1
|
Schardl CL, Florea S, Nagabhyru P, Pan J, Farman ML, Young CA, Rahnama M, Leuchtmann A, Sabzalian MR, Torkian M, Mirlohi A, Iannone LJ. Chemotypic diversity of bioprotective grass endophytes based on genome analyses, with new insights from a Mediterranean-climate region in Isfahan Province, Iran. Mycologia 2025; 117:34-59. [PMID: 39661454 DOI: 10.1080/00275514.2024.2430174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Epichloë species are systemic, often seed-transmissible symbionts (endophytes) of cool-season grasses (Poaceae subfam. Poöideae) that produce up to four classes of bioprotective alkaloids. Whereas haploid Epichloë species may reproduce sexually and transmit between host plants (horizontally), many Epichloë species are polyploid hybrids that are exclusively transmitted via seeds (vertically). Therefore, the generation of, and selection on, chemotypic (alkaloid) profiles and diversity should differ between haploids and hybrids. We undertook a genome-level analysis of haploids and polyploid hybrids, emphasizing hybrids that produce lolines, which are potent broad-spectrum anti-invertebrate alkaloids that can accumulate to levels up to 2% of plant dry mass. Prior phylogenetic analysis had indicated that loline alkaloid gene clusters (LOL) in many hybrids are from the haploid species Epichloë bromicola, but no LOL-containing E. bromicola strains were previously identified. We discovered LOL-containing E. bromicola from host grasses Bromus tomentellus and Melica persica in a Mediterranean-climate region (MCR) in Isfahan Province, Iran, and from Thinopyrum intermedium in Poland. The isolates from B. tomentellus and M. persica were closely related and had nearly identical alkaloid gene profiles, and their LOL clusters were most closely related to those of several Epichloë hybrids. In contrast, several LOL genes in the isolate from T. intermedium were phylogenetically more basal in genus Epichloë, indicating trans-species polymorphism. While identifying likely hybrid ancestors, this study also revealed novel host ranges in central Iran, with the first observation of E. bromicola in host tribe Meliceae and of Epichloë festucae in host tribe Bromeae. We discuss the possibility that MCRs may be hotspots for diversification of grass-Epichloë symbioses via extended host ranges and interspecific hybridization of the symbionts.
Collapse
Affiliation(s)
- Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Simona Florea
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Juan Pan
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Carolyn A Young
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Mostafa Rahnama
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich CH-8092, Switzerland
| | - Mohammad R Sabzalian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Mehran Torkian
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Aghafakhr Mirlohi
- Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Leopoldo J Iannone
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- CONICET-Instituto de Micología y Botánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
2
|
Du M, Wang T, Li C, Chen T. Discovery and Characterization of Epichloë Fungal Endophytes from Elymus spp. in Northwest China. Microorganisms 2024; 12:1497. [PMID: 39065265 PMCID: PMC11278780 DOI: 10.3390/microorganisms12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Epichloë fungal endophytes hold promise in sustainable agriculture by fortifying cool-season grasses such as Elymus spp. against various stresses. Elymus spp. are widely distributed in Northwest China with a high incidence of endophyte infections. In this study, we identified 20 Epichloë endophytic fungal strains carried by five Elymus spp. from five areas of Northwest China and systematically characterized their morphology, molecular phylogeny, mating type, and alkaloid diversity for the first time. The morphological characterization underscores strain diversity, with variable colony textures and growth rates. A phylogenetic analysis confirms all strains are E. bromicola, emphasizing their taxonomic status. Alkaloid-encoding gene profiling delineates distinct alkaloid synthesis capabilities among the strains, which are crucial for host adaptability and resistance. A mating-type analysis reveals uniformity (mtAC) across the Epichloë strains, simplifying breeding strategies. Notably, the Epichloë strains exhibit diverse alkaloid synthesis gene profiles, impacting host interactions. This research emphasizes the ecological significance of Epichloë endophytes in Elymus spp. ecosystems, offering insights into their genetic diversity and potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Mingxiang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| | - Tian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Taixiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| |
Collapse
|
3
|
Chen T, Wang T, Du M, Malik K, Li C, Bao G. Discovery of Epichloë as novel endophytes of Psathyrostachys lanuginosa in China and their alkaloid profiling. Front Microbiol 2024; 15:1383923. [PMID: 38846569 PMCID: PMC11153765 DOI: 10.3389/fmicb.2024.1383923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The Epichloë genus represents a significant group of above-ground endophytes extensively researched for their potential applications in agriculture and ecology. Additionally, Epichloë species synthesize bioactive alkaloids, which generally cause health problems in livestock and have detrimental effects on the performance of insect herbivores. Psathyrostachys lanuginosa serves as a valuable forage grass for livestock owing to its high nutritional value and resilience in adverse environmental conditions. Nevertheless, to date, no reports have documented Epichloë as endophytes of P. lanuginosa. In this study, four strains (PF5, PF9, QG2, and QG4) were isolated and identified through morphological, molecular, and phylogenetic analyses as endophytes of P. lanuginosa. Morphological analysis indicated colony characteristics and conidia features consistent with symbiotic Epichloë, with no significant differences observed in growth rates or conidia dimensions among the four strains. Phylogenetic analysis confirmed all strains as E. bromicola. Additionally, alkaloid biosynthetic genes were detected, revealing differences in the potential synthesis of peramine and indole diterpenoid alkaloids among strains from different geographic origins. However, all four E. bromicola strains exhibited similar potential for synthesizing ergot alkaloids, but not loline alkaloids. Overall, this study identified P. lanuginosa as a novel host for E. bromicola and provided insights into the alkaloid profiles of these strains, laying a solid foundation for the scientific and rational utilization of Epichloë resources.
