1
|
Recchia M, Bertola L, Selvatico E, Dalzovo E, Bianchini V, Luini M, Riccaboni P, Scanziani E, Recordati C. Molecular, pathological and immunohistochemical investigation of Helicobacteraceae in the abomasum of dairy cattle and sheep in Northern Italy. Vet Microbiol 2025; 300:110327. [PMID: 39642412 DOI: 10.1016/j.vetmic.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
Although several Helicobacter species have been associated with gastric disease in humans and animals, their role in domestic ruminants is still unclear. This study aimed to investigate the prevalence of H. pylori, "Candidatus H. bovis" and other Helicobacteraceae in the abomasum of dairy cattle and sheep reared in Northern Italy, to shed light on their role as potential reservoir of H. pylori for humans and to evaluate the involvement of Helicobacter spp. in the gastric pathology of these animal species. Abomasa from 25 dairy cows and 24 sheep were collected at slaughter. Following macroscopic examination, samples of fundic and pyloric mucosa were analysed by a screening PCR for Helicobacteraceae, followed by specific PCRs (H. pylori, "Candidatus H. bovis", and Wolinella spp.), histological examination, and immunohistochemistry for Helicobacter spp. Overall, 96 % of the bovine and 42 % of the ovine abomasa tested positive for Helicobacteraceae. No samples tested positive for H. pylori, while 68 % of bovine samples tested positive for "Candidatus H. bovis", mostly in the pyloric mucosa. Immunohistochemistry showed colonisation by Helicobacter spp. only in the pyloric glands of 11 bovine abomasa (44 %), while in ovine abomasa colonisation was not detected. Our results confirmed that "Candidatus H. bovis" is the most common Helicobacteraceae in the bovine abomasum and specifically colonises bovine pyloric glands. No association was found between Helicobacter spp. infection status and abomasal inflammation, suggesting a high degree of adaptation to the bovine host. The role of cattle and sheep as potential source of H. pylori for humans appears to be negligible.
Collapse
Affiliation(s)
- Matteo Recchia
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), Via Bianchi 7/9, Brescia 25124, Italy.
| | - Luca Bertola
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, Lodi 26900, Italy; Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Viale Ortles 22/4, Milan 20139, Italy.
| | - Elisa Selvatico
- Tecnocosmesi S.p.A., Via Strada Longa 809 29, Massalengo 26815, Italy.
| | - Elisa Dalzovo
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, Lodi 26900, Italy.
| | - Valentina Bianchini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), Via Bianchi 7/9, Brescia 25124, Italy.
| | - Mario Luini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini' (IZSLER), Via Bianchi 7/9, Brescia 25124, Italy; Institute of Agricultural Biology and Biotechnology, National Research Council, Lodi 26900, Italy.
| | - Pietro Riccaboni
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, Lodi 26900, Italy.
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, Lodi 26900, Italy; Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Viale Ortles 22/4, Milan 20139, Italy.
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via dell'Università 6, Lodi 26900, Italy; Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, Viale Ortles 22/4, Milan 20139, Italy.
| |
Collapse
|
2
|
Rabapane KJ, Ijoma GN, Matambo TS. Insufficiency in functional genomics studies, data, and applications: A case study of bio-prospecting research in ruminant microbiome. Front Genet 2022; 13:946449. [PMID: 36118848 PMCID: PMC9472250 DOI: 10.3389/fgene.2022.946449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
Over the last two decades, biotechnology has advanced at a rapid pace, propelled by the incorporation of bio-products into various aspects of pharmaceuticals, industry, and the environment. These developments have sparked interest in the bioprospecting of microorganisms and their products in a variety of niche environments. Furthermore, the use of omics technologies has greatly aided our analyses of environmental samples by elucidating the microbial ecological framework, biochemical pathways, and bio-products. However, the more often overemphasis on taxonomic identification in most research publications, as well as the data associated with such studies, is detrimental to immediate industrial and commercial applications. This review identifies several factors that contribute to the complexity of sequence data analysis as potential barriers to the pragmatic application of functional genomics, utilizing recent research on ruminants to demonstrate these limitations in the hopes of broadening our horizons and drawing attention to this gap in bioprospecting studies for other niche environments as well. The review also aims to emphasize the importance of routinely incorporating functional genomics into environmental metagenomics analyses in order to improve solutions that drive rapid industrial biocatalysis developments from derived outputs with the aim of achieving potential benefits in energy-use reduction and environmental considerations for current and future applications.
