerixafor in addition to cytotoxic treatment compared to control animals. Two of 9 clinical studies compared outcomes to a control group. Plerixafor appears well tolerated and safe and can mobilize leukemia cells into the peripheral circulation. In patients with AML undergoing HCT, plerixafor given with the conditioning regimen appears safe and well tolerated. Engraftment, relapse and survival were not different from controls after limited follow-up. Studies in high risk patients with AML with longer follow-up are needed to understand the influence on relapse following treatment and on donor cell engraftment following HCT.
Collapse
Affiliation(s)
- Harinad Maganti
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Canada
| | - Alissa Visram
- Department of Medicine (Hematology), Faculty of Medicine, University of Ottawa, Canada
| | - Risa Shorr
- Medical Library, The Ottawa Hospital, Ottawa, Canada
| | - Jill Fulcher
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Canada; Department of Medicine (Hematology), Faculty of Medicine, University of Ottawa, Canada
| | - Mitchell Sabloff
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Canada; Department of Medicine (Hematology), Faculty of Medicine, University of Ottawa, Canada
| | - David S Allan
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Canada; Department of Medicine (Hematology), Faculty of Medicine, University of Ottawa, Canada.
| |
Collapse
|
33
|
Vagapova ER, Lebedev TD, Tikhonova AD, Goikhman BV, Ivanenko KA, Spirin PV, Prassolov VS. High Expression Level of SP1, CSF1R, and PAK1 Correlates with Sensitivity of Leukemia Cells to the Antibiotic Mithramycin. Mol Biol 2020. [DOI: 10.1134/s002689332003019x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Tan Y, Wu Q, Zhou F. Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Crit Rev Oncol Hematol 2020; 152:102993. [PMID: 32502928 DOI: 10.1016/j.critrevonc.2020.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
High relapse rate of acute myeloid leukemia (AML) is still a crucial problem despite considerable advances in anti-cancer therapies. One crucial cause of relapse is the existence of leukemia stem cells (LSCs) with self-renewal ability, which contribute to repeated treatment resistance and recurrence. Treatments targeting LSCs, especially in combination with existing chemotherapy regimens or hematopoietic stem cell transplantation might help achieve a higher complete remission rate and improve overall survival. Many novel agents of different therapeutic strategies that aim to modulate LSCs self-renewal, proliferation, apoptosis, and differentiation are under investigation. In this review, we summarize the latest advances of different therapies in development based on the biological characteristics of LSCs, with particular attention on natural products, synthetic compounds, antibody therapies, and adoptive cell therapies that promote the LSC eradication. We also explore the causes of AML recurrence and proposed potential strategies with new dimensions for targeting LSCs in the future.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
35
|
Stefaniuk P, Szymczyk A, Podhorecka M. The Neutrophil to Lymphocyte and Lymphocyte to Monocyte Ratios as New Prognostic Factors in Hematological Malignancies - A Narrative Review. Cancer Manag Res 2020; 12:2961-2977. [PMID: 32425606 PMCID: PMC7196794 DOI: 10.2147/cmar.s245928] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
Despite the presence of many hematological prognostic indexes, clinical course and overall survival are often highly variable even within the same patient subgroup. Recent studies suggest that simple, cost-effective, low-risk tests such as neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ratio (LMR) may be used to evaluate the prognosis. Their role has been well confirmed in diffuse large B-cell lymphoma (DLBCL), Hodgkin lymphoma (HL) and multiple myeloma (MM), but until now the prognostic significance of NLR and LMR in leukemias has not been widely reported. In this article, we analyze the literature data on prognostic value of NLR and LMR in haematological malignancies in the context of classic prognostic factors and clinical course.