Collapse
Affiliation(s)
- Taixiang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingxiang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Gensheng Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Animal and Veterinary Medicine, Xining, China
| |
Collapse
|
4
|
Realini FM, Escobedo VM, Ueno AC, Bastías DA, Schardl CL, Biganzoli F, Gundel PE. Anti-herbivory defences delivered by Epichloë fungal endophytes: a quantitative review of alkaloid concentration variation among hosts and plant parts. ANNALS OF BOTANY 2024; 133:509-520. [PMID: 38320313 PMCID: PMC11037487 DOI: 10.1093/aob/mcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.
Collapse
Affiliation(s)
- Florencia M Realini
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Departamento de Ecología, Genética y Evolución, Laboratorio de Citogenética y Evolución (LaCyE), Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ecología, Genética y Evolución (IEGEBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Víctor M Escobedo
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Andrea C Ueno
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Campus Talca, Chile
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | | | - Fernando Biganzoli
- Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro E Gundel
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
5
|
Skellam E, Rajendran S, Li L. Combinatorial biosynthesis for the engineering of novel fungal natural products. Commun Chem 2024; 7:89. [PMID: 38637654 PMCID: PMC11026467 DOI: 10.1038/s42004-024-01172-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Natural products are small molecules synthesized by fungi, bacteria and plants, which historically have had a profound effect on human health and quality of life. These natural products have evolved over millions of years resulting in specific biological functions that may be of interest for pharmaceutical, agricultural, or nutraceutical use. Often natural products need to be structurally modified to make them suitable for specific applications. Combinatorial biosynthesis is a method to alter the composition of enzymes needed to synthesize a specific natural product resulting in structurally diversified molecules. In this review we discuss different approaches for combinatorial biosynthesis of natural products via engineering fungal enzymes and biosynthetic pathways. We highlight the biosynthetic knowledge gained from these studies and provide examples of new-to-nature bioactive molecules, including molecules synthesized using combinations of fungal and non-fungal enzymes.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
- Department of Biological Sciences, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA.
| | - Sanjeevan Rajendran
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| | - Lei Li
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
- BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX, 76203, USA
| |
Collapse
|
6
|
Rothchild KW, Hagar M, Berry D, Ryan KS. Two Iron(II), α-Ketoglutarate-Dependent Enzymes Encoded by the PPZ Gene Cluster of Metarhizium majus Enable Production of 8-Hydroxyperamine. J Am Chem Soc 2024; 146:10263-10267. [PMID: 38578094 DOI: 10.1021/jacs.4c01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Entomopathogenic fungus Metarhizium majus contains the nine-gene PPZ cluster, with ppzA, encoding a peramine-producing nonribosomal peptide synthetase, as the central component. In this work, the roles of two α-ketoglutarate, iron-dependent oxygenases encoded by the PPZ genes ppzC and ppzD were elucidated. PpzD was found to produce both trans-4-hydroxy-l-proline and trans-3-hydroxy-l-proline in a 13.1:1 ratio, yielding a key precursor for peramine biosynthesis. PpzC was found to act directly on peramine, yielding the novel analogue 8-hydroxyperamine.
