1
|
Park C, Cho HS, Lim Y, Cho CH, Nam H, Choi S, Lim H, Kim YD, Yoon HS, Cho H, Hwang I. Evolution of the JULGI-SMXL4/5 module for phloem development in angiosperms. Proc Natl Acad Sci U S A 2025; 122:e2416674122. [PMID: 40053365 PMCID: PMC11912460 DOI: 10.1073/pnas.2416674122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Bifacial cambium, which produces xylem and phloem, and monopodial architecture, characterized by apical dominance and lateral branching from axillary buds, are key developmental features of seed plants, consisting of angiosperms and gymnosperms. These allow seed plants to adapt to diverse environments by optimizing resource allocation and structural integrity. In seed plants, SUPPRESSOR OF MAX2-LIKE (SMXL) family members function in phloem development and strigolactone-induced inhibition of axillary bud outgrowth. Although strigolactone signaling regulates most SMXL family members, the only known regulator of SMXL4 and SMXL5 is the RNA-binding protein JULGI. We demonstrate that in angiosperms, by directly regulating SMXL4/5 expression, JULGI uncouples SMXL4/5 activity from strigolactone signaling. JULGI and ancestral SMXLs from seedless vascular plants or SMXL4/5 from seed plants are coexpressed in the phloem tissues of vascular plants, from lycophytes to angiosperms. Core angiosperm SMXL4/5 mRNAs contain a G-rich element in the 5' untranslated region (UTR) that serves as a target sequence for JULGI to negatively regulate SMXL4/5 expression. Heterologous expression of JULGIs from various angiosperms rescued the Arabidopsis jul1 jul2 mutant. Expressing SMXL4/5s from seed plants and ancestral SMXLs rescued Arabidopsis smxl4 smxl5. Angiosperm SMXL4/5s lack an RGKT motif for proteasomal degradation. Indeed, treatment with the synthetic strigolactone analog rac-GR24 induced proteasomal degradation of SMXL from ferns and SMXL5a from gymnosperms, but not SMXL4/5 from angiosperms. These findings suggest that in ancestral angiosperms, the 5' UTR of SMXL4/5 gained G-rich elements, creating a regulatory module with JULGI that allows the phloem development pathway to act independently of strigolactone signaling.
Collapse
Affiliation(s)
- Chanyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hyun Seob Cho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Yookyung Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Chung Hyun Cho
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna1030, Austria
| | - Hoyoung Nam
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Sangkyu Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Hojun Lim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| | - Young-Dong Kim
- Department of Life Sciences, Hallym University, Chuncheon24252, Korea
| | - Hwan Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon16419, Korea
| | - Hyunwoo Cho
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju28644, Korea
| | - Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Korea
| |
Collapse
|
2
|
Solé-Gil A, Sakai Y, Catarino B, Jones VAS, Youngstrom CE, Jordà-Segura J, Cheng CL, Dolan L, Ambrose BA, Ishizaki K, Blázquez MA, Agustí J. Divergent evolution of a thermospermine-dependent regulatory pathway in land plants. Dev Cell 2024:S1534-5807(24)00766-4. [PMID: 39793581 DOI: 10.1016/j.devcel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Bruno Catarino
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | - Joan Jordà-Segura
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Gregor Mendel Institute, Vienna 1030, Austria
| | | | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| |
Collapse
|
3
|
Ye K, Bu F, Zhong L, Dong Z, Ma Z, Tang Z, Zhang Y, Yang X, Xu X, Wang E, Lucas WJ, Huang S, Liu H, Zheng J. Mapping the molecular landscape of Lotus japonicus nodule organogenesis through spatiotemporal transcriptomics. Nat Commun 2024; 15:6387. [PMID: 39080318 PMCID: PMC11289483 DOI: 10.1038/s41467-024-50737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Legumes acquire nitrogen-fixing ability by forming root nodules. Transferring this capability to more crops could reduce our reliance on nitrogen fertilizers, thereby decreasing environmental pollution and agricultural production costs. Nodule organogenesis is complex, and a comprehensive transcriptomic atlas is crucial for understanding the underlying molecular events. Here, we utilized spatial transcriptomics to investigate the development of nodules in the model legume, Lotus japonicus. Our investigation has identified the developmental trajectories of two critical regions within the nodule: the infection zone and peripheral tissues. We reveal the underlying biological processes and provide gene sets to achieve symbiosis and material exchange, two essential aspects of nodulation. Among the candidate regulatory genes, we illustrate that LjNLP3, a transcription factor belonging to the NIN-LIKE PROTEIN family, orchestrates the transition of nodules from the differentiation to maturation. In summary, our research advances our understanding of nodule organogenesis and provides valuable data for developing symbiotic nitrogen-fixing crops.