Collapse
|
3
|
Van Trimpont M, Peeters E, De Visser Y, Schalk AM, Mondelaers V, De Moerloose B, Lavie A, Lammens T, Goossens S, Van Vlierberghe P. Novel Insights on the Use of L-Asparaginase as an Efficient and Safe Anti-Cancer Therapy. Cancers (Basel) 2022; 14:cancers14040902. [PMID: 35205650 PMCID: PMC8870365 DOI: 10.3390/cancers14040902] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary L-asparaginase (L-ASNase) therapy is key for achieving the very high cure rate of pediatric acute lymphoblastic leukemia (ALL), yet its use is mostly confined to this indication. One main reason preventing the expansion of today’s FDA-approved L-ASNases to solid cancers is their high toxicity and side effects, which become especially challenging in adult patients. The design of optimized L-ASNase molecules provides opportunities to overcome these unwanted toxicities. An additional challenge to broader application of L-ASNases is how cells can counter the pharmacological effect of this drug and the identification of L-ASNases resistance mechanisms. In this review, we discuss recent insights into L-ASNase adverse effects, resistance mechanisms, and how novel L-ASNase variants and drug combinations can expand its clinical applicability, with a focus on both hematological and solid tumors. Abstract L-Asparaginase (L-ASNase) is an enzyme that hydrolyses the amino acid asparagine into aspartic acid and ammonia. Systemic administration of bacterial L-ASNase is successfully used to lower the bioavailability of this non-essential amino acid and to eradicate rapidly proliferating cancer cells with a high demand for exogenous asparagine. Currently, it is a cornerstone drug in the treatment of the most common pediatric cancer, acute lymphoblastic leukemia (ALL). Since these lymphoblasts lack the expression of asparagine synthetase (ASNS), these cells depend on the uptake of extracellular asparagine for survival. Interestingly, recent reports have illustrated that L-ASNase may also have clinical potential for the treatment of other aggressive subtypes of hematological or solid cancers. However, immunogenic and other severe adverse side effects limit optimal clinical use and often lead to treatment discontinuation. The design of optimized and novel L-ASNase formulations provides opportunities to overcome these limitations. In addition, identification of multiple L-ASNase resistance mechanisms, including ASNS promoter reactivation and desensitization, has fueled research into promising novel drug combinations to overcome chemoresistance. In this review, we discuss recent insights into L-ASNase adverse effects, resistance both in hematological and solid tumors, and how novel L-ASNase variants and drug combinations can expand its clinical applicability.
Collapse
Affiliation(s)
- Maaike Van Trimpont
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Evelien Peeters
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Yanti De Visser
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Department of Imaging and Pathology, KU Leuven, 3000 Leuven, Belgium
| | - Amanda M. Schalk
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
| | - Veerle Mondelaers
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Barbara De Moerloose
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Arnon Lavie
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL 60607, USA; (A.M.S.); (A.L.)
- The Jesse Brown VA Medical Center, Chicago, IL 60607, USA
| | - Tim Lammens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
| | - Pieter Van Vlierberghe
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium; (M.V.T.); (E.P.); (Y.D.V.); (B.D.M.); (T.L.); (S.G.)
