1
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. Advances in molecular function of UPF1 in Cancer. Arch Biochem Biophys 2024; 756:109989. [PMID: 38621446 DOI: 10.1016/j.abb.2024.109989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
It is known that more than 10 % of genetic diseases are caused by a mutation in protein-coding mRNA (premature termination codon; PTC). mRNAs with an early stop codon are degraded by the cellular surveillance process known as nonsense-mediated mRNA decay (NMD), which prevents the synthesis of C-terminally truncated proteins. Up-frameshift-1 (UPF1) has been reported to be involved in the downregulation of various cancers, and low expression of UPF1 was shown to correlate with poor prognosis. It is known that UPF1 is a master regulator of nonsense-mediated mRNA decay (NMD). UPF1 may also function as an E3 ligase and degrade target proteins without using mRNA decay mechanisms. Increasing evidence indicates that UPF1 could serve as a good biomarker for cancer diagnosis and treatment for future therapeutic applications. Long non-coding RNAs (lncRNAs) have the ability to bind different proteins and regulate gene expression; this role in cancer cells has already been identified by different studies. This article provides an overview of the aberrant expression of UPF1, its functional properties, and molecular processes during cancer for clinical applications in cancer. We also discussed the interactions of lncRNA with UPF1 for cell growth during tumorigenesis.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000, Prishtina, Republic of Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200, Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000, Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185, Rome, Italy.
| |
Collapse
|
2
|
Rahmati M, Chebli J, Kumar Banote R, Roselli S, Agholme L, Zetterberg H, Abramsson A. Fine-Tuning Amyloid Precursor Protein Expression through Nonsense-Mediated mRNA Decay. eNeuro 2024; 11:ENEURO.0034-24.2024. [PMID: 38789273 PMCID: PMC11164851 DOI: 10.1523/eneuro.0034-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/26/2024] Open
Abstract
Studies on genetic robustness recently revealed transcriptional adaptation (TA) as a mechanism by which an organism can compensate for genetic mutations through activation of homologous genes. Here, we discovered that genetic mutations, introducing a premature termination codon (PTC) in the amyloid precursor protein-b (appb) gene, activated TA of two other app family members, appa and amyloid precursor-like protein-2 (aplp2), in zebrafish. The observed transcriptional response of appa and aplp2 required degradation of mutant mRNA and did not depend on Appb protein level. Furthermore, TA between amyloid precursor protein (APP) family members was observed in human neuronal progenitor cells; however, compensation was only present during early neuronal differentiation and could not be detected in a more differentiated neuronal stage or adult zebrafish brain. Using knockdown and chemical inhibition, we showed that nonsense-mediated mRNA decay (NMD) is involved in degradation of mutant mRNA and that Upf1 and Upf2, key proteins in the NMD pathway, regulate the endogenous transcript levels of appa, appb, aplp1, and aplp2 In conclusion, our results suggest that the expression level of App family members is regulated by the NMD pathway and that mutations destabilizing app/APP mRNA can induce genetic compensation by other family members through TA in both zebrafish and human neuronal progenitors.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Sandra Roselli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Lotta Agholme
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N #BG, United Kingdom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
- United Kingdom Dementia Research Institute, London W1T 7NF, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, 17 Science Park W Ave, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 45, Sweden
| |
Collapse
|
3
|
Lai S, Shiraishi H, Sebastian WA, Shimizu N, Umeda R, Ikeuchi M, Kiyota K, Takeno T, Miyazaki S, Yano S, Shimada T, Yoshimura A, Hanada R, Hanada T. Effect of nonsense-mediated mRNA decay factor SMG9 deficiency on premature aging in zebrafish. Commun Biol 2024; 7:654. [PMID: 38806677 PMCID: PMC11133409 DOI: 10.1038/s42003-024-06356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
SMG9 is an essential component of the nonsense-mediated mRNA decay (NMD) machinery, a quality control mechanism that selectively degrades aberrant transcripts. Mutations in SMG9 are associated with heart and brain malformation syndrome (HBMS). However, the molecular mechanism underlying HBMS remains unclear. We generated smg9 mutant zebrafish (smg9oi7/oi7) that have a lifespan of approximately 6 months or longer, allowing for analysis of the in vivo function of Smg9 in adults in more detail. smg9oi7/oi7 zebrafish display congenital brain abnormalities and reduced cardiac contraction. Additionally, smg9oi7/oi7 zebrafish exhibit a premature aging phenotype. Analysis of NMD target mRNAs shows a trend toward increased mRNA levels in smg9oi7/oi7 zebrafish. Spermidine oxidase (Smox) is increased in smg9oi7/oi7 zebrafish, resulting in the accumulation of byproducts, reactive oxygen species, and acrolein. The accumulation of smox mRNA due to NMD dysregulation caused by Smg9 deficiency leads to increased oxidative stress, resulting in premature aging.
