1
|
Basha S, Mukunda DC, Pai AR, Mahato KK. Assessing amyloid fibrils and amorphous aggregates: A review. Int J Biol Macromol 2025; 311:143725. [PMID: 40324497 DOI: 10.1016/j.ijbiomac.2025.143725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/23/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Protein misfolding and aggregation play a central role in the progression of neurodegenerative diseases such as Alzheimer's and Parkinson's. These aggregates manifest either as structured amyloid fibrils enriched in β-sheet conformations or as irregular amorphous aggregates with diverse morphologies. Understanding their formation, structure, and behavior is critical for deciphering disease mechanisms and developing targeted diagnostics and therapeutics. This review presents an integrated overview of both conventional and advanced techniques used to detect, distinguish, and structurally characterize these protein aggregates. It covers a range of spectroscopic and spectrometric tools, such as fluorescence, Raman, and mass spectrometry that facilitate aggregate identification. Microscopy methods, including atomic force and electron microscopy, are highlighted for morphological analysis. The review also discusses in situ detection strategies using fluorescent dyes, conformation-specific antibodies, enzymatic reporters, and real-time imaging. Separation methods like centrifugation, electrophoresis, and chromatography are outlined alongside structural analysis tools such as X-ray diffraction. Furthermore, the growing utility of computational approaches and artificial intelligence in predicting aggregation propensities and integrating biological data is emphasized. By critically evaluating each method's capabilities and limitations, this review provides a practical and forward-looking resource for researchers studying the complex landscape of protein aggregation.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
2
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
3
|
Nayak RC, Emberesh S, Trump LR, Wellendorf AM, Singh AK, Korkmaz B, Horwitz MS, Myers KC, Kalfa TA, Lutzko CM, Cancelas JA. G-CSF resistance of ELANE-mutant neutropenia depends on SERF1-containing truncated-neutrophil elastase aggregates. J Clin Invest 2024; 135:e177342. [PMID: 39560992 PMCID: PMC11735094 DOI: 10.1172/jci177342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Severe congenital neutropenia (SCN) is frequently associated with dominant point mutations in ELANE, the gene encoding neutrophil elastase (NE). Chronic administration of granulocyte colony-stimulating factor (G-CSF) is a first-line treatment of ELANE-mutant (ELANEmut) SCN. However, some ELANEmut patients, including patients with ELANE start codon mutations, do not respond to G-CSF. Here, through directed granulopoiesis of gene-edited isogenic normal and patient-derived iPSCs, we demonstrate that ELANE start codon mutations suffice to induce G-CSF-resistant granulocytic precursor cell death and refractory SCN. ELANE start codon-mutated neutrophil precursors express predominantly nuclear N-terminally truncated alternate NE. Unlike G-CSF-sensitive ELANE mutations that induce endoplasmic reticulum and unfolded protein response stress, we found that the mutation of the ELANE translation initiation codon resulted in NE aggregates and activated proapoptotic aggrephagy, as determined by downregulated BAG1 expression, decreased BAG1/BAG3 ratio, NE colocalization with BAG3, and localized expression of autophagic LC3B. We found that SERF1, an RNA-chaperone protein, known to localize in misfolded protein aggregates in neurodegenerative diseases, was highly upregulated and interacted with cytoplasmic NE of mutant neutrophil precursors. Silencing of SERF1 enhanced survival and differentiation of iPSC-derived neutrophil precursors, restoring their responsiveness to G-CSF. These observations provide a mechanistic insight into G-CSF-resistant ELANEmut SCN, revealing targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ramesh C. Nayak
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sana Emberesh
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa R. Trump
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley M. Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Abhishek K. Singh
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Brice Korkmaz
- INSERM UMR-1100, Research Center for Respiratory Diseases, and University of Tours, Tours, France
| | - Marshall S. Horwitz
- Department of Laboratory Medicine & Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kasiani C. Myers
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Theodosia A. Kalfa
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Carolyn M. Lutzko
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose A. Cancelas
- Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Experimental Hematology and Cancer Biology, Cancer & Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Connell and O’Reilly Families Cell Manipulation Core Facility & Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Sahoo BR, Deng X, Wong EL, Clark N, Yang H, Subramanian V, Guzman BB, Harris SE, Dehury B, Miyashita E, Hoff JD, Kocaman V, Saito H, Dominguez D, Plavec J, Bardwell JCA. Visualizing liquid-liquid phase transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561572. [PMID: 39554013 PMCID: PMC11565804 DOI: 10.1101/2023.10.09.561572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Liquid-liquid phase condensation governs a wide range of protein-protein and protein-RNA interactions in vivo and drives the formation of membrane-less compartments such as the nucleolus and stress granules. We have a broad overview of the importance of multivalency and protein disorder in driving liquid-liquid phase transitions. However, the large and complex nature of key proteins and RNA components involved in forming condensates such as stress granules has inhibited a detailed understanding of how condensates form and the structural interactions that take place within them. In this work, we focused on the small human SERF2 protein. We show here that SERF2 contributes to the formation of stress granules. We also show that SERF2 specifically interacts with non-canonical tetrahelical RNA structures called G-quadruplexes, structures which have previously been linked to stress granule formation. The excellent biophysical amenability of both SERF2 and RNA G4 quadruplexes has allowed us to obtain a high-resolution visualization of the multivalent protein-RNA interactions involved in liquid-liquid phase transitions. Our visualization has enabled us to characterize the role that protein disorder plays in these transitions, identify the specific contacts involved, and describe how these interactions impact the structural dynamics of the components involved in liquid-liquid phase transitions, thus enabling a detailed understanding of the structural transitions involved in early stages of ribonucleoprotein condensate formation.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Ee Lin Wong
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Nathan Clark
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | - Harry Yang
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| | | | - Bryan B Guzman
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Sarah E Harris
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal-576104, India
| | - Emi Miyashita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - J Damon Hoff
- Department of Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
| | - Vojč Kocaman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Kyoto-6068507, Japan
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC-27514, USA
| | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI-48109, USA
| |
Collapse
|
5
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JCA. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. Nucleic Acids Res 2024; 52:4702-4722. [PMID: 38572746 PMCID: PMC11077067 DOI: 10.1093/nar/gkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Sahoo BR, Kocman V, Clark N, Myers N, Deng X, Wong EL, Yang HJ, Kotar A, Guzman BB, Dominguez D, Plavec J, Bardwell JC. Protein G-quadruplex interactions and their effects on phase transitions and protein aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558871. [PMID: 37790366 PMCID: PMC10542165 DOI: 10.1101/2023.09.21.558871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The SERF family of proteins were originally discovered for their ability to accelerate amyloid formation. Znf706 is an uncharacterized protein whose N-terminus is homologous to SERF proteins. We show here that human Znf706 can promote protein aggregation and amyloid formation. Unexpectedly, Znf706 specifically interacts with stable, non-canonical nucleic acid structures known as G-quadruplexes. G-quadruplexes can affect gene regulation and suppress protein aggregation; however, it is unknown if and how these two activities are linked. We find Znf706 binds preferentially to parallel G-quadruplexes with low micromolar affinity, primarily using its N-terminus, and upon interaction, its dynamics are constrained. G-quadruplex binding suppresses Znf706's ability to promote protein aggregation. Znf706 in conjunction with G-quadruplexes therefore may play a role in regulating protein folding. RNAseq analysis shows that Znf706 depletion specifically impacts the mRNA abundance of genes that are predicted to contain high G-quadruplex density. Our studies give insight into how proteins and G-quadruplexes interact, and how these interactions affect both partners and lead to the modulation of protein aggregation and cellular mRNA levels. These observations suggest that the SERF family of proteins, in conjunction with G-quadruplexes, may have a broader role in regulating protein folding and gene expression than previously appreciated.
