1
|
Komikawa T, Okochi M, Tanaka M. Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria. J Bacteriol 2025; 207:e0048224. [PMID: 40135904 PMCID: PMC12004969 DOI: 10.1128/jb.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The mechanism by which cells regulate protein localization is an important topic in the field of bacterial biology. In certain instances, the morphology of the biological membrane has been demonstrated to function as a spatial cue for the subcellular localization of proteins. These proteins are capable of sensing membrane curvature and are involved in a number of physiological functions such as cytokinesis and the formation of membrane-bound organelles. This review presents recent advances in the in vitro evaluation of curvature-sensing properties using artificially controlled membranes and purified proteins, as well as microscopic live cell assays. However, these evaluation methodologies often require sophisticated experiments, and the number of identified curvature sensors remains limited. Thus, we present a comprehensive exploration of recently reported curvature-sensing proteins. Subsequently, we summarize the known curvature-sensing proteins in bacteria, in conjunction with the analytical methodologies employed in this field. Finally, future prospects and further requirements in the study of curvature-sensing proteins are discussed.
Collapse
Affiliation(s)
- Takumi Komikawa
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Mina Okochi
- School of Materials and Chemical Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Masayoshi Tanaka
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Burton AT, Zeinert R, Storz G. Large Roles of Small Proteins. Annu Rev Microbiol 2024; 78:1-22. [PMID: 38772630 PMCID: PMC12005717 DOI: 10.1146/annurev-micro-112723-083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Bacterial proteins of ≤50 amino acids, denoted small proteins or microproteins, have been traditionally understudied and overlooked, as standard computational, biochemical, and genetic approaches often do not detect proteins of this size. However, with the realization that small proteins are stably expressed and have important cellular roles, there has been increased identification of small proteins in bacteria and eukaryotes. Gradually, the functions of a few of these small proteins are being elucidated. Many interact with larger protein products to modulate their subcellular localization, stabilities, or activities. Here, we provide an overview of these diverse functions in bacteria, highlighting generalities among bacterial small proteins and similarly sized proteins in eukaryotic organisms and discussing questions for future research.
Collapse
Affiliation(s)
- Aisha T Burton
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Rilee Zeinert
- Postdoctoral Research Associate Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA;
| |
Collapse
|
3
|
Delerue T, Updegrove TB, Chareyre S, Anantharaman V, Gilmore MC, Jenkins LM, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial spore surface nanoenvironment requires a AAA+ ATPase to promote MurG function. Proc Natl Acad Sci U S A 2024; 121:e2414737121. [PMID: 39405354 PMCID: PMC11513918 DOI: 10.1073/pnas.2414737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth. MurG redeploys to the forespore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment abrogates MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly mis-localizes SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes specialized chaperones involved in secretion, cell envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Vivek Anantharaman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, NIHBethesda, MD20894
| | - Michael C. Gilmore
- The Laboratory for Molecular Infection Medicine Sweden, Umeå Center for Microbial Research, Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå90187, Sweden
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden, Umeå Center for Microbial Research, Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå90187, Sweden
| | - L. Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, NIHBethesda, MD20894
| | | |
Collapse
|
4
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. SCIENCE ADVANCES 2024; 10:eadq0791. [PMID: 39423260 PMCID: PMC11488536 DOI: 10.1126/sciadv.adq0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation nonuniformly to secure against the possibility that favorable growth conditions, which put sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway containing the proteins ShfA (YabQ) and ShfP (YvnB) that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early use a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay nonsporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Office of Collaborative Biostatistics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Updegrove TB, Delerue T, Anantharaman V, Cho H, Chan C, Nipper T, Choo-Wosoba H, Jenkins LM, Zhang L, Su Y, Shroff H, Chen J, Bewley CA, Aravind L, Ramamurthi KS. Altruistic feeding and cell-cell signaling during bacterial differentiation actively enhance phenotypic heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587046. [PMID: 38903092 PMCID: PMC11188070 DOI: 10.1101/2024.03.27.587046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Starvation triggers bacterial spore formation, a committed differentiation program that transforms a vegetative cell into a dormant spore. Cells in a population enter sporulation non-uniformly to secure against the possibility that favorable growth conditions, which puts sporulation-committed cells at a disadvantage, may resume. This heterogeneous behavior is initiated by a passive mechanism: stochastic activation of a master transcriptional regulator. Here, we identify a cell-cell communication pathway that actively promotes phenotypic heterogeneity, wherein Bacillus subtilis cells that start sporulating early utilize a calcineurin-like phosphoesterase to release glycerol, which simultaneously acts as a signaling molecule and a nutrient to delay non-sporulating cells from entering sporulation. This produced a more diverse population that was better poised to exploit a sudden influx of nutrients compared to those generating heterogeneity via stochastic gene expression alone. Although conflict systems are prevalent among microbes, genetically encoded cooperative behavior in unicellular organisms can evidently also boost inclusive fitness.