Collapse
Affiliation(s)
- Kristina W Rothchild
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Daniel Berry
- Ferrier Research Institute, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
7
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Liu M, Ohashi M, Zhou Q, Sanders JN, McCauley EP, Crews P, Houk KN, Tang Y. Enzymatic Benzofuranoindoline Formation in the Biosynthesis of the Strained Bridgehead Bicyclic Dipeptide (+)-Azonazine A. Angew Chem Int Ed Engl 2023; 62:e202311266. [PMID: 37589717 PMCID: PMC10868402 DOI: 10.1002/anie.202311266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
We uncovered and reconstituted a concise biosynthetic pathway of the strained dipeptide (+)-azonazine A from marine-derived Aspergillus insulicola. Formation of the hexacyclic benzofuranoindoline ring system from cyclo-(l-Trp-N-methyl-l-Tyr) is catalyzed by a P450 enzyme through an oxidative cyclization. Supplementing the producing strain with various indole-substituted tryptophan derivatives resulted in the generation of a series of azonazine A analogs.
Collapse
Affiliation(s)
- Mengting Liu
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Masao Ohashi
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Jacob N. Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Erin P. McCauley
- Department of Chemistry and Biochemistry, California State University–Dominguez Hills, Carson, California 90747, USA
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry University of California, Los Angeles, California 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
9
|
Leuchtmann A, Schardl CL. Genetic Diversity of Epichloë Endophytes Associated with Brachypodium and Calamagrostis Host Grass Genera including Two New Species. J Fungi (Basel) 2022; 8:jof8101086. [PMID: 36294651 PMCID: PMC9605649 DOI: 10.3390/jof8101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Fungi of genus Epichloë (Ascomycota, Clavicipitaceae) are common endophytic symbionts of Poaceae, including wild and agronomically important cool-season grass species (subfam. Poöideae). Here, we examined the genetic diversity of Epichloë from three European species of Brachypodium (B. sylvaticum, B. pinnatum and B. phoenicoides) and three species of Calamagrostis (C. arundinacea, C. purpurea and C. villosa), using DNA sequences of tubB and tefA genes. In addition, microsatellite markers were obtained from a larger set of isolates from B. sylvaticum sampled across Europe. Based on phylogenetic analyses the isolates from Brachypodium hosts were placed in three different subclades within the Epichloë typhina complex (ETC) but did not strictly group according to host grass species, suggesting that the host does not always select for particular endophyte genotypes. Analysis of microsatellite markers confirmed the presence of genetically distinct lineages of Epichloësylvatica on B. sylvaticum, which appeared to be tied to different modes of reproduction (sexual or asexual). Among isolates from Calamagrostis hosts, two subclades were detected which were placed outside ETC. These endophyte lineages are recognized as distinct species for which we propose the names E. calamagrostidis Leuchtm. & Schardl, sp. nov. and E. ftanensis Leuchtm. & A.D. Treindl, sp. nov. This study extends knowledge of the phylogeny and evolutionary diversification of Epichloë endophytes that are symbionts of wild Brachypodium and Calamagrostis host grasses.
Collapse
Affiliation(s)
- Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zürich, CH-8092 Zürich, Switzerland
- Correspondence:
| | | |
Collapse
|
10
|
Berry D, Lee K, Winter D, Mace W, Becker Y, Nagabhyru P, Treindl AD, Bogantes EV, Young CA, Leuchtmann A, Johnson LJ, Johnson RD, Cox MP, Schardl CL, Scott B. Cross-species transcriptomics identifies core regulatory changes differentiating the asymptomatic asexual and virulent sexual life cycles of grass-symbiotic Epichloë fungi. G3 (BETHESDA, MD.) 2022; 12:jkac043. [PMID: 35191483 PMCID: PMC8982410 DOI: 10.1093/g3journal/jkac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/07/2022] [Indexed: 02/04/2023]
Abstract
Fungi from the genus Epichloë form systemic endobiotic infections of cool season grasses, producing a range of host-protective natural products in return for access to nutrients. These infections are asymptomatic during vegetative host growth, with associations between asexual Epichloë spp. and their hosts considered mutualistic. However, the sexual cycle of Epichloë spp. involves virulent growth, characterized by the envelopment and sterilization of a developing host inflorescence by a dense sheath of mycelia known as a stroma. Microscopic analysis of stromata revealed a dramatic increase in hyphal propagation and host degradation compared with asymptomatic tissues. RNAseq was used to identify differentially expressed genes in asymptomatic vs stromatized tissues from 3 diverse Epichloë-host associations. Comparative analysis identified a core set of 135 differentially expressed genes that exhibited conserved transcriptional changes across all 3 associations. The core differentially expressed genes more strongly expressed during virulent growth encode proteins associated with host suppression, digestion, adaptation to the external environment, a biosynthetic gene cluster, and 5 transcription factors that may regulate Epichloë stroma formation. An additional 5 transcription factor encoding differentially expressed genes were suppressed during virulent growth, suggesting they regulate mutualistic processes. Expression of biosynthetic gene clusters for natural products that suppress herbivory was universally suppressed during virulent growth, and additional biosynthetic gene clusters that may encode production of novel host-protective natural products were identified. A comparative analysis of 26 Epichloë genomes found a general decrease in core differentially expressed gene conservation among asexual species, and a specific decrease in conservation for the biosynthetic gene cluster expressed during virulent growth and an unusual uncharacterized gene.