Collapse
Affiliation(s)
- Bikash R. Sahoo
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vojč Kocman
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Nathan Clark
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Nikhil Myers
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xiexiong Deng
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ee L. Wong
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Harry J. Yang
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anita Kotar
- National Institute of Chemistry, Ljubljana, Slovenia
| | | | | | - Janez Plavec
- National Institute of Chemistry, Ljubljana, Slovenia
| | - James C.A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Liu HN, Wang T, Hu JJ, Chen L, Shi X, Li YM, Luo SZ. The disordered protein SERF promotes α-Synuclein aggregation through liquid-liquid phase separation. J Biol Chem 2024; 300:105667. [PMID: 38272228 PMCID: PMC10877630 DOI: 10.1016/j.jbc.2024.105667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.
Collapse
Affiliation(s)
- He-Ning Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ting Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Jin-Jian Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
10
|
Qi S, Peng Y, Wang G, Zhang X, Liu M, He L. A tale of dual functions of SERF family proteins in regulating amyloid formation. Chembiochem 2024; 25:e202300727. [PMID: 38100267 DOI: 10.1002/cbic.202300727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and β-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.
Collapse
Affiliation(s)
- Shixing Qi
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yun Peng
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Optics Valley Laboratory, Wu Han Shi, 430074, Hubei, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
11
|
Wang J, Dai L, Chen S, Zhang Z, Fang X, Zhang Z. Protein-protein interactions regulating α-synuclein pathology. Trends Neurosci 2024; 47:209-226. [PMID: 38355325 DOI: 10.1016/j.tins.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the formation of Lewy bodies (LBs). The main proteinaceous component of LBs is aggregated α-synuclein (α-syn). However, the mechanisms underlying α-syn aggregation are not yet fully understood. Converging lines of evidence indicate that, under certain pathological conditions, various proteins can interact with α-syn and regulate its aggregation. Understanding these protein-protein interactions is crucial for unraveling the molecular mechanisms contributing to PD pathogenesis. In this review we provide an overview of the current knowledge on protein-protein interactions that regulate α-syn aggregation. Additionally, we briefly summarize the methods used to investigate the influence of protein-protein interactions on α-syn aggregation and propagation.
Collapse
Affiliation(s)
- Jiannan Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sichun Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xin Fang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
12
|
Tsai TY, Jhang WT, Hsu HK, Chan YT, Chang CF, Chen YR. Amyloid Modifier SERF1a Accelerates Alzheimer's Amyloid-β Fibrillization and Exacerbates the Cytotoxicity. ACS Chem Neurosci 2024; 15:479-490. [PMID: 38211979 DOI: 10.1021/acschemneuro.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating, progressive neurodegenerative disease affecting the elderly in the world. The pathological hallmark senile plaques are mainly composed of amyloid-β (Aβ), in which the main isoforms are Aβ40 and Aβ42. Aβ is prone to aggregate and ultimately forms amyloid fibrils in the brains of AD patients. Factors that alter the Aβ aggregation process have been considered to be potential targets for treatments of AD. Modifier of aggregation 4 (MOAG-4)/small EDRK-rich factor (SERF) was previously selected from a chemical mutagenesis screen and identified as an amyloid modifier that promotes amyloid aggregation for α-synuclein, huntingtin, and Aβ40. The interaction and effect of yeast ScSERF on Aβ40 were previously described. Here, we examined the human SERF1a effect on Aβ40 and Aβ42 fibrillization by the Thioflavin T assay and found that SERF1a accelerated Aβ fibrillization in a dose-dependent manner without changing the fibril amount and without