1
|
Chen S, Chaudhary S, Refael G, Lewandowski C. Enhancing shift current response via virtual multiband transitions. COMMUNICATIONS PHYSICS 2024; 7:250. [PMID: 39070108 PMCID: PMC11271335 DOI: 10.1038/s42005-024-01729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Materials exhibiting a significant shift current response could potentially outperform conventional solar cell materials. The myriad of factors governing shift-current response, however, poses significant challenges in finding such strong shift-current materials. Here we propose a general design principle that exploits inter-orbital mixing to excite virtual multiband transitions in materials with multiple flat bands to achieve an enhanced shift current response. We further relate this design principle to maximizing Wannier function spread as expressed through the formalism of quantum geometry. We demonstrate the viability of our design using a 1D stacked Rice-Mele model. Furthermore, we consider a concrete material realization - alternating angle twisted multilayer graphene (TMG) - a natural platform to experimentally realize such an effect. We identify a set of twist angles at which the shift current response is maximized via virtual transitions for each multilayer graphene and highlight the importance of TMG as a promising material to achieve an enhanced shift current response at terahertz frequencies. Our proposed mechanism also applies to other 2D systems and can serve as a guiding principle for designing multiband systems that exhibit an enhanced shift current response.
Collapse
Affiliation(s)
- Sihan Chen
- Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, IL 60637 USA
- Department of Physics, California Institute of Technology, Pasadena, CA 91125 USA
| | - Swati Chaudhary
- Department of Physics, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Gil Refael
- Department of Physics, California Institute of Technology, Pasadena, CA 91125 USA
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125 USA
| | - Cyprian Lewandowski
- National High Magnetic Field Laboratory, Tallahassee, Florida, FL 32310 USA
- Department of Physics, Florida State University, Tallahassee, FL 32306 USA
| |
Collapse
|
2
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
3
|
De Beule C, Mele EJ. Berry Curvature Spectroscopy from Bloch Oscillations. PHYSICAL REVIEW LETTERS 2023; 131:196603. [PMID: 38000436 DOI: 10.1103/physrevlett.131.196603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/21/2023] [Accepted: 10/10/2023] [Indexed: 11/26/2023]
Abstract
Artificial crystals such as moiré superlattices can have a real-space periodicity much larger than the underlying atomic scale. This facilitates the presence of Bloch oscillations in the presence of a static electric field. We demonstrate that the optical response of such a system, when dressed with a static field, becomes resonant at the frequencies of Bloch oscillations, which are in the terahertz regime when the lattice constant is of the order of 10 nm. In particular, we show within a semiclassical band-projected theory that resonances in the dressed Hall conductivity are proportional to the lattice Fourier components of the Berry curvature. We illustrate our results with a low-energy model on an effective honeycomb lattice.
Collapse
Affiliation(s)
- Christophe De Beule
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - E J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
4
|
Do TN, Shih PH, Gumbs G. Magnetoplasmons in magic-angle twisted bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:455703. [PMID: 37531966 DOI: 10.1088/1361-648x/acecf1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
The magic-angle twisted bilayer graphene (MATBLG) has been demonstrated to exhibit exotic physical properties due to the special flat bands. However, exploiting the engineering of such properties by external fields is still in it infancy. Here we show that MATBLG under an external magnetic field presents a distinctive magnetoplasmon dispersion, which can be significantly modified by transferred momentum and charge doping. Along a wide range of transferred momentum, there exist special pronounced single magnetoplasmon and horizontal single-particle excitation modes near charge neutrality. We provide an insightful discussion of such unique features based on the electronic excitation of Landau levels quantized from the flat bands and Landau damping. Additionally, charge doping leads to peculiar multiple strong-weight magnetoplasmons. These characteristics make MATBLG a favorable candidate for plasmonic devices and technology applications.
Collapse
Affiliation(s)
- Thi-Nga Do
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| | - Po-Hsin Shih
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, United States of America
| | - Godfrey Gumbs
- Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065, United States of America
- Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country, Spain
| |
Collapse
|
5
|
Papaj M, Lewandowski C. Probing correlated states with plasmons. SCIENCE ADVANCES 2023; 9:eadg3262. [PMID: 37126543 DOI: 10.1126/sciadv.adg3262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Understanding the nature of strongly correlated states in flat-band materials (such as moiré heterostructures) is at the forefront of both experimental and theoretical pursuits. While magnetotransport, scanning probe, and optical techniques are often very successful in investigating the properties of the underlying order, the exact nature of the ground state often remains unknown. Here, we propose to leverage strong light-matter coupling present in the flat-band systems to gain insight through dynamical dielectric response into the structure of the many-body ground state. We argue that because of the enlargement of the effective lattice of the system arising from correlations, conventional long-range plasmon becomes "folded" to yield a multiband plasmon spectrum. We detail several mechanisms through which the structure of the plasmon spectrum and that of the dynamical dielectric response is susceptible to the underlying order, revealing valued insights such as the interaction-driven band gaps, spin-structure, and the order periodicity.