Collapse
Affiliation(s)
- Daniel Berry
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Kate Lee
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - David Winter
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Wade Mace
- AgResearch Ltd, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Padmaja Nagabhyru
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Artemis D Treindl
- Institute of Integrative Biology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | - Adrian Leuchtmann
- Institute of Integrative Biology, ETH Zurich, 8092 Zürich, Switzerland
| | | | | | - Murray P Cox
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | | | - Barry Scott
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
11
|
von Cräutlein M, Helander M, Korpelainen H, Leinonen PH, Vázquez de Aldana BR, Young CA, Zabalgogeazcoa I, Saikkonen K. Genetic Diversity of the Symbiotic Fungus Epichloë festucae in Naturally Occurring Host Grass Populations. Front Microbiol 2021; 12:756991. [PMID: 34925265 PMCID: PMC8678516 DOI: 10.3389/fmicb.2021.756991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Epichloë festucae is a common symbiont of the perennial and widely distributed cool season grass, Festuca rubra. The symbiosis is highly integrated involving systemic growth of the fungus throughout above-ground host parts and vertical transmission from plant to its offspring via host seeds. However, the nature of symbiosis is labile ranging from antagonistic to mutualistic depending on prevailing selection pressures. Both the loss of fungus in the maternal host lineage and horizontal transmission through sexual spores within the host population may partly explain the detected variation in symbiosis in wild grass populations. Epichloë species are commonly considered as pathogens when they produce sexual spores and partly castrate their host plant. This is the pathogenic end of the continuum from antagonistic to mutualistic interactions. Here we examined the population genetic structure of E. festucae to reveal the gene flow, importance of reproduction modes, and alkaloid potential of the symbiotic fungus in Europe. Epichloë-species are highly dependent on the host in survival and reproduction whilst benefits to the host are largely linked to defensive mutualism attributable to fungal-origin bioactive alkaloids that negatively affect vertebrate and/or invertebrate herbivores. We detected decreased genetic diversity in previously glaciated areas compared to non-glaciated regions during the last glacial maximum period and found three major genetic clusters in E. festucae populations: southern, northeastern and northwestern Europe. Sexual reproduction may have a higher role than expected in Spanish E. festucae populations due to the predominance of unique genotypes and presence of both mating types in the region. In contrast, asexual reproduction via host seeds predominates in the Faroe Island and Finland in northern Europe due to the presence of biased mating-type ratios and large dominant genotypes in the E. festucae populations within the region. A substantially larger variation of alkaloid genotypes was observed in the fungal populations than expected, although the variability of the alkaloid genotypes within populations is considerably lower in northern than Spanish populations in southern Europe. E. festucae populations consist of different combinations of alkaloid classes from the gene clusters of ergot alkaloid and indole-terpenes, and from pyrrolopyrazine alkaloid gene. We suggest that the postglacial distribution history of the host grass, prevailing reproduction strategies of E. festucae, and local selection pressures likely explain a large part of the genetic variation observed in fungal populations among geographic regions. The identified alkaloid genotypes can be used by turfgrass breeders to improve resistance against herbivores in red fescue varieties and to develop new sustainable cultivars in Europe.