Collapse
Affiliation(s)
- Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Hyomoon Cho
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carissa Chan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Nipper
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Support Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa M. Jenkins
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Chareyre S, Li X, Anjuwon-Foster BR, Updegrove TB, Clifford S, Brogan AP, Su Y, Zhang L, Chen J, Shroff H, Ramamurthi KS. Cell division machinery drives cell-specific gene activation during differentiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2024; 121:e2400584121. [PMID: 38502707 PMCID: PMC10990147 DOI: 10.1073/pnas.2400584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 03/21/2024] Open
Abstract
When faced with starvation, the bacterium Bacillus subtilis transforms itself into a dormant cell type called a "spore". Sporulation initiates with an asymmetric division event, which requires the relocation of the core divisome components FtsA and FtsZ, after which the sigma factor σF is exclusively activated in the smaller daughter cell. Compartment-specific activation of σF requires the SpoIIE phosphatase, which displays a biased localization on one side of the asymmetric division septum and associates with the structural protein DivIVA, but the mechanism by which this preferential localization is achieved is unclear. Here, we isolated a variant of DivIVA that indiscriminately activates σF in both daughter cells due to promiscuous localization of SpoIIE, which was corrected by overproduction of FtsA and FtsZ. We propose that the core components of the redeployed cell division machinery drive the asymmetric localization of DivIVA and SpoIIE to trigger the initiation of the sporulation program.
Collapse
Affiliation(s)
- Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | | - Taylor B. Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Sarah Clifford
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Anna P. Brogan
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, NIH, Bethesda, MD20892
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD20892
- HHMI, Ashburn, VA20147
| | | |
Collapse
|
7
|
Bauda E, Gallet B, Moravcova J, Effantin G, Chan H, Novacek J, Jouneau PH, Rodrigues CDA, Schoehn G, Moriscot C, Morlot C. Ultrastructure of macromolecular assemblies contributing to bacterial spore resistance revealed by in situ cryo-electron tomography. Nat Commun 2024; 15:1376. [PMID: 38355696 PMCID: PMC10867305 DOI: 10.1038/s41467-024-45770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Bacterial spores owe their incredible resistance capacities to molecular structures that protect the cell content from external aggressions. Among the determinants of resistance are the quaternary structure of the chromosome and an extracellular shell made of proteinaceous layers (the coat), the assembly of which remains poorly understood. Here, in situ cryo-electron tomography on lamellae generated by cryo-focused ion beam micromachining provides insights into the ultrastructural organization of Bacillus subtilis sporangia. The reconstructed tomograms reveal that early during sporulation, the chromosome in the forespore adopts a toroidal structure harboring 5.5-nm thick fibers. At the same stage, coat proteins at the surface of the forespore form a stack of amorphous or structured layers with distinct electron density, dimensions and organization. By analyzing mutant strains using cryo-electron tomography and transmission electron microscopy on resin sections, we distinguish seven nascent coat regions with different molecular properties, and propose a model for the contribution of coat morphogenetic proteins.