Collapse
Affiliation(s)
- Keyi Ye
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| | - Fengjiao Bu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | | | - Zhaonian Dong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Zhaoxu Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanpeng Tang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Yu Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- School of Agriculture, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai, China
| | - William J Lucas
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, 95616, USA
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Huan Liu
- BGI Research, Wuhan, 430074, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, 518083, China.
| | - Jianshu Zheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| |
Collapse
|
4
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
5
|
Yang X, Poelmans W, Grones C, Lakehal A, Pevernagie J, Van Bel M, Njo M, Xu L, Nelissen H, De Rybel B, Motte H, Beeckman T. Spatial transcriptomics of a lycophyte root sheds light on root evolution. Curr Biol 2023; 33:4069-4084.e8. [PMID: 37683643 DOI: 10.1016/j.cub.2023.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution. In this study, spatial transcriptomics was used to detect 97 root-related genes in the roots of the lycophyte Selaginella moellendorffii. A high number of genes showed expression patterns similar to what has been reported for seed plants, supporting the idea of a highly convergent evolution of mechanisms to control root development. Interaction and complementation data of SHORTROOT (SHR) and SCARECROW (SCR) homologs, furthermore, support a comparable regulation of the ground tissue (GT) between euphyllophytes and lycophytes. Root cap formation, in contrast, appears to be differently regulated. Several experiments indicated an important role of the WUSCHEL-RELATED HOMEOBOX13 gene SmWOX13a in Selaginella root cap formation. In contrast to multiple Arabidopsis WOX paralogs, SmWOX13a is able to induce root cap cells in Arabidopsis and has functionally conserved homologs in the fern Ceratopteris richardii. Lycophytes and a part of the euphyllophytes, therefore, may share a common mechanism regulating root cap formation, which was diversified or lost during seed plant evolution. In summary, we here provide a new spatial data resource for the Selaginella root, which in general advocates for conserved mechanisms to regulate root development but shows a clear divergence in the control of root cap formation, with a novel putative role of WOX genes in root cap formation in non-seed plants.