Collapse
Affiliation(s)
- Michał Papaj
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Cyprian Lewandowski
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Aggarwal D, Narula R, Ghosh S. A primer on twistronics: a massless Dirac fermion's journey to moiré patterns and flat bands in twisted bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:143001. [PMID: 36745922 DOI: 10.1088/1361-648x/acb984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The recent discovery of superconductivity in magic-angle twisted bilayer graphene (TBLG) has sparked a renewed interest in the strongly-correlated physics ofsp2carbons, in stark contrast to preliminary investigations which were dominated by the one-body physics of the massless Dirac fermions. We thus provide a self-contained, theoretical perspective of the journey of graphene from its single-particle physics-dominated regime to the strongly-correlated physics of the flat bands. Beginning from the origin of the Dirac points in condensed matter systems, we discuss the effect of the superlattice on the Fermi velocity and Van Hove singularities in graphene and how it leads naturally to investigations of the moiré pattern in van der Waals heterostructures exemplified by graphene-hexagonal boron-nitride and TBLG. Subsequently, we illuminate the origin of flat bands in TBLG at the magic angles by elaborating on a broad range of prominent theoretical works in a pedagogical way while linking them to available experimental support, where appropriate. We conclude by providing a list of topics in the study of the electronic properties of TBLG not covered by this review but may readily be approached with the help of this primer.
Collapse
Affiliation(s)
| | - Rohit Narula
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| | - Sankalpa Ghosh
- Department of Physics, IIT Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
7
|
Arora A, Rudner MS, Song JCW. Quantum Plasmonic Nonreciprocity in Parity-Violating Magnets. NANO LETTERS 2022; 22:9351-9357. [PMID: 36383645 DOI: 10.1021/acs.nanolett.2c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The optical responses of metals are often dominated by plasmonic resonances, that is, the collective oscillations of interacting electron liquids. Here we unveil a new class of plasmons─quantum metric plasmons (QMPs)─that arise in a wide range of parity-violating magnetic metals. In these materials, a dipolar distribution of the quantum metric (a fundamental characteristic of Bloch wave functions) produces intrinsic nonreciprocal bulk plasmons. Strikingly, QMP nonreciprocity manifests even when the single-particle dispersion is symmetric: QMPs are sensitive to time-reversal and parity violations hidden in the Bloch wave function. In materials with asymmetric single-particle dispersions, quantum metric dipole induced nonreciprocity can continue to dominate at large frequencies. We anticipate that QMPs can be realized in a wide range of parity-violating magnets, including twisted bilayer graphene heterostructures, where quantum geometric quantities can achieve large values.
Collapse
Affiliation(s)
- Arpit Arora
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371
| | - Mark S Rudner
- Department of Physics, University of Washington, SeattleWashington98195, United States
| | - Justin C W Song
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore637371
| |
Collapse
|
8
|
Shao Y, Sternbach AJ, Kim BSY, Rikhter AA, Xu X, De Giovannini U, Jing R, Chae SH, Sun Z, Lee SH, Zhu Y, Mao Z, Hone JC, Queiroz R, Millis AJ, Schuck PJ, Rubio A, Fogler MM, Basov DN. Infrared plasmons propagate through a hyperbolic nodal metal. SCIENCE ADVANCES 2022; 8:eadd6169. [PMID: 36288317 PMCID: PMC9604610 DOI: 10.1126/sciadv.add6169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Metals are canonical plasmonic media at infrared and optical wavelengths, allowing one to guide and manipulate light at the nanoscale. A special form of optical waveguiding is afforded by highly anisotropic crystals revealing the opposite signs of the dielectric functions along orthogonal directions. These media are classified as hyperbolic and include crystalline insulators, semiconductors, and artificial metamaterials. Layered anisotropic metals are also anticipated to support hyperbolic waveguiding. However, this behavior remains elusive, primarily because interband losses arrest the propagation of infrared modes. Here, we report on the observation of propagating hyperbolic waves in a prototypical layered nodal-line semimetal ZrSiSe. The observed waveguiding originates from polaritonic hybridization between near-infrared light and nodal-line plasmons. Unique nodal electronic structures simultaneously suppress interband loss and boost the plasmonic response, ultimately enabling the propagation of infrared modes through the bulk of the crystal.