Collapse
Affiliation(s)
- Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Benoit Gallet
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Jana Moravcova
- CEITEC-Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | - Helena Chan
- University of Technology Sydney, 2007, Ultimo, NSW, Australia
| | - Jiri Novacek
- CEITEC-Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
| | | | | | - Guy Schoehn
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France.
| |
Collapse
|
8
|
Chen J, Wang Y, Lin S, Yu Q, Qi Z, Jiang W, Zhao Q, Fu QB. Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in Bicelle condition. Biochem Biophys Res Commun 2024; 694:149395. [PMID: 38141557 DOI: 10.1016/j.bbrc.2023.149395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
SpoVM and SpoIVA are essential proteins for coat assembly in Bacillus subtilis. SpoVM is a membrane curvature sensor, specifically localized on the forespore membrane. SpoIVA is an ATP hydrolase that self-assembles by hydrolyzing ATP. In this work, SpoVM and its mutant SpoVMP9A were obtained by cyanogen bromide cleavage and reconstituted into bicelles. The purification of SpoIVA was achieved through a rigorous process involving Ni-NTA chromatography column and size exclusion chromatography. This study utilized Biacore to obtain a direct determination of the kinetic parameters of interaction between SpoVM (SpoVMP9A) and SpoIVA in Bicelle conditions.
Collapse
Affiliation(s)
- Jiali Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yifan Wang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Shuru Lin
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Quanxiang Yu
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Zhengfei Qi
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Wenqi Jiang
- Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Qiang Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| | - Qingshan Bill Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China; Shanghai Institute of Materia Medica, Zhongshan Institute for Drug Discovery, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
9
|
Updegrove TB, D'Atri D, Ramamurthi KS. Assembling the Bacillus subtilis Spore Coat Basement Layer on Spherical Supported Lipid Bilayers. Methods Mol Biol 2024; 2727:215-225. [PMID: 37815720 DOI: 10.1007/978-1-0716-3491-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Micro- and nanoparticles are often designed by mimicking naturally occurring structures. Bacterial spores are dormant cells elaborated by some Gram-positive bacteria during poor growth conditions to protect their genetic material from harsh environmental stresses. In Bacillus subtilis, this protection is, in part, conferred by a proteinaceous shell, the "coat", which is composed of ~80 different proteins. The basement layer of the coat contains two unusual proteins, which we have recently reconstituted around silica beads to generate synthetic spore-like particles termed "SSHELs". Here, we describe the protocol for generating SSHEL particles, and describe the procedure to covalently link molecules of interest (in this case an anti-HER2 affibody) to SSHEL surfaces. SSHELs therefore represent a versatile platform for the display of ligands or antigens for the site-specific delivery of cargo or vaccines.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Domenico D'Atri
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Badvaram I, Camley BA. Physical limits to membrane curvature sensing by a single protein. Phys Rev E 2023; 108:064407. [PMID: 38243534 DOI: 10.1103/physreve.108.064407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 09/11/2023] [Indexed: 01/21/2024]
Abstract
Membrane curvature sensing is essential for a diverse range of biological processes. Recent experiments have revealed that a single nanometer-sized septin protein has different binding rates to membrane-coated glass beads of 1-µm and 3-µm diameters, even though the septin is orders of magnitude smaller than the beads. This sensing ability is especially surprising since curvature-sensing proteins must deal with persistent thermal fluctuations of the membrane, leading to discrepancies between the bead's curvature and the local membrane curvature sensed instantaneously by a protein. Using continuum models of fluctuating membranes, we investigate whether it is feasible for a protein acting as a perfect observer of the membrane to sense micron-scale curvature either by measuring local membrane curvature or by using bilayer lipid densities as a proxy. To do this, we develop algorithms to simulate lipid density and membrane shape fluctuations. We derive physical limits to the sensing efficacy of a protein in terms of protein size, membrane thickness, membrane bending modulus, membrane-substrate adhesion strength, and bead size. To explain the experimental protein-bead association rates, we develop two classes of predictive models: (i) for proteins that maximally associate to a preferred curvature and (ii) for proteins with enhanced association rates above a threshold curvature. We find that the experimentally observed sensing efficacy is close to the theoretical sensing limits imposed on a septin-sized protein. Protein-membrane association rates may depend on the curvature of the bead, but the strength of this dependence is limited by the fluctuations in membrane height and density.