Collapse
Affiliation(s)
- Maria von Cräutlein
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Päivi Helena Leinonen
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Beatriz R Vázquez de Aldana
- Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (CSIC), Salamanca, Spain
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (CSIC), Salamanca, Spain
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, Turku, Finland.,Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Turku, Finland
| |
Collapse
|
12
|
Evolution of the Ergot Alkaloid Biosynthetic Gene Cluster Results in Divergent Mycotoxin Profiles in Claviceps purpurea Sclerotia. Toxins (Basel) 2021; 13:toxins13120861. [PMID: 34941699 PMCID: PMC8704706 DOI: 10.3390/toxins13120861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Research into ergot alkaloid production in major cereal cash crops is crucial for furthering our understanding of the potential toxicological impacts of Claviceps purpurea upon Canadian agriculture and to ensure consumer safety. An untargeted metabolomics approach profiling extracts of C. purpurea sclerotia from four different grain crops separated the C. purpurea strains into two distinct metabolomic classes based on ergot alkaloid content. Variances in C. purpurea alkaloid profiles were correlated to genetic differences within the lpsA gene of the ergot alkaloid biosynthetic gene cluster from previously published genomes and from newly sequenced, long-read genome assemblies of Canadian strains. Based on gene cluster composition and unique polymorphisms, we hypothesize that the alkaloid content of C. purpurea sclerotia is currently undergoing adaptation. The patterns of lpsA gene diversity described in this small subset of Canadian strains provides a remarkable framework for understanding accelerated evolution of ergot alkaloid production in Claviceps purpurea.
Collapse
|
13
|
Cibils‐Stewart X, Mace WJ, Popay AJ, Lattanzi FA, Hartley S(SE, Hall CR, Powell JR, Johnson SN. Interactions between silicon and alkaloid defences in endophyte‐infected grasses and the consequences for a folivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ximena Cibils‐Stewart
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
- Instituto Nacional de Investigación Agropecuaria (INIA) Colonia Uruguay
| | - Wade J. Mace
- AgResearch Grasslands Research Centre Palmerston North New Zealand
| | | | | | | | - Casey R. Hall
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| | - Scott N. Johnson
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| |
Collapse
|
14
|
Microbial Lipopeptide-Producing Strains and Their Metabolic Roles under Anaerobic Conditions. Microorganisms 2021; 9:microorganisms9102030. [PMID: 34683351 PMCID: PMC8540375 DOI: 10.3390/microorganisms9102030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
The lipopeptide produced by microorganisms is one of the representative biosurfactants and is characterized as a series of structural analogues of different families. Thirty-four families covering about 300 lipopeptide compounds have been reported in the last decades, and most of the reported lipopeptides produced by microorganisms were under aerobic conditions. The lipopeptide-producing strains under anaerobic conditions have attracted much attention from both the academic and industrial communities, due to the needs and the challenge of their applications in anaerobic environments, such as in oil reservoirs and in microbial enhanced oil recovery (MEOR). In this review, the fifty-eight reported bacterial strains, mostly isolated from oil reservoirs and dominated by the species Bacillus subtilis, producing lipopeptide biosurfactants, and the species Pseudomonas aeruginosa, producing glycolipid biosurfactants under anaerobic conditions were summarized. The metabolic pathway and the non-ribosomal peptide synthetases (NRPSs) of the strain Bacillus subtilis under anaerobic conditions were analyzed, which is expected to better understand the key mechanisms of the growth and production of lipopeptide biosurfactants of such kind of bacteria under anaerobic conditions, and to expand the industrial application of anaerobic biosurfactant-producing bacteria.