Collapse
Affiliation(s)
- Xilan Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Carolin Grones
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Abdellah Lakehal
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Julie Pevernagie
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Maria Njo
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Lin Xu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hilde Nelissen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Hans Motte
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
6
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
7
|
Lee YS, Shiu SH, Grotewold E. Evolution and diversification of the ACT-like domain associated with plant basic helix-loop-helix transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2219469120. [PMID: 37126718 PMCID: PMC10175843 DOI: 10.1073/pnas.2219469120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/21/2023] [Indexed: 05/03/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proteins are one of the largest families of transcription factor (TF) in eukaryotes, and ~30% of all flowering plants' bHLH TFs contain the aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain at variable distances C-terminal from the bHLH. However, the evolutionary history and functional consequences of the bHLH/ACT-like domain association remain unknown. Here, we show that this domain association is unique to the plantae kingdom with green algae (chlorophytes) harboring a small number of bHLH genes with variable frequency of ACT-like domain's presence. bHLH-associated ACT-like domains form a monophyletic group, indicating a common origin. Indeed, phylogenetic analysis results suggest that the association of ACT-like and bHLH domains occurred early in Plantae by recruitment of an ACT-like domain in a common ancestor with widely distributed ACT DOMAIN REPEAT (ACR) genes by an ancestral bHLH gene. We determined the functional significance of this association by showing that Chlamydomonas reinhardtii ACT-like domains mediate homodimer formation and negatively affect DNA binding of the associated bHLH domains. We show that, while ACT-like domains have experienced faster selection than the associated bHLH domain, their rates of evolution are strongly and positively correlated, suggesting that the evolution of the ACT-like domains was constrained by the bHLH domains. This study proposes an evolutionary trajectory for the association of ACT-like and bHLH domains with the experimental characterization of the functional consequence in the regulation of plant-specific processes, highlighting the impacts of functional domain coevolution.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI48824
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI48824
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
8
|
Motte H, Fang T, Parizot B, Smet W, Yang X, Poelmans W, Walker L, Njo M, Bassel GW, Beeckman T. Cellular and gene expression patterns associated with root bifurcation in Selaginella. PLANT PHYSIOLOGY 2022; 190:2398-2416. [PMID: 36029252 PMCID: PMC9706437 DOI: 10.1093/plphys/kiac402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tao Fang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Xilan Yang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liam Walker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
9
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
10
|
Woudenberg S, Renema J, Tomescu AMF, De Rybel B, Weijers D. Deep origin and gradual evolution of transporting tissues: Perspectives from across the land plants. PLANT PHYSIOLOGY 2022; 190:85-99. [PMID: 35904762 PMCID: PMC9434249 DOI: 10.1093/plphys/kiac304] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/08/2022] [Indexed: 05/31/2023]
Abstract
The evolution of transporting tissues was an important innovation in terrestrial plants that allowed them to adapt to almost all nonaquatic environments. These tissues consist of water-conducting cells and food-conducting cells and bridge plant-soil and plant-air interfaces over long distances. The largest group of land plants, representing about 95% of all known plant species, is associated with morphologically complex transporting tissue in plants with a range of additional traits. Therefore, this entire clade was named tracheophytes, or vascular plants. However, some nonvascular plants possess conductive tissues that closely resemble vascular tissue in their organization, structure, and function. Recent molecular studies also point to a highly conserved toolbox of molecular regulators for transporting tissues. Here, we reflect on the distinguishing features of conductive and vascular tissues and their evolutionary history. Rather than sudden emergence of complex, vascular tissues, plant transporting tissues likely evolved gradually, building on pre-existing developmental mechanisms and genetic components. Improved knowledge of the intimate structure and developmental regulation of transporting tissues across the entire taxonomic breadth of extant plant lineages, combined with more comprehensive documentation of the fossil record of transporting tissues, is required for a full understanding of the evolutionary trajectory of transporting tissues.
Collapse
Affiliation(s)
| | | | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University–Humboldt, Arcata, California 95521, USA
| | | | | |
Collapse
|
11
|
Bowles AMC, Paps J, Bechtold U. Water-related innovations in land plants evolved by different patterns of gene cooption and novelty. THE NEW PHYTOLOGIST 2022; 235:732-742. [PMID: 35048381 PMCID: PMC9303528 DOI: 10.1111/nph.17981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/25/2021] [Indexed: 05/26/2023]
Abstract
The origin of land plants and their descendants was marked by the evolution of key adaptations to life in terrestrial environments such as roots, vascular tissue and stomata. Though these innovations are well characterized, the evolution of the genetic toolkit underlying their development and function is poorly understood. We analysed molecular data from 532 species to investigate the evolutionary origin and diversification of genes involved in the development and regulation of these adaptations. We show that novel genes in the first land plants led to the single origin of stomata, but the stomatal closure of seed plants resulted from later gene expansions. By contrast, the major mechanism leading to the origin of vascular tissue was cooption of genes that emerged in the first land plants, enabling continuous water transport throughout the ancestral vascular plant. In turn, new key genes in the ancestors of plants with true leaves and seed plants led to the emergence of roots and lateral roots. The analysis highlights the different modes of evolution that enabled plants to conquer land, suggesting that gene expansion and cooption are the most common mechanisms of biological innovation in plant evolutionary history.