Collapse
Affiliation(s)
- Shaohong Lai
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Mayo Ikeuchi
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Kyoko Kiyota
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Takashi Takeno
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shuya Miyazaki
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Shinji Yano
- Institute for Research Management, Oita University, Yufu, Oita, Japan
| | - Tatsuo Shimada
- Oita Medical Technology School, Japan College of Judo-Therapy, Acupuncture & Moxibustion Therapy, Oita, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu, Oita, Japan.
| |
Collapse
|
4
|
Musaev D, Abdelmessih M, Vejnar CE, Yartseva V, Weiss LA, Strayer EC, Takacs CM, Giraldez AJ. UPF1 regulates mRNA stability by sensing poorly translated coding sequences. Cell Rep 2024; 43:114074. [PMID: 38625794 PMCID: PMC11259039 DOI: 10.1016/j.celrep.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/18/2024] Open
Abstract
Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).
Collapse
Affiliation(s)
- Damir Musaev
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mario Abdelmessih
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; AstraZeneca, Waltham, MA 02451, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Kenai Therapeutics, San Diego, CA, USA
| | - Linnea A Weiss
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ethan C Strayer
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carter M Takacs
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; University of New Haven, West Haven, CT 06516, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
5
|
Zhu J, Yang J, Wen H, Wang M, Zheng X, Zhao J, Sun X, Yang P, Mao Q, Li Y, Xia H. Expression and functional analysis of fam76b in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109161. [PMID: 37838209 DOI: 10.1016/j.fsi.2023.109161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
FAM76B is nuclear speckle-localized protein with a molecular weight of 39 kDa. The amino sequence of FAM76B protein is highly conserved among species, suggesting that FAM76B has important biological functions. However, the biological function of FAM76B is currently still unclear. To explore the biological function of FAM76B, we firstly used zebrafish as the experimental model to study the distribution and expression level of Fam76b. The results indicated that fam76b is highly expressed in hematopoiesis and immune systems of zebrafish by real-time quantitative PCR, in situ hybridization and Tg(fam76b: eGFP) transgenic zebrafish. Then, the fam76b gene was knocked out by CRISPR/Cas9 in zebrafish and fam76b rescue in fam76b-/- zebrafish was performed using the TOL2 transposable system. fam76b gene knockout zebrafish exhibit reduced thymus, excessive inflammatory response, and increased mortality. FAM76B was further found to be involved in regulating the development of hematopoiesis and immune system, and participate in the process of inflammatory response. Our findings in the study lay the groundwork for elucidating the function of the new molecule Fam76b and provide new insights into the development of zebrafish hematopoietic and immune system.
Collapse
Affiliation(s)
- Jiuling Zhu
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China; School of Basic Medical Sciences, Wannan Medical College, 22 Wenchang West Road, Wuhu, 241002, Anhui, PR China
| | - Jiahang Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - He Wen
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Mengtian Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Xiaohong Sun
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China
| | - Qinwen Mao
- Department of Pathology, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Yu Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China.