Collapse
Affiliation(s)
- Indrajit Badvaram
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
- William H. Miller III Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Brantl S, Ul Haq I. Small proteins in Gram-positive bacteria. FEMS Microbiol Rev 2023; 47:fuad064. [PMID: 38052429 PMCID: PMC10730256 DOI: 10.1093/femsre/fuad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023] Open
Abstract
Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.
Collapse
Affiliation(s)
- Sabine Brantl
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| | - Inam Ul Haq
- AG Bakteriengenetik, Matthias-Schleiden-Institut, Friedrich-Schiller-Universität Jena, Philosophenweg 12, Jena D-07743, Germany
| |
Collapse
|
12
|
Delerue T, Chareyre S, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial cell surface nanoenvironment requires a specialized chaperone to activate a peptidoglycan biosynthetic enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561273. [PMID: 37986874 PMCID: PMC10659427 DOI: 10.1101/2023.10.06.561273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a dedicated chaperone from a distinct higher-order clade of AAA+ ATPases that activates the peptidoglycan glycosyltransferase MurG during sporulation, even though MurG does not normally require activation by a chaperone during vegetative growth. MurG redeploys to the spore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment necessitates a specific chaperone for proper MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly inactivates SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes other dedicated chaperones involved in secretion, cell-envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sylvia Chareyre
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael C. Gilmore
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Felipe Cava
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Li X, Wu Y, Su Y, Rey-Suarez I, Matthaeus C, Updegrove TB, Wei Z, Zhang L, Sasaki H, Li Y, Guo M, Giannini JP, Vishwasrao HD, Chen J, Lee SJJ, Shao L, Liu H, Ramamurthi KS, Taraska JW, Upadhyaya A, La Riviere P, Shroff H. Three-dimensional structured illumination microscopy with enhanced axial resolution. Nat Biotechnol 2023; 41:1307-1319. [PMID: 36702897 PMCID: PMC10497409 DOI: 10.1038/s41587-022-01651-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023]
Abstract
The axial resolution of three-dimensional structured illumination microscopy (3D SIM) is limited to ∼300 nm. Here we present two distinct, complementary methods to improve axial resolution in 3D SIM with minimal or no modification to the optical system. We show that placing a mirror directly opposite the sample enables four-beam interference with higher spatial frequency content than 3D SIM illumination, offering near-isotropic imaging with ∼120-nm lateral and 160-nm axial resolution. We also developed a deep learning method achieving ∼120-nm isotropic resolution. This method can be combined with denoising to facilitate volumetric imaging spanning dozens of timepoints. We demonstrate the potential of these advances by imaging a variety of cellular samples, delineating the nanoscale distribution of vimentin and microtubule filaments, observing the relative positions of caveolar coat proteins and lysosomal markers and visualizing cytoskeletal dynamics within T cells in the early stages of immune synapse formation.
Collapse
Affiliation(s)
- Xuesong Li
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA.
| | - Yicong Wu
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA.
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA.