Collapse
Affiliation(s)
- Alexander M. C. Bowles
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- School of Geographical SciencesUniversity of BristolUniversity RoadBristolBS8 1RLUK
| | - Jordi Paps
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- School of Biological SciencesUniversity of Bristol24 Tyndall AvenueBristolBS8 1TQUK
| | - Ulrike Bechtold
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterCO4 3SQUK
- Present address:
Department of BiosciencesDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
12
|
Intragenic suppressors unravel the role of the SCREAM ACT-like domain for bHLH partner selectivity in stomatal development. Proc Natl Acad Sci U S A 2022; 119:2117774119. [PMID: 35173013 PMCID: PMC8892516 DOI: 10.1073/pnas.2117774119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Multicellular organisms develop specialized cell types to achieve complex functions of tissues and organs. The basic helix-loop-helix (bHLH) proteins act as master regulatory transcription factors of such specialized cell types. Plant stomata are cellular valves in the aerial epidermis for efficient gas exchange and water control. Stomatal differentiation is governed by sequential actions of three lineage-specific bHLH proteins, SPEECHLESS (SPCH), MUTE, and FAMA, specifying initiation and proliferation, commitment, and terminal differentiation, respectively. A broadly expressed bHLH, SCREAM (SCRM), heterodimerizes with SPCH/MUTE/FAMA and drives stomatal differentiation via switching its partners. Yet nothing is known about its heterodimerization properties or partner preference. Here, we report the role of the SCRM C-terminal ACT-like (ACTL) domain for heterodimerization selectivity. Our intragenic suppressor screen of a dominant scrm-D mutant identified the ACTL domain as a mutation hotspot. Removal of this domain or loss of its structural integrity abolishes heterodimerization with MUTE, but not with SPCH or FAMA, and selectively abrogates the MUTE direct target gene expression. Consequently, the scrm-D ACTL mutants confer massive clusters of arrested stomatal precursor cells that cannot commit to differentiation when redundancy is removed. Structural and biophysical studies further show that SPCH, MUTE, and FAMA also possess the C-terminal ACTL domain, and that ACTL•ACTL heterodimerization is sufficient for partner selectivity. Our work elucidates a role for the SCRM ACTL domain in the MUTE-governed proliferation-differentiation switch and suggests mechanistic insight into the biological function of the ACTL domain, a module uniquely associated with plant bHLH proteins, as a heterodimeric partner selectivity interface.
Collapse
|
13
|
Dresselhaus T, Jürgens G. Comparative Embryogenesis in Angiosperms: Activation and Patterning of Embryonic Cell Lineages. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:641-676. [PMID: 33606951 DOI: 10.1146/annurev-arplant-082520-094112] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Following fertilization in flowering plants (angiosperms), egg and sperm cells unite to form the zygote, which generates an entire new organism through a process called embryogenesis. In this review, we provide a comparative perspective on early zygotic embryogenesis in flowering plants by using the Poaceae maize and rice as monocot grass and crop models as well as Arabidopsis as a eudicot model of the Brassicaceae family. Beginning with the activation of the egg cell, we summarize and discuss the process of maternal-to-zygotic transition in plants, also taking recent work on parthenogenesis and haploid induction into consideration. Aspects like imprinting, which is mainly associated with endosperm development and somatic embryogenesis, are not considered. Controversial findings about the timing of zygotic genome activation as well as maternal versus paternal contribution to zygote and early embryo development are highlighted. The establishment of zygotic polarity, asymmetric division, and apical and basal cell lineages represents another chapter in which we also examine and compare the role of major signaling pathways, cell fate genes, and hormones in early embryogenesis. Except for the model Arabidopsis, little is known about embryopatterning and the establishment of the basic body plan in angiosperms. Using available in situ hybridization, RNA-sequencing, and marker data, we try to compare how and when stem cell niches are established. Finally, evolutionary aspects of plant embryo development are discussed.