incorporation. By Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM), we found that SERF1a altered the secondary structures and the morphology of Aβ fibrils. The electrospray ionization mass spectrometry (ESI-MS) and analytical ultracentrifugation (AUC) results showed that SERF1a binds to Aβ in a 1:1 stoichiometry. Moreover, the NMR study showed that SERF1a interacts with Aβ via its N-terminal region. Cytotoxicity assay demonstrated that SERF1a enhanced toxicity of Aβ intermediates, and the effect can be rescued by SERF1a antibody. Overall, our study provides the underlying molecular mechanism for the SERF1a effect on Aβ fibrillization and facilitates the therapeutic development of AD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2, Nankang District, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Ting Jhang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Kai Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei 115, Taiwan
| |
Collapse
|
13
|
Sahin C, Leppert A, Landreh M. Advances in mass spectrometry to unravel the structure and function of protein condensates. Nat Protoc 2023; 18:3653-3661. [PMID: 37907762 DOI: 10.1038/s41596-023-00900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/09/2023] [Indexed: 11/02/2023]
Abstract
Membrane-less organelles assemble through liquid-liquid phase separation (LLPS) of partially disordered proteins into highly specialized microenvironments. Currently, it is challenging to obtain a clear understanding of the relationship between the structure and function of phase-separated protein assemblies, owing to their size, dynamics and heterogeneity. In this Perspective, we discuss recent advances in mass spectrometry (MS) that offer several promising approaches for the study of protein LLPS. We survey MS tools that have provided valuable insights into other insoluble protein systems, such as amyloids, and describe how they can also be applied to study proteins that undergo LLPS. On the basis of these recent advances, we propose to integrate MS into the experimental workflow for LLPS studies. We identify specific challenges and future opportunities for the analysis of protein condensate structure and function by MS.
Collapse
Affiliation(s)
- Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Structural Biology and NMR laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet-Biomedicum, Solna, Sweden.
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Sahoo BR, Bardwell JCA. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J 2023; 290:4150-4162. [PMID: 35694898 DOI: 10.1111/febs.16555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and β-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Gupta A, Lu C, Wang F, Chou T, Shan S. An ankyrin repeat chaperone targets toxic oligomers during amyloidogenesis. Protein Sci 2023; 32:e4728. [PMID: 37433015 PMCID: PMC10367600 DOI: 10.1002/pro.4728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Numerous age-linked diseases are rooted in protein misfolding; this has motivated the development of small molecules and therapeutic antibodies that target the aggregation of disease-linked proteins. Here we explore another approach: molecular chaperones with engineerable protein scaffolds such as the ankyrin repeat domain (ARD). We tested the ability of cpSRP43, a small, robust, ATP- and cofactor-independent plant chaperone built from an ARD, to antagonize disease-linked protein aggregation. cpSRP43 delays the aggregation of multiple proteins including the amyloid beta peptide (Aβ) associated with Alzheimer's disease and α-synuclein associated with Parkinson's disease. Kinetic modeling and biochemical analyses show that cpSRP43 targets early oligomers during Aβ aggregation, preventing their transition to a self-propagating nucleus on the fibril surface. Accordingly, cpSRP43 rescued neuronal cells from the toxicity of extracellular Aβ42 aggregates. The substrate-binding domain of cpSRP43, composed primarily of the ARD, is necessary and sufficient to prevent Aβ42 aggregation and protect cells against Aβ42 toxicity. This work provides an example in which an ARD chaperone non-native to mammalian cells harbors anti-amyloidal activity, which may be exploited for bioengineering.