Collapse
|
15
|
Wu B, Cox MP. Comparative genomics reveals a core gene toolbox for lifestyle transitions in Hypocreales fungi. Environ Microbiol 2021; 23:3251-3264. [PMID: 33939870 PMCID: PMC8360070 DOI: 10.1111/1462-2920.15554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Fungi have evolved diverse lifestyles and adopted pivotal new roles in both natural ecosystems and human environments. However, the molecular mechanisms underlying their adaptation to new lifestyles are obscure. Here, we hypothesize that genes shared across all species with the same lifestyle, but absent in genera with alternative lifestyles, are crucial to that lifestyle. By analysing dozens of species within four genera in a fungal order, with each genus following a different lifestyle, we find that genus-specific genes are typically few in number. Notably, not all genus-specific genes appear to derive from de novo birth, with most instead reflecting recurrent loss across the fungi. Importantly, however, a subset of these genus-specific genes are shared by fungi with the same lifestyle in quite different evolutionary orders, thus supporting the view that some genus-specific genes are necessary for specific lifestyles. These lifestyle-specific genes are enriched for key functional classes and often exhibit specialized expression patterns. Genus-specific selection also contributes to lifestyle transitions, and is especially associated with intensity of pathogenesis. Our study, therefore, suggests that fungal adaptation to new lifestyles often requires just a small number of core genes, with gene turnover and positive selection playing complementary roles.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental SciencesMassey UniversityPalmerston North4410New Zealand
- Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| | - Murray P. Cox
- Statistics and Bioinformatics Group, School of Fundamental SciencesMassey UniversityPalmerston North4410New Zealand
- Bio‐Protection Research CentreMassey UniversityPalmerston North4410New Zealand
| |
Collapse
|
16
|
Bastías DA, Gianoli E, Gundel PE. Fungal endophytes can eliminate the plant growth-defence trade-off. THE NEW PHYTOLOGIST 2021; 230:2105-2113. [PMID: 33690884 DOI: 10.1111/nph.17335] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 05/27/2023]
Abstract
A trade-off between growth and defence functions is commonly observed in plants. We propose that the association of plants with Epichloë fungal endophytes may eliminate this trade-off. This would be a consequence of the double role of these endophytes in host plants: the stimulation of plant growth hormones (e.g. gibberellins) and the fungal production of antiherbivore alkaloids. We put forward a model that integrates this dual effect of endophytes on plant growth and defence and test its predictions by means of meta-analysis of published literature. Our results support the notion that the enhanced plant resistance promoted by endophytes does not compromise plant growth. The limits and ecological benefits of this endophyte-mediated lack of plant growth-defence trade-off are discussed.
Collapse
Affiliation(s)
- Daniel A Bastías
- Resilient Agriculture Innovation Centre of Excellence, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, Casilla 554, La Serena, Chile
- Departamento de Botánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Pedro E Gundel
- Facultad de Agronomía, IFEVA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay, Talca, Chile
| |
Collapse
|
17
|
Adrover-Castellano ML, Schmidt JJ, Sherman DH. Biosynthetic Cyclization Catalysts for the Assembly of Peptide and Polyketide Natural Products. ChemCatChem 2021; 13:2095-2116. [PMID: 34335987 PMCID: PMC8320681 DOI: 10.1002/cctc.202001886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Many biologically active natural products are synthesized by nonribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and their hybrids. These megasynthetases contain modules possessing distinct catalytic domains that allow for substrate initiation, chain extension, processing and termination. At the end of a module, a terminal domain, usually a thioesterase (TE), is responsible for catalyzing the release of the NRPS or PKS as a linear or cyclized product. In this review, we address the general cyclization mechanism of the TE domain, including oligomerization and the fungal C-C bond forming Claisen-like cyclases (CLCs). Additionally, we include examples of cyclization catalysts acting within or at the end of a module. Furthermore, condensation-like (CT) domains, terminal reductase (R) domains, reductase-like domains that catalyze Dieckmann condensation (RD), thioesterase-like Dieckmann cyclases, trans-acting TEs from the penicillin binding protein (PBP) enzyme family, product template (PT) domains and others will also be reviewed. The studies summarized here highlight the remarkable diversity of NRPS and PKS cyclization catalysts for the production of biologically relevant, complex cyclic natural products and related compounds.
Collapse
Affiliation(s)
| | - Jennifer J Schmidt
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| | - David H Sherman
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI 48109-2216 (USA)
| |
Collapse
|
18
|