Collapse
Affiliation(s)
- Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, D-93053 Regensburg, Germany;
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany;
| |
Collapse
|
14
|
Romani F, Moreno JE. Molecular mechanisms involved in functional macroevolution of plant transcription factors. THE NEW PHYTOLOGIST 2021; 230:1345-1353. [PMID: 33368298 DOI: 10.1111/nph.17161] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
Transcription factors (TFs) are key components of the transcriptional regulation machinery. In plants, they accompanied the evolution from unicellular aquatic algae to complex flowering plants that dominate the land environment. The adaptations of the body plan and physiological responses required changes in the biological functions of TFs. Some ancestral gene regulatory networks are highly conserved, while others evolved more recently and only exist in particular lineages. The recent emergence of novel model organisms provided the opportunity for comparative studies, producing new insights to infer these evolutionary trajectories. In this review, we comprehensively revisit the recent literature on TFs of nonseed plants and algae, focusing on the molecular mechanisms driving their functional evolution. We discuss the particular contribution of changes in DNA-binding specificity, protein-protein interactions and cis-regulatory elements to gene regulatory networks. Current advances have shown that these evolutionary processes were shaped by changes in TF expression pattern, not through great innovation in TF protein sequences. We propose that the role of TFs associated with environmental and developmental regulation was unevenly conserved during land plant evolution.
Collapse
Affiliation(s)
- Facundo Romani
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| | - Javier E Moreno
- Facultad de Bioquímica y Ciencias Biológicas, Instituto de Agrobiotecnología del Litoral, Centro Científico Tecnológico CONICET Santa Fe, Universidad Nacional del Litoral - CONICET, Colectora RN 168 km. 0, Paraje El Pozo, Santa Fe, 3000, Argentina
| |
Collapse
|
15
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
16
|
Xu B, Taylor L, Pucker B, Feng T, Glover BJ, Brockington SF. The land plant-specific MIXTA-MYB lineage is implicated in the early evolution of the plant cuticle and the colonization of land. THE NEW PHYTOLOGIST 2021; 229:2324-2338. [PMID: 33051877 DOI: 10.1111/nph.16997] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Lin Taylor
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Genetics and Genomics of Plants, Center for Biotechnology & Faculty of Biology, Bielefeld University, Bielefeld, 33615, Germany
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitätsstraße, Bochum, 44801, Germany
| | - Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430047, China
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
17
|
Bowles AMC, Paps J, Bechtold U. Evolutionary Origins of Drought Tolerance in Spermatophytes. FRONTIERS IN PLANT SCIENCE 2021; 12:655924. [PMID: 34239520 PMCID: PMC8258419 DOI: 10.3389/fpls.2021.655924] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
It is commonly known that drought stress is a major constraint limiting crop production. Drought stress and associated drought tolerance mechanisms are therefore under intense investigation with the view to future production of drought tolerant crops. With an ever-growing population and variable climate, novel approaches need to be considered to sustainably feed future generations. In this context, definitions of drought tolerance are highly variable, which poses a major challenge for the systematic assessment of this trait across the plant kingdom. Furthermore, drought tolerance is a polygenic trait and understanding the evolution of this complex trait may inform us about patterns of gene gain and loss in relation to diverse drought adaptations. We look at the transition of plants from water to land, and the role of drought tolerance in enabling this transition, before discussing the first drought tolerant plant and common drought responses amongst vascular plants. We reviewed the distribution of a combined "drought tolerance" trait in very broad terms to encompass different experimental systems and definitions used in the current literature and assigned a binary trait "tolerance vs. sensitivity" in 178 extant plant species. By simplifying drought responses of plants into this "binary" trait we were able to explore the evolution of drought tolerance across the wider plant kingdom, compared to previous studies. We show how this binary "drought tolerance/sensitivity" trait has evolved and discuss how incorporating this information into an evolutionary genomics framework could provide insights into the molecular mechanisms underlying extreme drought adaptations.