Collapse
Affiliation(s)
- Yinming Shao
- Department of Physics, Columbia University, New York, NY 10027, USA
| | | | - Brian S. Y. Kim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Andrey A. Rikhter
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xinyi Xu
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Umberto De Giovannini
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg 22761, Germany
- Università degli Studi di Palermo, Dipartimento di Fisica e Chimica Emilio Segrè, via Archirafi 36, I-90123 Palermo, Italy
| | - Ran Jing
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Sang Hoon Chae
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Zhiyuan Sun
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Seng Huat Lee
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Yanglin Zhu
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiqiang Mao
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- 2D Crystal Consortium, Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - James C. Hone
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Raquel Queiroz
- Department of Physics, Columbia University, New York, NY 10027, USA
| | - Andrew J. Millis
- Department of Physics, Columbia University, New York, NY 10027, USA
- Center for Computational Quantum Physics (CCQ), Flatiron Institute, New York, NY 10010, USA
| | - P. James Schuck
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, Hamburg 22761, Germany
- Center for Computational Quantum Physics (CCQ), Flatiron Institute, New York, NY 10010, USA
| | - Michael M. Fogler
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dmitri N. Basov
- Department of Physics, Columbia University, New York, NY 10027, USA
| |
Collapse
|
9
|
|
10
|
Interface nano-optics with van der Waals polaritons. Nature 2021; 597:187-195. [PMID: 34497390 DOI: 10.1038/s41586-021-03581-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 04/23/2021] [Indexed: 01/27/2023]
Abstract
Polaritons are hybrid excitations of matter and photons. In recent years, polaritons in van der Waals nanomaterials-known as van der Waals polaritons-have shown great promise to guide the flow of light at the nanoscale over spectral regions ranging from the visible to the terahertz. A vibrant research field based on manipulating strong light-matter interactions in the form of polaritons, supported by these atomically thin van der Waals nanomaterials, is emerging for advanced nanophotonic and opto-electronic applications. Here we provide an overview of the state of the art of exploiting interface optics-such as refractive optics, meta-optics and moiré engineering-for the control of van der Waals polaritons. This enhanced control over van der Waals polaritons at the nanoscale has not only unveiled many new phenomena, but has also inspired valuable applications-including new avenues for nano-imaging, sensing, on-chip optical circuitry, and potentially many others in the years to come.
Collapse
|
11
|
Cea T, Guinea F. Coulomb interaction, phonons, and superconductivity in twisted bilayer graphene. Proc Natl Acad Sci U S A 2021; 118:e2107874118. [PMID: 34362849 PMCID: PMC8364166 DOI: 10.1073/pnas.2107874118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polarizability of twisted bilayer graphene, due to the combined effect of electron-hole pairs, plasmons, and acoustic phonons, is analyzed. The screened Coulomb interaction allows for the formation of Cooper pairs and superconductivity in a significant range of twist angles and fillings. The tendency toward superconductivity is enhanced by the coupling between longitudinal phonons and electron-hole pairs. Scattering processes involving large momentum transfers, Umklapp processes, play a crucial role in the formation of Cooper pairs. The magnitude of the superconducting gap changes among the different pockets of the Fermi surface.
Collapse
Affiliation(s)
- Tommaso Cea
- IMDEA Nanoscience, 28015 Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Guinea
- IMDEA Nanoscience, 28015 Madrid, Spain;
- Donostia International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
12
|
Ding C, Gao H, Geng W, Zhao M. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice. NANOSCALE ADVANCES 2021; 3:1127-1135. [PMID: 36133292 PMCID: PMC9419277 DOI: 10.1039/d0na00759e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/24/2020] [Indexed: 06/14/2023]
Abstract
Plasmons in two-dimensional (2D) Dirac materials feature an interesting regime with a tunable frequency, and long propagating length and lifetime, but are rarely achieved in the visible light regime. Using a tight-binding (TB) model in combination with first-principles calculations, we investigated plasmon modes in a 2D Lieb lattice with a Dirac nodal-line electronic structure. In contrast to conventional 2D plasmons, anomalous plasmons in the Lieb lattice exhibit the unique features of a carrier-density-independent frequency, being Landau-damping free in a wide-range of wave vectors, a high frequency, and high subwavelength confinement. Remarkably, by using first-principles calculations, we proposed a candidate material, 2D Be2C monolayer, to achieve these interesting plasmon properties. The plasmons in the Be2C monolayer can survive up to the visible frequency region and propagate to large momentum transfer that has rarely been reported. The anomalous plasmons revealed in the Lieb lattice offer a promising platform for the study of 2D plasmons as well as the design of 2D plasmonic materials.