Bacterial-Like Nonribosomal Peptide Synthetases Produce Cyclopeptides in the Zygomycetous Fungus Mortierella alpina. Appl Environ Microbiol 2021; 87:AEM.02051-20. [PMID: 33158886 DOI: 10.1128/aem.02051-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Fungi are traditionally considered a reservoir of biologically active natural products. However, an active secondary metabolism has long not been attributed to early-diverging fungi such as Mortierella Here, we report on the biosynthesis of two series of cyclic pentapeptides, the malpicyclins and malpibaldins, as products of Mortierella alpina ATCC 32222. The molecular structures of malpicyclins were elucidated by high-resolution tandem mass spectrometry (HR-MS/MS), Marfey's method, and one-dimensional (1D) and 2D nuclear magnetic resonance (NMR) spectroscopy. In addition, malpibaldin biosynthesis was confirmed by HR-MS. Genome mining and comparative quantitative real-time PCR (qRT-PCR) expression analysis pointed at two pentamodular nonribosomal peptide synthetases (NRPSs), malpicyclin synthetase MpcA and malpibaldin synthetase MpbA, as candidate biosynthetic enzymes. Heterologous production of the respective adenylation domains and substrate specificity assays proved promiscuous substrate selection and confirmed their respective biosynthetic roles. In stark contrast to known fungal NRPSs, MpbA and MpcA contain bacterial-like dual epimerase/condensation domains allowing the racemization of enzyme-tethered l-amino acids and the subsequent incorporation of d-amino acids into the metabolites. Phylogenetic analyses of both NRPS genes indicated a bacterial origin and a horizontal gene transfer into the fungal genome. We report on the as-yet-unexplored nonribosomal peptide biosynthesis in basal fungi which highlights this paraphylum as a novel and underrated resource of natural products.IMPORTANCE Fungal natural compounds are industrially produced, with application in antibiotic treatment, cancer medications, and crop plant protection. Traditionally, higher fungi have been intensively investigated concerning their metabolic potential, but reidentification of already known compounds is frequently observed. Hence, alternative strategies to acquire novel bioactive molecules are required. We present the genus Mortierella as representative of the early-diverging fungi as an underestimated resource of natural products. Mortierella alpina produces two families of cyclopeptides, designated malpicyclins and malpibaldins, respectively, via two pentamodular nonribosomal peptide synthetases (NRPSs). These enzymes are much more closely related to bacterial than to other fungal NRPSs, suggesting a bacterial origin of these NRPS genes in Mortierella Both enzymes were biochemically characterized and are involved in as-yet-unknown biosynthetic pathways of natural products in basal fungi. Hence, this report establishes early-diverging fungi as prolific natural compound producers and sheds light on the origin of their biosynthetic capacity.
Collapse
|
19
|
Iacovelli R, Mózsik L, Bovenberg RA, Driessen AJ. Identification of a conserved N-terminal domain in the first module of ACV synthetases. Microbiologyopen 2021; 10:e1145. [PMID: 33449449 PMCID: PMC7884236 DOI: 10.1002/mbo3.1145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022] Open
Abstract
The l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase (ACVS) is a trimodular nonribosomal peptide synthetase (NRPS) that provides the peptide precursor for the synthesis of β-lactams. The enzyme has been extensively characterized in terms of tripeptide formation and substrate specificity. The first module is highly specific and is the only NRPS unit known to recruit and activate the substrate l-α-aminoadipic acid, which is coupled to the α-amino group of l-cysteine through an unusual peptide bond, involving its δ-carboxyl group. Here we carried out an in-depth investigation on the architecture of the first module of the ACVS enzymes from the fungus Penicillium rubens and the bacterium Nocardia lactamdurans. Bioinformatic analyses revealed the presence of a previously unidentified domain at the N-terminus which is structurally related to condensation domains, but smaller in size. Deletion variants of both enzymes were generated to investigate the potential impact on penicillin biosynthesis in vivo and in vitro. The data indicate that the N-terminal domain is important for catalysis.
Collapse
Affiliation(s)
- Riccardo Iacovelli
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - László Mózsik
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Roel A.L. Bovenberg
- Synthetic Biology and Cell EngineeringGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- DSM Biotechnology CentreDelftThe Netherlands
| | - Arnold J.M. Driessen
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
20
|
Zhao F, Liu Z, Yang S, Ding N, Gao X. Quinolactacin Biosynthesis Involves Non‐Ribosomal‐Peptide‐Synthetase‐Catalyzed Dieckmann Condensation to Form the Quinolone‐γ‐lactam Hybrid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Shuyuan Yang
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Ning Ding
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering Rice University Houston TX 77005 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| |
Collapse
|
21
|
|
22
|
Zhao F, Liu Z, Yang S, Ding N, Gao X. Quinolactacin Biosynthesis Involves Non-Ribosomal-Peptide-Synthetase-Catalyzed Dieckmann Condensation to Form the Quinolone-γ-lactam Hybrid. Angew Chem Int Ed Engl 2020; 59:19108-19114. [PMID: 32663343 PMCID: PMC10165850 DOI: 10.1002/anie.202005770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Quinolactacins are novel fungal alkaloids that feature a quinolone-γ-lactam hybrid, which is a potential pharmacophore for the treatment of cancer and Alzheimer's disease. Herein, we report the identification of the quinolactacin A2 biosynthetic gene cluster and elucidate the enzymatic basis for the formation of the quinolone-γ-lactam structure. We reveal an unusual β-keto acid (N-methyl-2-aminobenzoylacetate) precursor that is derived from the primary metabolite l-kynurenine via methylation, oxidative decarboxylation, and amide hydrolysis reactions. In vitro assays reveal two single-module non-ribosomal peptide synthetases (NRPs) that incorporate the β-keto acid and l-isoleucine, followed by Dieckmann condensation, to form the quinolone-γ-lactam. Notably, the bioconversion from l-kynurenine to the β-keto acid is a unique strategy employed by nature to decouple R*-domain-containing NRPS from the polyketide synthase (PKS) machinery, expanding the paradigm for the biosynthesis of quinolone-γ-lactam natural products via Dieckmann condensation.