Collapse
Affiliation(s)
- Arpit Gupta
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Chuqi Lu
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Feng Wang
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Tsui‐Fen Chou
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Shu‐ou Shan
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| |
Collapse
|
16
|
Stroo E, Janssen L, Sin O, Hogewerf W, Koster M, Harkema L, Youssef SA, Beschorner N, Wolters AH, Bakker B, Becker L, Garrett L, Marschall S, Hoelter SM, Wurst W, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Thathiah A, Foijer F, van de Sluis B, van Deursen J, Jucker M, de Bruin A, Nollen EA. Deletion of SERF2 in mice delays embryonic development and alters amyloid deposit structure in the brain. Life Sci Alliance 2023; 6:e202201730. [PMID: 37130781 PMCID: PMC10155860 DOI: 10.26508/lsa.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
In age-related neurodegenerative diseases, like Alzheimer's and Parkinson's, disease-specific proteins become aggregation-prone and form amyloid-like deposits. Depletion of SERF proteins ameliorates this toxic process in worm and human cell models for diseases. Whether SERF modifies amyloid pathology in mammalian brain, however, has remained unknown. Here, we generated conditional Serf2 knockout mice and found that full-body deletion of Serf2 delayed embryonic development, causing premature birth and perinatal lethality. Brain-specific Serf2 knockout mice, on the other hand, were viable, and showed no major behavioral or cognitive abnormalities. In a mouse model for amyloid-β aggregation, brain depletion of Serf2 altered the binding of structure-specific amyloid dyes, previously used to distinguish amyloid polymorphisms in the human brain. These results suggest that Serf2 depletion changed the structure of amyloid deposits, which was further supported by scanning transmission electron microscopy, but further study will be required to confirm this observation. Altogether, our data reveal the pleiotropic functions of SERF2 in embryonic development and in the brain and support the existence of modifying factors of amyloid deposition in mammalian brain, which offer possibilities for polymorphism-based interventions.
Collapse
Affiliation(s)
- Esther Stroo
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Leen Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Olga Sin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Wytse Hogewerf
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mirjam Koster
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liesbeth Harkema
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sameh A Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Natalie Beschorner
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anouk Hg Wolters
- Department of Biomedical Sciences of Cells and Systems, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Lore Becker
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Lilian Garrett
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sabine M Hoelter
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universität München, Freising-Weihenstephan, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE) Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven, Leuven, Belgium
- Department of Neurobiology, University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Bart van de Sluis
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Matthias Jucker
- Department of Cellular Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ellen Aa Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Xu Y, Maya-Martinez R, Radford SE. Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up? Essays Biochem 2022; 66:959-975. [PMID: 35975807 PMCID: PMC7617668 DOI: 10.1042/ebc20220046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.
Collapse
Affiliation(s)
- Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
18
|
Liu Y, Wang C, Jin Y, Jiang G, He L, Liu M. Backbone resonance assignments and dynamics of S. cerevisiae SERF. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:187-190. [PMID: 35713792 DOI: 10.1007/s12104-022-10077-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Abnormal protein aggregation and precipitation are associated with the perturbation of cellular function and underlie a variety of neurodegenerative diseases. S. cerevisiae SERF (ScSERF), a homolog of modifier of aggregation-4 (MOAG-4) and small EDRK-rich factor protein (SERF1a) is highly conserved and discovered as an enhancer of amyloid formation of Aβ40 and α-synuclein both in vitro and in vivo. However, the detailed molecular mechanism whereby ScSERF and its homologs accelerate amyloid formation is not well known yet. Herein, we present the 1 H, 15 N and 13 C NMR assignments of the 68 amino acids long ScSERF. Although ScSERF displays a very high degree of disorder, secondary chemical shifts of Cα, Cβ, 15 N{1 H}-NOE values and the residue-specific secondary structure propensity (SSP) scores indicate the segment spanning residues 36E-65 K has a strong helical propensity. This work sets the stage for further detailed structural and dynamic investigations of ScSERF and the molecular mechanism it utilizes in accelerating amyloid formation.