Collapse
Affiliation(s)
- Chao Ding
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 Shandong China
| | - Han Gao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 Shandong China
| | - Wenhui Geng
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 Shandong China
| | - Mingwen Zhao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University Jinan 250100 Shandong China
| |
Collapse
|
13
|
Brey L, Stauber T, Slipchenko T, Martín-Moreno L. Plasmonic Dirac Cone in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2020; 125:256804. [PMID: 33416378 DOI: 10.1103/physrevlett.125.256804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states that appear at the AB-BA interfaces. The CEP form a hexagonal network with a unique energy scale ε_{p}=(e^{2})/(ε_{0}εt_{0}) with t_{0} the moiré lattice constant and ε the dielectric constant. From the dielectric matrix we obtain the plasmon spectra that has two main characteristics: (i) a diverging density of states at zero energy, and (ii) the presence of a plasmonic Dirac cone at ℏω∼ε_{p}/2 with sound velocity v_{D}=0.0075c, which is formed by zigzag and armchair current oscillations. A network model reveals that the antisymmetry of the plasmon bands implies that CEP scatter at the hexagon vertices maximally in the deflected chiral outgoing directions, with a current ratio of 4/9 into each of the deflected directions and 1/9 into the forward one. We show that scanning near-field microscopy should be able to observe the predicted plasmonic Dirac cone and its broken symmetry phases.
Collapse
Affiliation(s)
- Luis Brey
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - T Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - T Slipchenko
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - L Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
14
|
Stauber T, Low T, Gómez-Santos G. Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. NANO LETTERS 2020; 20:8711-8718. [PMID: 33237775 DOI: 10.1021/acs.nanolett.0c03519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is shown that chiral plasmons, characterized by a longitudinal magnetic moment accompanying the longitudinal charge plasmon, lead to electromagnetic near-fields that are also chiral. For twisted bilayer graphene, we estimate that the near-field chirality of screened plasmons can be several orders of magnitude larger than that of the related circularly polarized light. The chirality also manifests itself in a deflection angle that is formed between the direction of the plasmon propagation and its Poynting vector. Twisted van der Waals heterostructures might thus provide a novel platform to promote enantiomer-selective physio-chemical processes in chiral molecules without the application of a magnetic field or external nanopatterning that break time-reversal, mirror plane, or inversion symmetry, respectively.
Collapse
Affiliation(s)
- Tobias Stauber
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guillermo Gómez-Santos
- Departamento de Física de la Materia Condensada, INC and IFIMAC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
15
|
Lin X, Liu Z, Stauber T, Gómez-Santos G, Gao F, Chen H, Zhang B, Low T. Chiral Plasmons with Twisted Atomic Bilayers. PHYSICAL REVIEW LETTERS 2020; 125:077401. [PMID: 32857562 DOI: 10.1103/physrevlett.125.077401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons.
Collapse
Affiliation(s)
- Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zifei Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tobias Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Guillermo Gómez-Santos
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Fei Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining 314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, NTU, Singapore 637371, Singapore
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
16
|
Papaj M, Lewandowski C. Plasmonic Nonreciprocity Driven by Band Hybridization in Moiré Materials. PHYSICAL REVIEW LETTERS 2020; 125:066801. [PMID: 32845684 DOI: 10.1103/physrevlett.125.066801] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
We propose a new current-driven mechanism for achieving significant plasmon dispersion nonreciprocity in systems with narrow, strongly hybridized electron bands. The magnitude of the effect is controlled by the strength of electron-electron interactions α, which leads to its particular prominence in moiré materials, characterized by α≫1. Moreover, this phenomenon is most evident in the regime where Landau damping is quenched and plasmon lifetime is increased. The synergy of these two effects holds great promise for novel optoelectronic applications of moiré materials.
Collapse
Affiliation(s)
- Michał Papaj
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Cyprian Lewandowski
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
17
|
Bahamon DA, Gómez-Santos G, Stauber T. Emergent magnetic texture in driven twisted bilayer graphene. NANOSCALE 2020; 12:15383-15392. [PMID: 32656559 DOI: 10.1039/d0nr02786c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transport properties of a twisted bilayer graphene barrier are investigated for various twist angles. Remarkably, for small twist angles around the magic angle θm ∼ 1.05°, the local currents around the AA-stacked regions are strongly enhanced compared to the injected electron rate. Furthermore, the total and counterflow (magnetic) current patterns show high correlations in these regions, giving rise to well-defined magnetic moments that form a magnetic Moiré superlattice. The orientation and magnitude of these magnetic moments change as a function of the gate voltage and possible implications for emergent spin-liquid behaviour are discussed.
Collapse
Affiliation(s)
- Dario A Bahamon
- MackGraphe - Graphene and Nano-Materials Research Center, Mackenzie Presbyterian University, Rua da Consolação 896, 01302-907, São Paulo, SP, Brazil.
| | - G Gómez-Santos
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - T Stauber
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049, Madrid, Spain.
| |
Collapse
|