| | - Yijun Su
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| | - Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zhuang Wei
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Lixia Zhang
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Hideki Sasaki
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Yue Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Min Guo
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - John P Giannini
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shih-Jong J Lee
- Leica Microsystems, Inc., Deerfield, IL, USA
- SVision, LLC, Bellevue, WA, USA
| | - Lin Shao
- Department of Neuroscience and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Huafeng Liu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Patrick La Riviere
- Department of Radiology, University of Chicago, Chicago, IL, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Hari Shroff
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
- MBL Fellows, Marine Biological Laboratory, Woods Hole, MA, USA
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
14
|
Kong M, D'Atri D, Bilotta MT, Johnson B, Updegrove TB, Gallardo DL, Machinandiarena F, Wu IL, Constantino MA, Hewitt SM, Tanner K, Fitzgerald DJ, Ramamurthi KS. Cell-specific cargo delivery using synthetic bacterial spores. Cell Rep 2023; 42:111955. [PMID: 36640333 PMCID: PMC10009695 DOI: 10.1016/j.celrep.2022.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Delivery of cancer therapeutics to non-specific sites decreases treatment efficacy while increasing toxicity. In ovarian cancer, overexpression of the cell surface marker HER2, which several therapeutics target, relates to poor prognosis. We recently reported the assembly of biocompatible bacterial spore-like particles, termed "SSHELs." Here, we modify SSHELs with an affibody directed against HER2 and load them with the chemotherapeutic agent doxorubicin. Drug-loaded SSHELs reduce tumor growth and increase survival with lower toxicity in a mouse tumor xenograft model compared with free drug and with liposomal doxorubicin by preferentially accumulating in the tumor mass. Target cells actively internalize and then traffic bound SSHELs to acidic compartments, whereupon the cargo is released to the cytosol in a pH-dependent manner. We propose that SSHELs represent a versatile strategy for targeted drug delivery, especially in cancer settings.
Collapse
Affiliation(s)
- Minsuk Kong
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, South Korea
| | - Domenico D'Atri
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Bilotta
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bailey Johnson
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Devorah L Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Federico Machinandiarena
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Lin Wu
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maira Alves Constantino
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David J Fitzgerald
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Delerue T, Anantharaman V, Gilmore MC, Popham DL, Cava F, Aravind L, Ramamurthi KS. Bacterial developmental checkpoint that directly monitors cell surface morphogenesis. Dev Cell 2022; 57:344-360.e6. [PMID: 35065768 PMCID: PMC8991396 DOI: 10.1016/j.devcel.2021.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/15/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Bacillus subtilis spores are encased in two concentric shells: an outer proteinaceous "coat" and an inner peptidoglycan "cortex," separated by a membrane. Cortex assembly depends on coat assembly initiation, but how cells achieve this coordination across the membrane is unclear. Here, we report that the protein SpoVID monitors the polymerization state of the coat basement layer via an extension to a functional intracellular LysM domain that arrests sporulation when coat assembly is initiated improperly. Whereas extracellular LysM domains bind mature peptidoglycan, SpoVID LysM binds to the membrane-bound lipid II peptidoglycan precursor. We propose that improper coat assembly exposes the SpoVID LysM domain, which then sequesters lipid II and prevents cortex assembly. SpoVID defines a widespread group of firmicute proteins with a characteristic N-terminal domain and C-terminal peptidoglycan-binding domains that might combine coat and cortex assembly roles to mediate a developmental checkpoint linking the morphogenesis of two spatially separated supramolecular structures.
Collapse
Affiliation(s)
- Thomas Delerue
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael C. Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - David L. Popham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,Lead contact,Correspondence:
| |
Collapse
|
16
|
Ramos-León F, Ramamurthi K. Cytoskeletal proteins: Lessons learned from bacteria. Phys Biol 2022; 19. [PMID: 35081523 DOI: 10.1088/1478-3975/ac4ef0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/26/2022] [Indexed: 11/11/2022]
Abstract
Cytoskeletal proteins are classified as a group that is defined functionally, whose members are capable of polymerizing into higher order structures, either dynamically or statically, to perform structural roles during a variety of cellular processes. In eukaryotes, the most well-studied cytoskeletal proteins are actin, tubulin, and intermediate filaments, and are essential for cell shape and movement, chromosome segregation, and intracellular cargo transport. Prokaryotes often harbor homologs of these proteins, but in bacterial cells, these homologs are usually not employed in roles that can be strictly defined as "cytoskeletal". However, several bacteria encode other proteins capable of polymerizing which, although they do not appear to have a eukaryotic counterpart, nonetheless appear to perform a more traditional "cytoskeletal" function. In this review, we discuss recent reports that cover the structure and functions of prokaryotic proteins that are broadly termed as cytoskeletal, either by sequence homology or by function, to highlight how the enzymatic properties of traditionally studied cytoskeletal proteins may be used for other types of cellular functions; and to demonstrate how truly "cytoskeletal" functions may be performed by uniquely bacterial proteins that do not display homology to eukaryotic proteins.