Collapse
Affiliation(s)
- Paulina Stefaniuk
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Szymczyk
- Department of Clinical Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Podhorecka
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
36
|
Association of immunophenotype with expression of topoisomerase II α and β in adult acute myeloid leukemia. Sci Rep 2020; 10:5486. [PMID: 32218491 PMCID: PMC7099013 DOI: 10.1038/s41598-020-62345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/12/2020] [Indexed: 01/13/2023] Open
Abstract
Anthracyclines used in the treatment of acute myelogenous leukemia (AML) inhibit the activity of the mammalian topoisomerase II (topo II) isoforms, topo II α and topo IIβ. In 230 patients with non-M3 AML who received frontline ara-C/daunorubicin we determined expression of topo IIα and topo IIβ by RT-PCR and its relationship to immunophenotype (IP) and outcomes. Treatment outcomes were analyzed by logistic or Cox regression. In 211 patients, available for analysis, topo IIα expression was significantly lower than topo IIβ (P < 0.0001). In contrast to topo IIα, topo IIβ was significantly associated with blast percentage in marrow or blood (P = 0.0001), CD7 (P = 0.01), CD14 (P < 0.0001) and CD54 (P < 0.0001). Event free survival was worse for CD56-negative compared to CD56-high (HR = 1.9, 95% CI [1.0-3.5], p = 0.04), and overall survival was worse for CD-15 low as compared to CD15-high (HR = 2.2, 95% CI [1.1-4.2], p = 0.02). Ingenuity pathway analysis indicated topo IIβ and immunophenotype markers in a network associated with cell-to-cell signaling, hematological system development/function and inflammatory response. Topo IIβ expression reflects disease biology of highly proliferative disease and distinct IP but does not appear to be an independent variable influencing outcome in adult AML patients treated with anthracycline-based therapy.
Collapse
|
37
|
Williams MS, Amaral FM, Simeoni F, Somervaille TC. A stress-responsive enhancer induces dynamic drug resistance in acute myeloid leukemia. J Clin Invest 2020; 130:1217-1232. [PMID: 31770110 PMCID: PMC7269587 DOI: 10.1172/jci130809] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022] Open
Abstract
The drug efflux pump ABCB1 is a key driver of chemoresistance, and high expression predicts treatment failure in acute myeloid leukemia (AML). In this study, we identified and functionally validated the network of enhancers that controls expression of ABCB1. We show that exposure of leukemia cells to daunorubicin activated an integrated stress response-like transcriptional program to induce ABCB1 through remodeling and activation of an ATF4-bound, stress-responsive enhancer. Protracted stress primed enhancers for rapid increases in activity following re-exposure of cells to daunorubicin, providing an epigenetic memory of prior drug treatment. In primary human AML, exposure of fresh blast cells to daunorubicin activated the stress-responsive enhancer and led to dose-dependent induction of ABCB1. Dynamic induction of ABCB1 by diverse stressors, including chemotherapy, facilitated escape of leukemia cells from targeted third-generation ABCB1 inhibition, providing an explanation for the failure of ABCB1 inhibitors in clinical trials. Stress-induced upregulation of ABCB1 was mitigated by combined use of the pharmacologic inhibitors U0126 and ISRIB, which inhibit stress signaling and have potential for use as adjuvants to enhance the activity of ABCB1 inhibitors.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Acetamides/pharmacology
- Activating Transcription Factor 4/genetics
- Activating Transcription Factor 4/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Butadienes/pharmacology
- Cyclohexylamines/pharmacology
- Daunorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic
- Epigenesis, Genetic/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nitriles/pharmacology
- Up-Regulation/drug effects
Collapse
|
38
|
Popescu B, Sheela S, Thompson J, Grasmeder S, Intrater T, DeStefano CB, Hourigan CS, Lai C. Timed sequential salvage chemotherapy for relapsed or refractory acute myeloid leukemia. Clin Hematol Int 2020; 2:27-31. [PMID: 32190831 PMCID: PMC7079712 DOI: 10.2991/chi.d.191128.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023] Open
Abstract
Therapy for those with relapsed or refractory acute myeloid leukemia is suboptimal. Studies have suggested that timed sequential salvage combination cytotoxic chemotherapy may have particular utility for that indication. We report here a series of ten such adult patients treated sequentially at a single center with EMA (cytarabine 500 mg/m2/day as continuous infusion on days 1-3 and days 8-10, mitoxantrone 12 mg/m2/day on days 1-3, and etoposide 200 mg/m2/day as continuous infusion on days 8-10). The overall complete remission rate was 40% (including 3 of 4 of those with relapsed disease) but use of this regimen was associated with prolonged cytopenia and a high rate of infectious adverse events. Even with the availability of modern infectious prophylaxis and therapies, the EMA regimen is likely best reserved for those with relapsed disease treated with curative intent prior to an allogeneic hematopoietic cell transplant.