Collapse
Affiliation(s)
- Yicong Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yangzhuoyue Jin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guosheng Jiang
- Binzhou Medical University, Binzhou, China
- Weifang Medical University, Weifang, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Optics Valley Laboratory, 430074, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Bhoite SS, Han Y, Ruotolo BT, Chapman MR. Mechanistic insights into accelerated α-synuclein aggregation mediated by human microbiome-associated functional amyloids. J Biol Chem 2022; 298:102088. [PMID: 35654142 PMCID: PMC9253359 DOI: 10.1016/j.jbc.2022.102088] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/31/2023] Open
Abstract
The gut microbiome has been shown to have key implications in the pathogenesis of Parkinson's disease (PD). The Escherichia coli functional amyloid CsgA is known to accelerate α-synuclein aggregation in vitro and induce PD symptoms in mice. However, the mechanism governing CsgA-mediated acceleration of α-synuclein aggregation is unclear. Here, we show that CsgA can form stable homodimeric species that correlate with faster α-synuclein amyloid aggregation. Furthermore, we identify and characterize new CsgA homologs encoded by bacteria present in the human microbiome. These CsgA homologs display diverse aggregation kinetics, and they differ in their ability to modulate α-synuclein aggregation. Remarkably, we demonstrate that slowing down CsgA aggregation leads to an increased acceleration of α-synuclein aggregation, suggesting that the intrinsic amyloidogenicity of gut bacterial CsgA homologs affects their ability to accelerate α-synuclein aggregation. Finally, we identify a complex between CsgA and α-synuclein that functions as a platform to accelerate α-synuclein aggregation. Taken together, our work reveals complex interplay between bacterial amyloids and α-synuclein that better informs our understanding of PD causation.
Collapse
Affiliation(s)
- Sujeet S Bhoite
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| | - Matthew R Chapman
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
20
|
Waninger JJ, Beyett TS, Gadkari VV, Siebenaler RF, Kenum C, Shankar S, Ruotolo BT, Chinnaiyan AM, Tesmer JJ. Biochemical characterization of the interaction between KRAS and Argonaute 2. Biochem Biophys Rep 2022; 29:101191. [PMID: 34988297 PMCID: PMC8695255 DOI: 10.1016/j.bbrep.2021.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
Oncogenic mutations in KRAS result in a constitutively active, GTP-bound form that in turn activates many proliferative pathways. However, because of its compact and simple architecture, directly targeting KRAS with small molecule drugs has been challenging. Another approach is to identify targetable proteins that interact with KRAS. Argonaute 2 (AGO2) was recently identified as a protein that facilitates RAS-driven oncogenesis. Whereas previous studies described the in vivo effect of AGO2 on cancer progression in cells harboring mutated KRAS, here we sought to examine their direct interaction using purified proteins. We show that full length AGO2 co-immunoprecipitates with KRAS using purified components, however, a complex between FL AGO2 and KRAS could not be isolated. We also generated a smaller N-terminal fragment of AGO2 (NtAGO2) which is believed to represent the primary binding site of KRAS. A complex with NtAGO2 could be detected via ion-mobility mass spectrometry and size exclusion chromatography. However, the data suggest that the interaction of KRAS with purified AGO2 (NtAGO2 or FL AGO2) is weak and likely requires additional cellular components or proteo-forms of AGO2 that are not readily available in our purified assay systems. Future studies are needed to determine what conformation or modifications of AGO2 are necessary to enrich KRAS association and regulate its activities.
Collapse
Affiliation(s)
- Jessica J. Waninger
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Department of Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Tyler S. Beyett
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Ronald F. Siebenaler
- Department of Medical Education, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Carson Kenum
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunita Shankar
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - John J.G. Tesmer
- Departments of Biological Sciences and Medicinal Chemistry & Molecular Pharmacology, Purdue University, Indiana, USA
| |
Collapse
|
21
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
22
|
Abramsson ML, Sahin C, Hopper JTS, Branca RMM, Danielsson J, Xu M, Chandler SA, Österlund N, Ilag LL, Leppert A, Costeira-Paulo J, Lang L, Teilum K, Laganowsky A, Benesch JLP, Oliveberg M, Robinson CV, Marklund EG, Allison TM, Winther JR, Landreh M. Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry. JACS AU 2021; 1:2385-2393. [PMID: 34977906 PMCID: PMC8717373 DOI: 10.1021/jacsau.1c00458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 05/03/2023]
Abstract
In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.