Collapse
Affiliation(s)
- Félix Ramos-León
- National Institutes of Health, 37 Convent Dr., Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| | - Kumaran Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Dr, Bldg 37, Room 5132, Bethesda, Maryland, 20892, UNITED STATES
| |
Collapse
|
17
|
Abstract
In recent years, there has been increased appreciation that a whole category of proteins, small proteins of around 50 amino acids or fewer in length, has been missed by annotation as well as by genetic and biochemical assays. With the increased recognition that small proteins are stable within cells and have regulatory functions, there has been intensified study of these proteins. As a result, important questions about small proteins in bacteria and archaea are coming to the fore. Here, we give an overview of these questions, the initial answers, and the approaches needed to address these questions more fully. More detailed discussions of how small proteins can be identified by ribosome profiling and mass spectrometry approaches are provided by two accompanying reviews (N. Vazquez-Laslop, C. M. Sharma, A. S. Mankin, and A. R. Buskirk, J Bacteriol 204:e00294-21, 2022, https://doi.org/10.1128/JB.00294-21; C. H. Ahrens, J. T. Wade, M. M. Champion, and J. D. Langer, J Bacteriol 204:e00353-21, 2022, https://doi.org/10.1128/JB.00353-21). We are excited by the prospects of new insights and possible therapeutic approaches coming from this emerging field.
Collapse
Affiliation(s)
- Todd Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kai Papenfort
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Microverse Cluster, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Yadavalli SS, Yuan J. Bacterial Small Membrane Proteins: the Swiss Army Knife of Regulators at the Lipid Bilayer. J Bacteriol 2022; 204:e0034421. [PMID: 34516282 PMCID: PMC8765417 DOI: 10.1128/jb.00344-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small membrane proteins represent a subset of recently discovered small proteins (≤100 amino acids), which are a ubiquitous class of emerging regulators underlying bacterial adaptation to environmental stressors. Until relatively recently, small open reading frames encoding these proteins were not designated genes in genome annotations. Therefore, our understanding of small protein biology was primarily limited to a few candidates associated with previously characterized larger partner proteins. Following the first systematic analyses of small proteins in Escherichia coli over a decade ago, numerous small proteins across different bacteria have been uncovered. An estimated one-third of these newly discovered proteins in E. coli are localized to the cell membrane, where they may interact with distinct groups of membrane proteins, such as signal receptors, transporters, and enzymes, and affect their activities. Recently, there has been considerable progress in functionally characterizing small membrane protein regulators aided by innovative tools adapted specifically to study small proteins. Our review covers prototypical proteins that modulate a broad range of cellular processes, such as transport, signal transduction, stress response, respiration, cell division, sporulation, and membrane stability. Thus, small membrane proteins represent a versatile group of physiology regulators at the membrane and the whole cell. Additionally, small membrane proteins have the potential for clinical applications, where some of the proteins may act as antibacterial agents themselves while others serve as alternative drug targets for the development of novel antimicrobials.
Collapse
Affiliation(s)
- Srujana S. Yadavalli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, New Jersey, USA
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Jing Yuan
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
19
|
Tanaka M, Ueno Y, Miyake T, Sakuma T, Okochi M. Enrichment of membrane curvature-sensing proteins from Escherichia coli using spherical supported lipid bilayers. J Biosci Bioeng 2021; 133:98-104. [PMID: 34776361 DOI: 10.1016/j.jbiosc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Bacteria display dynamically organized curved membrane structures, especially during cell division. The importance of membrane curvature-sensing (MCS) proteins for the recognition and regulation of biological membrane morphologies has predominately been investigated in eukaryotic cells. Recently, a technique for screening MCS proteins from solutions that contain peripheral membrane proteins was developed, and MCS protein candidates were identified from mammalian cells. The technique uses differently sized spherical supported lipid bilayers (SSLBs), which consist of spherical SiO2 particles covered with a lipid bilayer. To discriminate between proteins possessing the MCS property, SSLBs with the same surface area were used in a comparative sedimentation assay with shotgun proteome analysis. In this study, to prove that the technique could be applied to other samples, MCS proteins in Escherichia coli were investigated. Through a comparative proteomic study, 35 and 47 proteins were enriched as candidate MCS proteins preferentially bound to SSLBs of 100 nm and 1000 nm, respectively. Among the identified MCS candidate proteins, FtsZ and SecA were further examined for their MCS properties using the two SSLB sizes, which revealed a high binding affinity for the low membrane curvature (large SSLB). This is the first study to explore MCS proteins in prokaryotic cells and the MCS property of the SecA protein. The results demonstrate a method to enrich MCS proteins that could be utilized to better elucidate membrane dynamics and protein function expression on curved membrane structures in prokaryotic cells.