Collapse
Affiliation(s)
| | - Jordi Paps
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Ulrike Bechtold
- School of Life Sciences, University of Essex, Colchester, United Kingdom
- *Correspondence: Ulrike Bechtold,
| |
Collapse
|
18
|
Architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in Arabidopsis. Proc Natl Acad Sci U S A 2020; 117:24557-24566. [PMID: 32929017 PMCID: PMC7533888 DOI: 10.1073/pnas.2009554117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The hormone auxin controls many aspects of the plant life cycle by regulating the expression of thousands of genes. The transcriptional output of the nuclear auxin signaling pathway is determined by the activity of AUXIN RESPONSE transcription FACTORs (ARFs), through their binding to cis-regulatory elements in auxin-responsive genes. Crystal structures, in vitro, and heterologous studies have fueled a model in which ARF dimers bind with high affinity to distinctly spaced repeats of canonical AuxRE motifs. However, the relevance of this "caliper" model, and the mechanisms underlying the binding affinities in vivo, have remained elusive. Here we biochemically and functionally interrogate modes of ARF-DNA interaction. We show that a single additional hydrogen bond in Arabidopsis ARF1 confers high-affinity binding to individual DNA sites. We demonstrate the importance of AuxRE cooperativity within repeats in the Arabidopsis TMO5 and IAA11 promoters in vivo. Meta-analysis of transcriptomes further reveals strong genome-wide association of auxin response with both inverted (IR) and direct (DR) AuxRE repeats, which we experimentally validated. The association of these elements with auxin-induced up-regulation (DR and IR) or down-regulation (IR) was correlated with differential binding affinities of A-class and B-class ARFs, respectively, suggesting a mechanistic basis for the distinct activity of these repeats. Our results support the relevance of high-affinity binding of ARF transcription factors to uniquely spaced DNA elements in vivo, and suggest that differential binding affinities of ARF subfamilies underlie diversity in cis-element function.
Collapse
|
19
|
Mutte SK, Weijers D. High-resolution and Deep Phylogenetic Reconstruction of Ancestral States from Large Transcriptomic Data Sets. Bio Protoc 2020; 10:e3566. [PMID: 33659537 PMCID: PMC7842344 DOI: 10.21769/bioprotoc.3566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 11/12/2022] Open
Abstract
Phylogenetics is an important area of evolutionary biology that helps to understand the origin and divergence of genes, genomes and species. Building meaningful phylogenetic trees is needed for the accurate reconstruction of the past. To achieve a correct phylogenetic understanding of genes or proteins, reliable and robust methods are needed to construct meaningful trees. With the rapidly increasing availability of genome and transcriptome sequencing data, there is a need for efficient and accurate methodologies for ancestral state reconstruction. Currently available methods are mostly specific for certain gene families, and require substantial adaptation for their application to other gene families. Hence, a generalized framework is essential to utilize large transcriptome resources such as OneKP and MMETSP. Here, we have developed a flexible yet efficient method, based on core strengths such as emphasis on being inclusive in homolog selection, and defining orthologs based on multi-layered inferences. We illustrate how specific steps can be modified to fit the needs of any protein family under consideration. We also demonstrate the success of this protocol by studying and testing the orthologs in various gene families. Taken together, we present a protocol for reconstructing the ancestral states of various domains and proteins across multiple kingdoms of eukaryotes, using thousands of transcriptomes.
Collapse
Affiliation(s)
- Sumanth Kumar Mutte
- Laboratory of Biochemistry, Wageningen University, 6708WE, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6708WE, Wageningen, the Netherlands
| |
Collapse
|