Collapse
Affiliation(s)
- Bogdan Popescu
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sheenu Sheela
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Julie Thompson
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Sophia Grasmeder
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Therese Intrater
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | - Christin B. DeStefano
- Laboratory of Myeloid Malignancies, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Room 10CRC 5-5130, 10 Center Drive, Bethesda, Maryland 20a814-1476, USA
| | | | | |
Collapse
|
39
|
Horibata S, Alyateem G, DeStefano CB, Gottesman MM. The Evolving AML Genomic Landscape: Therapeutic Implications. Curr Cancer Drug Targets 2020; 20:532-544. [PMID: 32329691 PMCID: PMC7442715 DOI: 10.2174/1568009620666200424150321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/24/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
Improved understanding of the genomic and molecular landscape of acute myeloid leukemia (AML) has resulted in a significant evolution of our understanding of AML biology and allows refined prognostication for those receiving standard combination chemotherapy induction. This dramatic increase in knowledge preceded, and was somewhat responsible for, at least some of eight new FDA drug approvals for AML. This review discusses the impact of genomics on clinical care of AML patients and highlights newly approved FDA drugs. Despite these recent clinical advances, however, the outcome for most patients diagnosed with AML remains dire. Thus, we describe here some of the challenges identified with treating AML including off-target toxicity, drug transporters, clonal heterogeneity, and adaptive resistance, and some of the most promising opportunities for improved therapy.
Collapse
MESH Headings
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Drug Approval
- Genomics/methods
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Mutation
- Protein Kinase Inhibitors/therapeutic use
- Risk Assessment
- Treatment Outcome
Collapse
Affiliation(s)
- Sachi Horibata
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - George Alyateem
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| | - Christin B. DeStefano
- Department of Hematology and Oncology, David Grant USAF Medical Center, Fairfield, CA, 93425
| | - Michael M. Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
40
|
Qiu L, Zhou G, Cao S. Targeted inhibition of ULK1 enhances daunorubicin sensitivity in acute myeloid leukemia. Life Sci 2019; 243:117234. [PMID: 31887299 DOI: 10.1016/j.lfs.2019.117234] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE In acute myeloid leukemia (AML), complete remission can be achieved in parts of patients using cytarabine/anthracycline combination-based chemotherapy, however, drug resistance-related recurrence is still a common cause of treatment failure, leading to high mortality among patients. In our research, we revealed the molecular mechanisms that were sufficient to improve sensitivity of AML cells to the anthracycline daunorubicin (DNR). METHODS We evaluated the effects of autophagy and apoptosis induced by DNR using two AML cell lines HL60 and U937.Western blot was preformed to analyze the apoptotic pathway protein expression and flow cytometric analysis was used to detect the level of apoptosis in AML cells. The levels of autophagy-related proteins were detected by western blotting and autophagic vesicles were observed by electron microscopy. RESULTS DNR effectively induced autophagy in two AML cell lines HL60 and U937 confirming by upregulation of LC3-II lipidation, formation of autophagosomes. Inhibition of autophagy by pharmacologic inhibitor HCQ promoted apoptosis induced by DNR, suggesting that autophagy played a vital role in pro-survival in AML. Furthermore, ULK1 inhibition by a highly selective kinase inhibitor SBI-0206965 and shRNA enhanced cytotoxicity of DNR against AML cells. Independent of mTOR -ULK1 signaling pathway, activation of autophagy of DNR was proved to be mediated by AMPK (pThr172)/ULK1 pathway. CONCLUSIONS These results revealed that pro-survival autophagy induced by ULK1 activation was one of the potential mechanisms of AML resistance to DNR. Targeting ULK1 selectively could be a promising therapeutic strategy to enhance sensitivity of DNR for AML therapy.