Collapse
Affiliation(s)
- Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Yu Ueno
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Miyake
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Sakuma
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Mina Okochi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan.
| |
Collapse
|
20
|
Shen A. Clostridioides difficile Spore Formation and Germination: New Insights and Opportunities for Intervention. Annu Rev Microbiol 2021; 74:545-566. [PMID: 32905755 DOI: 10.1146/annurev-micro-011320-011321] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Spore formation and germination are essential for the bacterial pathogen Clostridioides difficile to transmit infection. Despite the importance of these developmental processes to the infection cycle of C. difficile, the molecular mechanisms underlying how this obligate anaerobe forms infectious spores and how these spores germinate to initiate infection were largely unknown until recently. Work in the last decade has revealed that C. difficile uses a distinct mechanism for sensing and transducing germinant signals relative to previously characterized spore formers. The C. difficile spore assembly pathway also exhibits notable differences relative to Bacillus spp., where spore formation has been more extensively studied. For both these processes, factors that are conserved only in C. difficile or the related Peptostreptococcaceae family are employed, and even highly conserved spore proteins can have differential functions or requirements in C. difficile compared to other spore formers. This review summarizes our current understanding of the mechanisms controlling C. difficile spore formation and germination and describes strategies for inhibiting these processes to prevent C. difficile infection and disease recurrence.
Collapse
Affiliation(s)
- Aimee Shen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA;
| |
Collapse
|
21
|
Updegrove TB, Harke J, Anantharaman V, Yang J, Gopalan N, Wu D, Piszczek G, Stevenson DM, Amador-Noguez D, Wang JD, Aravind L, Ramamurthi KS. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function. eLife 2021; 10:65845. [PMID: 33704064 PMCID: PMC7952092 DOI: 10.7554/elife.65845] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/05/2021] [Indexed: 12/23/2022] Open
Abstract
Hydrolysis of nucleoside triphosphates releases similar amounts of energy. However, ATP hydrolysis is typically used for energy-intensive reactions, whereas GTP hydrolysis typically functions as a switch. SpoIVA is a bacterial cytoskeletal protein that hydrolyzes ATP to polymerize irreversibly during Bacillus subtilis sporulation. SpoIVA evolved from a TRAFAC class of P-loop GTPases, but the evolutionary pressure that drove this change in nucleotide specificity is unclear. We therefore reengineered the nucleotide-binding pocket of SpoIVA to mimic its ancestral GTPase activity. SpoIVAGTPase functioned properly as a GTPase but failed to polymerize because it did not form an NDP-bound intermediate that we report is required for polymerization. Further, incubation of SpoIVAGTPase with limiting ATP did not promote efficient polymerization. This approach revealed that the nucleotide base, in addition to the energy released from hydrolysis, can be critical in specific biological functions. We also present data suggesting that increased levels of ATP relative to GTP at the end of sporulation was the evolutionary pressure that drove the change in nucleotide preference in SpoIVA.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Jailynn Harke
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - Nikhil Gopalan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, United States
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
22
|
Krajčíková D, Bugárová V, Barák I. Interactions of Bacillus subtilis Basement Spore Coat Layer Proteins. Microorganisms 2021; 9:microorganisms9020285. [PMID: 33573199 PMCID: PMC7911427 DOI: 10.3390/microorganisms9020285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