Collapse
Affiliation(s)
- Mia L. Abramsson
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| | - Cagla Sahin
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Jonathan T. S. Hopper
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Rui M. M. Branca
- Department
of Oncology-Pathology, Science for Life
Laboratory and Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Jens Danielsson
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Mingming Xu
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Shane A. Chandler
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Material and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Axel Leppert
- Department
of Biosciences and Nutrition, Karolinska
Institutet, Neo, 141 83 Huddinge, Sweden
| | - Joana Costeira-Paulo
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Lisa Lang
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Kaare Teilum
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Arthur Laganowsky
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Justin L. P. Benesch
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Mikael Oliveberg
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Erik G. Marklund
- Department
of Chemistry−BMC, Uppsala University, Box 576, 751 23 Uppsala, Sweden
| | - Timothy M. Allison
- Biomolecular
Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Jakob R. Winther
- Linderstrøm-Lang
Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen, Denmark
| | - Michael Landreh
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Tomtebodavägen 23A, 171 65 Stockholm, Sweden
| |
Collapse
|
23
|
Pras A, Houben B, Aprile FA, Seinstra R, Gallardo R, Janssen L, Hogewerf W, Gallrein C, De Vleeschouwer M, Mata‐Cabana A, Koopman M, Stroo E, de Vries M, Louise Edwards S, Kirstein J, Vendruscolo M, Falsone SF, Rousseau F, Schymkowitz J, Nollen EAA. The cellular modifier MOAG-4/SERF drives amyloid formation through charge complementation. EMBO J 2021; 40:e107568. [PMID: 34617299 PMCID: PMC8561633 DOI: 10.15252/embj.2020107568] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
While aggregation-prone proteins are known to accelerate aging and cause age-related diseases, the cellular mechanisms that drive their cytotoxicity remain unresolved. The orthologous proteins MOAG-4, SERF1A, and SERF2 have recently been identified as cellular modifiers of such proteotoxicity. Using a peptide array screening approach on human amyloidogenic proteins, we found that SERF2 interacted with protein segments enriched in negatively charged and hydrophobic, aromatic amino acids. The absence of such segments, or the neutralization of the positive charge in SERF2, prevented these interactions and abolished the amyloid-promoting activity of SERF2. In protein aggregation models in the nematode worm Caenorhabditis elegans, protein aggregation and toxicity were suppressed by mutating the endogenous locus of MOAG-4 to neutralize charge. Our data indicate that MOAG-4 and SERF2 drive protein aggregation and toxicity by interactions with negatively charged segments in aggregation-prone proteins. Such charge interactions might accelerate primary nucleation of amyloid by initiating structural changes and by decreasing colloidal stability. Our study points at charge interactions between cellular modifiers and amyloidogenic proteins as potential targets for interventions to reduce age-related protein toxicity.
Collapse
Affiliation(s)
- Anita Pras
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Bert Houben
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Francesco A Aprile
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
- Present address:
Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonUK
| | - Renée Seinstra
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Rodrigo Gallardo
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
- Present address:
Astbury Centre for Structural Molecular BiologySchool of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
| | - Leen Janssen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Wytse Hogewerf
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Christian Gallrein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| | - Matthias De Vleeschouwer
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Alejandro Mata‐Cabana
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Mandy Koopman
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Esther Stroo
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Minke de Vries
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Samantha Louise Edwards
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Janine Kirstein
- Department of Molecular Physiology and Cell BiologyLeibniz Research Institute for Molecular Pharmacology im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
- Faculty of Biology & ChemistryUniversity of BremenBremenGermany
| | - Michele Vendruscolo
- Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeCambridgeUK
| | | | - Frederic Rousseau
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Joost Schymkowitz
- VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Switch LaboratoryDepartment of Cellular and Molecular MedicineKU LeuvenLeuvenBelgium
| | - Ellen A A Nollen
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Centre GroningenGroningenThe Netherlands
| |
Collapse
|
24
|
Cleverley K, Lee WC, Mumford P, Collins T, Rickman M, Cunningham TJ, Cleak J, Mianne J, Szoke-Kovacs Z, Stewart M, Teboul L, Maduro C, Wells S, Wiseman FK, Fisher EMC. A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits. Mamm Genome 2021; 32:94-103. [PMID: 33713180 PMCID: PMC8012326 DOI: 10.1007/s00335-021-09864-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2+/− mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2−/− null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism.