Collapse
Affiliation(s)
- Li Qiu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Pharmacogenetics, Changsha, Hunan 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, 110 Xiang Ya Road, Changsha, Hunan 410078, China.
| |
Collapse
|
41
|
Lee DJ, Zeidner JF. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin Investig Drugs 2019; 28:989-1001. [PMID: 31612739 DOI: 10.1080/13543784.2019.1678583] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Despite advancements over the last 2 years, outcomes for acute myeloid leukemia (AML) are poor; however, a greater comprehension of disease mechanisms has driven the investigation of new targeted treatments. Cyclin-dependent kinases (CDKs) regulate cell cycle progression, transcription and DNA repair, and are aberrantly expressed in AML. Targeting the CDK pathway is an emerging promising therapeutic strategy in AML.Areas covered: We describe the rationale for targeting CDK9 and CDK4/6, the ongoing preclinical and clinical trials and the potential of these inhibitors in AML. Our analysis included an extensive literature search via the Pubmed database and clinicaltrials.gov (March to August, 2019).Expert opinion: While CDK4/6 inhibitors are early in development for AML, CDK9 inhibition with alvocidib has encouraging clinical activity in newly diagnosed and relapsed/refractory AML. Preclinical data suggests that leukemic MCL-1 dependence may predict response to alvocidib. Moreover, MCL-1 plays a key role in resistance to BCL-2 inhibition with venetoclax. Investigational strategies of concomitant BCL-2 and CDK9 inhibition represent a promising therapeutic platform for AML. Furthermore, preclinical data suggests that CDK4/6 inhibition has selective activity in patients with KMT2A-rearrangements and FLT3 mutations. Incorporation of CDK9 and 4/6 inhibitors into the existing therapeutic armamentarium may improve outcomes in AML.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua F Zeidner
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Horibata S. Transcriptomic profile of intrinsically chemoresistant acute myeloid leukemia patients. Mol Cell Oncol 2019; 6:e1650631. [PMID: 31692823 PMCID: PMC6816412 DOI: 10.1080/23723556.2019.1650631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
We recently identified three sub-populations of refractory acute myeloid leukemia (AML) patients with distinct intrinsic resistance mechanisms. Furthermore, we were able to risk-stratify the overall survival of the patients and identify patients who would likely benefit from alternative therapies.
Collapse
Affiliation(s)
- Sachi Horibata
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
43
|
Chiu YC, Hsiao TH, Tsai JR, Wang LJ, Ho TC, Hsu SL, Teng CLJ. Integrating resistance functions to predict response to induction chemotherapy in de novo acute myeloid leukemia. Eur J Haematol 2019; 103:417-425. [PMID: 31356696 DOI: 10.1111/ejh.13301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study explored resistance functions and their interactions in de novo AML treated with the "7 + 3" induction regimen. METHODS We analyzed RNA-sequencing profiles of whole bone marrow samples from 52 de novo AML patients who completed the "7 + 3" regimen and stratified patients into CR (n = 35) and non-CR (n = 17) groups. RESULTS A systematic gene set analysis revealed significant associations between chemoresistance and mTOR (P < .001), myc (P < .001), mitochondrial oxidative phosphorylation (P < .001), and stemness (P = .002). These functions were independent with regard to gene contents and activity scores. An integration of these four functions showed a prediction of chemoresistance (area under the receiver operating characteristic curve = 0.815) superior to that of each function alone. Moreover, our proposed seven-gene scoring system significantly correlated with the four-function model (r = .97; P < .001) to predict chemoresistance to the "7 + 3" regimen. On multivariate analysis, a seven-gene score of ≥-0.027 (hazard ratio: 11.18; 95% confidence interval: 2.06-60.65; P = .005) was an independent risk factor for induction failure. CONCLUSIONS Myc, OXPHOS, mTOR, and stemness were responsive for chemoresistance in AML. Treatments other than the "7 + 3" regimen need to be considered for de novo AML patients predicted to be refractory to the "7 + 3" regimen.
Collapse
Affiliation(s)
- Yu-Chiao Chiu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Rong Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ju Wang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|