Collapse
Affiliation(s)
- Fanglong Zhao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Zhiwen Liu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Shuyuan Yang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Ning Ding
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Xue Gao
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA.,Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
23
|
The Desotamide Family of Antibiotics. Antibiotics (Basel) 2020; 9:antibiotics9080452. [PMID: 32727132 PMCID: PMC7459860 DOI: 10.3390/antibiotics9080452] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 12/22/2022] Open
Abstract
Microbial natural products underpin the majority of antimicrobial compounds in clinical use and the discovery of new effective antibacterial treatments is urgently required to combat growing antimicrobial resistance. Non-ribosomal peptides are a major class of natural products to which many notable antibiotics belong. Recently, a new family of non-ribosomal peptide antibiotics were discovered-the desotamide family. The desotamide family consists of desotamide, wollamide, surugamide, ulleungmycin and noursamycin/curacomycin, which are cyclic peptides ranging in size between six and ten amino acids in length. Their biosynthesis has attracted significant attention because their highly functionalised scaffolds are cyclised by a recently identified standalone cyclase. Here, we provide a concise review of the desotamide family of antibiotics with an emphasis on their biosynthesis.
Collapse
|
24
|
Freitas PP, Hampton JG, Rolston MP, Glare TR, Miller PP, Card SD. A Tale of Two Grass Species: Temperature Affects the Symbiosis of a Mutualistic Epichloë Endophyte in Both Tall Fescue and Perennial Ryegrass. FRONTIERS IN PLANT SCIENCE 2020; 11:530. [PMID: 32457777 PMCID: PMC7225326 DOI: 10.3389/fpls.2020.00530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/07/2020] [Indexed: 05/12/2023]
Abstract
Many cool-season grasses form permanent, mutualistic symbioses with asexual Epichloë endophytes. These fungal symbionts often perform a protective role within the association as many strains produce secondary metabolites that deter certain mammalian and invertebrate herbivores. Although initially a serious issue for agriculture, due to mammalian toxins that manifested in major animal health issues, selected strains that provide abiotic stress protection to plants with minimal ill effects to livestock are now commercialized and routinely used to enhance pasture performance in many farming systems. These fungal endophytes and their grass hosts have coevolved over millions of years, and it is now generally accepted that most taxonomic groupings of Epichloë are confined to forming compatible associations (i.e., symptomless associations) with related grass genera within a tribe. The most desired compounds associated with Epichloë festucae var. lolii, an endophyte species associated with perennial ryegrass, are peramine and epoxy-janthitrems. No other major secondary metabolites with invertebrate bioactivity have been identified within this association. However, other agriculturally beneficial compounds, such as lolines, have been discovered in related endophyte species that form associations with fescue grasses. A rationale therefore existed to develop novel grass-endophyte associations between loline-producing endophytes originally isolated from tall fescue with elite cultivars of perennial ryegrass to achieve a wider spectrum of insect bioactivity. A suitable loline-producing endophyte strain of Epichloë sp. FaTG-3 was selected and inoculated into perennial ryegrass. We hypothesed that endophyte transmission frequency, endophyte mycelial biomass and endophyte-derived alkaloid production would differ between the original tall fescue host and the artificial association. Consistent with our hypothesis, our data strongly suggest that plant species significantly affected the plant-endophyte association. This effect became more apparent for transmission frequency and endophyte biomass as the plants matured. Overall, the viable endophyte infection frequency was greater in the tall fescue host than in perennial ryegrass, at all sampling dates. Additionally, temperature was found to be a significant factor affecting endophyte transmission frequency, endophyte mycelial biomass and alkaloid production. Implications for the development of novel grass-endophyte associations are discussed.
Collapse
Affiliation(s)
| | - John G. Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - M. Phil. Rolston
- Forage Science, AgResearch Limited, Lincoln Research Centre, Lincoln, New Zealand
- The Foundation for Arable Research, Christchurch, New Zealand
| | - Travis R. Glare
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Poppy P. Miller
- Knowledge and Analytics, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Stuart D. Card
- Forage Science, AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|