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, Shaanxi, PR China.
| |
Collapse
|
6
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Stage-specific and cell type-specific requirements of ikzf1 during haematopoietic differentiation in zebrafish. Sci Rep 2022; 12:21401. [PMID: 36496511 PMCID: PMC9741631 DOI: 10.1038/s41598-022-25978-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
The zinc finger transcription factor Ikaros1 (Ikzf1) is required for lymphoid development in mammals. Four zinc fingers constitute its DNA binding domain and two zinc fingers are present in the C-terminal protein interaction module. We describe the phenotypes of zebrafish homozygous for two distinct mutant ikzf1 alleles. The IT325 variant lacks the C-terminal two zinc fingers, whereas the fr105 variant retains only the first zinc finger of the DNA binding domain. An intact ikzf1 gene is required for larval T cell development, whereas low levels of adult lymphoid development recover in the mutants. By contrast, the mutants exhibit a signature of increased myelopoiesis at larval and adult stages. Both mutations stimulate erythroid differentiation in larvae, indicating that the C-terminal zinc fingers negatively regulate the extent of red blood cell production. An unexpected differential effect of the two mutants on adult erythropoiesis suggests a direct requirement of an intact DNA binding domain for entry of progenitors into the red blood cell lineage. Collectively, our results reinforce the biological differences between larval and adult haematopoiesis, indicate a stage-specific function of ikzf1 in regulating the hierarchical bifurcations of differentiation, and assign distinct functions to the DNA binding domain and the C-terminal zinc fingers.
Collapse
|
8
|
Wu C, Li H, Chang W, Zhong L, Zhang L, Wen Z, Mai S. Identification and Validation of UPF1 as a Novel Prognostic Biomarker in Renal Clear Cell Carcinoma. Genes (Basel) 2022; 13:2166. [PMID: 36421841 PMCID: PMC9690017 DOI: 10.3390/genes13112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 09/08/2024] Open
Abstract
Background: Up frameshift protein 1 (UPF1) is a key component of nonsense-mediated mRNA decay (NMD) of mRNA containing premature termination codons (PTCs). The dysregulation of UPF1 has been reported in various cancers. However, the expression profile of UPF1 and its clinical significance in clear cell renal cell carcinoma (ccRCC) remains unclear. Methods: In order to detect UPF1 expression in ccRCC and its relationship with the clinical features of ccRCC, bulk RNA sequencing data were analyzed from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. The impact of UPF1 on the immune microenvironment of ccRCC was evaluated by multiple immune scoring algorithms to identify the cell groups that typically express UPF1 using ccRCC single cell sequencing (scRNA) data. In addition, genes co-expressed with UPF1 were identified by the weighted gene correlation network analysis (WGCNA), followed by KEGG and Reactome enrichment analysis. A series of functional experiments were performed to assess the roles of UPF1 in renal cancer cells. Finally, pan-cancer analysis of UPF1 was also performed. Results: Compared with normal tissues, the expression levels of UPF1 mRNA and protein in tumor tissues of ccRCC patients decreased significantly. In addition, patients with low expression of UPF1 had a worse prognosis. Analysis of the immune microenvironment indicated that UPF1 immune cell infiltration was closely related and the ccRCC scRNA-seq data identified that UPF1 was mainly expressed in macrophages. WGCNA analysis suggested that the functions of co-expressed genes are mainly enriched in cell proliferation and cellular processes. Experimental tests showed that knockdown of UPF1 can promote the invasion, migration and proliferation of ccRCC cells. Lastly, pan-cancer analysis revealed that UPF1 disorders were closely associated with various cancer outcomes. Conclusions: UPF1 may play a tumor suppressive role in ccRCC and modulate the immune microenvironment. The loss of UPF1 can predict the prognosis of ccRCC, making it a promising biomarker and providing a new reference for prevention and treatment.