Collapse
Affiliation(s)
- Karen Cleverley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Weaverly Colleen Lee
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Paige Mumford
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Toby Collins
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Matthew Rickman
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | | | | | - Joffrey Mianne
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | | | | | | | - Cheryl Maduro
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.,The UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
25
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer's disease [Tau, Amyloid β (Aβ)], Parkinson's disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered "fuzzy coat" around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
27
|
Meyer NH, Dellago H, Tam-Amersdorfer C, Merle DA, Parlato R, Gesslbauer B, Almer J, Gschwandtner M, Leon A, Franzmann TM, Grillari J, Kungl AJ, Zangger K, Falsone SF. Structural Fuzziness of the RNA-Organizing Protein SERF Determines a Toxic Gain-of-interaction. J Mol Biol 2019; 432:930-951. [PMID: 31794729 DOI: 10.1016/j.jmb.2019.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
The mechanisms by which protein complexes convert from functional to pathogenic are the subject of intensive research. Here, we report how functionally unfavorable protein interactions can be induced by structural fuzziness, i.e., by persisting conformational disorder in protein complexes. We show that extreme disorder in the bound state transforms the intrinsically disordered protein SERF1a from an RNA-organizing factor into a pathogenic enhancer of alpha-synuclein (aSyn) amyloid toxicity. We demonstrate that SERF1a promotes the incorporation of RNA into nucleoli and liquid-like artificial RNA-organelles by retaining an unusually high degree of conformational disorder in the RNA-bound state. However, this type of structural fuzziness also determines an undifferentiated interaction with aSyn. RNA and aSyn both bind to one identical, positively charged site of SERF1a by an analogous electrostatic binding mode, with similar binding affinities, and without any observable disorder-to-order transition. The absence of primary or secondary structure discriminants results in SERF1a being unable to select between nucleic acid and amyloidogenic protein, leading the pro-amyloid aSyn:SERF1a interaction to prevail in the cytosol under conditions of cellular stress. We suggest that fuzzy disorder in SERF1a complexes accounts for an adverse gain-of-interaction which favors toxic binding to aSyn at the expense of nontoxic RNA binding, thereby leading to a functionally distorted and pathogenic process. Thus, structural fuzziness constitutes a direct link between extreme conformational flexibility, amyloid aggregation, and the malfunctioning of RNA-associated cellular processes, three signatures of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- N Helge Meyer
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria
| | - Carmen Tam-Amersdorfer
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstr. 31, 8010 Graz, Austria
| | - David A Merle
- Department of Ophthalmology, Medical University of Graz, Auenbruggerplatz 4, 8036 Graz, Austria
| | - Rosanna Parlato
- Institute of Applied Physiology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany; Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Johannes Almer
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Martha Gschwandtner
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - A Leon
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Titus M Franzmann
- Biotechnology Center of the TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Johannes Grillari
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU - University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Wien, Austria; Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Donaueschingenstr. 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Austria
| | - Andreas J Kungl
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria
| | - S Fabio Falsone
- Institute of Pharmaceutical Sciences, University of Graz, Schubertstr. 1, 8010 Graz, Austria; Steiermärkische Krankenanstaltengesellschaft m.b.H. (KAGes), Stiftingtalstraße 4-6, 8010, Graz, Austria.
| |
Collapse
|