Bacillus subtilis endospores are exceptionally resistant cells encircled by two protective layers: a petidoglycan layer, termed the cortex, and the spore coat, a proteinaceous layer. The formation of both structures depends upon the proper assembly of a basement coat layer, which is composed of two proteins, SpoIVA and SpoVM. The present work examines the interactions of SpoIVA and SpoVM with coat proteins recruited to the spore surface during the early stages of coat assembly. We showed that the alanine racemase YncD associates with two morphogenetic proteins, SpoIVA and CotE. Mutant spores lacking the yncD gene were less resistant against wet heat and germinated to a greater extent than wild-type spores in the presence of micromolar concentrations of l-alanine. In seeking a link between the coat and cortex formation, we investigated the interactions between SpoVM and SpoIVA and the proteins essential for cortex synthesis and found that SpoVM interacts with a penicillin-binding protein, SpoVD, and we also demonstrated that SpoVM is crucial for the proper localization of SpoVD. This study shows that direct contacts between coat morphogenetic proteins with a complex of cortex-synthesizing proteins could be one of the tools by which bacteria couple cortex and coat formation.
Collapse
|
23
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
24
|
Role of SpoIVA ATPase Motifs during Clostridioides difficile Sporulation. J Bacteriol 2020; 202:JB.00387-20. [PMID: 32817091 PMCID: PMC7549369 DOI: 10.1128/jb.00387-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 01/04/2023] Open
Abstract
The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly. The nosocomial pathogen Clostridioides difficile is a spore-forming obligate anaerobe that depends on its aerotolerant spore form to transmit infections. Functional spore formation depends on the assembly of a proteinaceous layer known as the coat around the developing spore. In C. difficile, coat assembly depends on the conserved spore protein SpoIVA and the clostridial-organism-specific spore protein SipL, which directly interact. Mutations that disrupt their interaction cause the coat to mislocalize and impair spore formation. In Bacillus subtilis, SpoIVA is an ATPase that uses ATP hydrolysis to drive its polymerization around the forespore. Loss of SpoIVA ATPase activity impairs B. subtilis SpoIVA encasement of the forespore and activates a quality control mechanism that eliminates these defective cells. Since this mechanism is lacking in C. difficile, we tested whether mutations in the C. difficile SpoIVA ATPase motifs impact functional spore formation. Disrupting C. difficile SpoIVA ATPase motifs resulted in phenotypes that were typically >104-fold less severe than the equivalent mutations in B. subtilis. Interestingly, mutation of ATPase motif residues predicted to abrogate SpoIVA binding to ATP decreased the SpoIVA-SipL interaction, whereas mutation of ATPase motif residues predicted to disrupt ATP hydrolysis but maintain ATP binding enhanced the SpoIVA-SipL interaction. When a sipL mutation known to reduce binding to SpoIVA was combined with a spoIVA mutation predicted to prevent SpoIVA binding to ATP, spore formation was severely exacerbated. Since this phenotype is allele specific, our data imply that SipL recognizes the ATP-bound form of SpoIVA and highlight the importance of this interaction for functional C. difficile spore formation. IMPORTANCE The major pathogen Clostridioides difficile depends on its spore form to transmit disease. However, the mechanism by which C. difficile assembles spores remains poorly characterized. We previously showed that binding between the spore morphogenetic proteins SpoIVA and SipL regulates assembly of the protective coat layer around the forespore. In this study, we determined that mutations in the C. difficile SpoIVA ATPase motifs result in relatively minor defects in spore formation, in contrast with Bacillus subtilis. Nevertheless, our data suggest that SipL preferentially recognizes the ATP-bound form of SpoIVA and identify a specific residue in the SipL C-terminal LysM domain that is critical for recognizing the ATP-bound form of SpoIVA. These findings advance our understanding of how SpoIVA-SipL interactions regulate C. difficile spore assembly.
Collapse
|