Collapse
Affiliation(s)
- Chun Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hongmu Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wuguang Chang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Leqi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhesheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shijuan Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
9
|
Hu X, Zou Q, Yao L, Yang X. Survey of the binding preferences of RNA-binding proteins to RNA editing events. Genome Biol 2022; 23:169. [PMID: 35927743 PMCID: PMC9351184 DOI: 10.1186/s13059-022-02741-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) editing is an important RNA posttranscriptional process related to a multitude of cellular and molecular activities. However, systematic characterizations of whether and how the events of RNA editing are associated with the binding preferences of RNA sequences to RNA-binding proteins (RBPs) are still lacking. RESULTS With the RNA-seq and RBP eCLIP-seq datasets from the ENCODE project, we quantitatively survey the binding preferences of 150 RBPs to RNA editing events, followed by experimental validations. Such analyses of the RBP-associated RNA editing at nucleotide resolution and genome-wide scale shed light on the involvement of RBPs specifically in RNA editing-related processes, such as RNA splicing, RNA secondary structures, RNA decay, and other posttranscriptional processes. CONCLUSIONS These results highlight the relevance of RNA editing in the functions of many RBPs and therefore serve as a resource for further characterization of the functional associations between various RNA editing events and RBPs.
Collapse
Affiliation(s)
- Xiaolin Hu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Qin Zou
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Li Yao
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Synthetic & Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Krueger A, Łyszkiewicz M, Heissmeyer V. Post-transcriptional control of T-cell development in the thymus. Immunol Lett 2022; 247:1-12. [DOI: 10.1016/j.imlet.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 04/26/2022] [Indexed: 11/05/2022]
|
11
|
O'Meara CP, Guerri L, Lawir DF, Mateos F, Iconomou M, Iwanami N, Soza-Ried C, Sikora K, Siamishi I, Giorgetti O, Peter S, Schorpp M, Boehm T. Genetic landscape of T cells identifies synthetic lethality for T-ALL. Commun Biol 2021; 4:1201. [PMID: 34671088 PMCID: PMC8528931 DOI: 10.1038/s42003-021-02694-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
To capture the global gene network regulating the differentiation of immature T cells in an unbiased manner, large-scale forward genetic screens in zebrafish were conducted and combined with genetic interaction analysis. After ENU mutagenesis, genetic lesions associated with failure of T cell development were identified by meiotic recombination mapping, positional cloning, and whole genome sequencing. Recessive genetic variants in 33 genes were identified and confirmed as causative by additional experiments. The mutations affected T cell development but did not perturb the development of an unrelated cell type, growth hormone-expressing somatotrophs, providing an important measure of cell-type specificity of the genetic variants. The structure of the genetic network encompassing the identified components was established by a subsequent genetic interaction analysis, which identified many instances of positive (alleviating) and negative (synthetic) genetic interactions. Several examples of synthetic lethality were subsequently phenocopied using combinations of small molecule inhibitors. These drugs not only interfered with normal T cell development, but also elicited remission in a model of T cell acute lymphoblastic leukaemia. Our findings illustrate how genetic interaction data obtained in the context of entire organisms can be exploited for targeted interference with specific cell types and their malignant derivatives.
Collapse
Affiliation(s)
- Connor P O'Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Lucia Guerri
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Laboratory of Neurogenetics, National Institute of Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Zoology, Developmental Biology Unit, University of Cologne, Cologne, Germany
| | - Fernando Mateos
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Mary Iconomou
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Cristian Soza-Ried
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Fundacion Oncoloop & Center for Nuclear Medicine, Santiago, Chile
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Orlando Giorgetti
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Sarah Peter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Alzahrani F, Kuwahara H, Long Y, Al-Owain M, Tohary M, AlSayed M, Mahnashi M, Fathi L, Alnemer M, Al-Hamed MH, Lemire G, Boycott KM, Hashem M, Han W, Al-Maawali A, Al Mahrizi F, Al-Thihli K, Gao X, Alkuraya FS. Recessive, Deleterious Variants in SMG8 Expand the Role of Nonsense-Mediated Decay in Developmental Disorders in Humans. Am J Hum Genet 2020; 107:1178-1185. [PMID: 33242396 DOI: 10.1016/j.ajhg.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.
Collapse
|