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
4
|
A systematic study on self-powered microbial fuel cell based BOD biosensors running under different temperatures. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Steiner TM, Lettl C, Schindele F, Goebel W, Haas R, Fischer W, Eisenreich W. Substrate usage determines carbon flux via the citrate cycle in Helicobacter pylori. Mol Microbiol 2021; 116:841-860. [PMID: 34164854 DOI: 10.1111/mmi.14775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/07/2021] [Accepted: 06/19/2021] [Indexed: 12/31/2022]
Abstract
Helicobacter pylori displays a worldwide infection rate of about 50%. The Gram-negative bacterium is the main reason for gastric cancer and other severe diseases. Despite considerable knowledge about the metabolic inventory of H. pylori, carbon fluxes through the citrate cycle (TCA cycle) remained enigmatic. In this study, different 13 C-labeled substrates were supplied as carbon sources to H. pylori during microaerophilic growth in a complex medium. After growth, 13 C-excess and 13 C-distribution were determined in multiple metabolites using GC-MS analysis. [U-13 C6 ]Glucose was efficiently converted into glyceraldehyde but only less into TCA cycle-related metabolites. In contrast, [U-13 C5 ]glutamate, [U-13 C4 ]succinate, and [U-13 C4 ]aspartate were incorporated at high levels into intermediates of the TCA cycle. The comparative analysis of the 13 C-distributions indicated an adaptive TCA cycle fully operating in the closed oxidative direction with rapid equilibrium fluxes between oxaloacetate-succinate and α-ketoglutarate-citrate. 13 C-Profiles of the four-carbon intermediates in the TCA cycle, especially of malate, together with the observation of an isocitrate lyase activity by in vitro assays, suggested carbon fluxes via a glyoxylate bypass. In conjunction with the lack of enzymes for anaplerotic CO2 fixation, the glyoxylate bypass could be relevant to fill up the TCA cycle with carbon atoms derived from acetyl-CoA.
Collapse
Affiliation(s)
- Thomas M Steiner
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Clara Lettl
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Franziska Schindele
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Werner Goebel
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, München, Germany.,German Center for Infection Research (DZIF), Partner Site Munich, München, Germany
| | - Wolfgang Eisenreich
- Bavarian NMR Center-Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| |
Collapse
|
6
|
Lubkowski J, Wlodawer A. Structural and biochemical properties of L-asparaginase. FEBS J 2021; 288:4183-4209. [PMID: 34060231 DOI: 10.1111/febs.16042] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022]
Abstract
l-Asparaginase (a hydrolase converting l-asparagine to l-aspartic acid) was the first enzyme to be used in clinical practice as an anticancer agent after its approval in 1978 as a component of a treatment protocol for childhood acute lymphoblastic leukemia. Structural and biochemical properties of l-asparaginases have been extensively investigated during the last half-century, providing an accurate structural description of the enzyme isolated from a variety of sources, as well as clarifying the mechanism of its activity. This review provides a critical assessment of the current state of knowledge of primarily structural, but also selected biochemical properties of 'bacterial-type' l-asparaginases from different organisms. The most extensively studied members of this enzyme family are l-asparaginases highly homologous to one of the two enzymes from Escherichia coli (usually referred to as EcAI and EcAII). Members of this enzyme family, although often called bacterial-type l-asparaginases, have been also identified in such divergent organisms as archaea or eukarya. Over 100 structural models of l-asparaginases have been deposited in the Protein Data Bank during the last 30 years. One of the prime achievements of structure-centered approaches was the elucidation of the details of the mechanism of enzymatic action of this unique hydrolase that utilizes a side chain of threonine as the primary nucleophile. The molecular basis of other important properties of these enzymes, such as their substrate specificity, is still being evaluated. Results of structural and mechanistic studies of l-asparaginases are being utilized in efforts to improve the clinical properties of this important anticancer drug.
Collapse
Affiliation(s)
- Jacek Lubkowski
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
7
|
Abstract
Shewanella baltica was the dominant culturable nitrate-reducing bacterium in the eutrophic and strongly stratified Baltic Sea in the 1980s, where it primarily inhabited the oxic-anoxic transition zone. The genomic structures of 46 of these isolates were investigated through comparative genomic hybridization (CGH), which revealed a gradient of genomic similarity, ranging from 65% to as high as 99%. The core genome of the S. baltica species was enriched in anaerobic respiration-associated genes. Auxiliary genes, most of which locate within a few genomic islands (GIs), were nonuniformly distributed among the isolates. Specifically, hypothetical and mobile genetic element (MGE)-associated genes dominated intraclade gene content differences, whereas gain/loss of functional genes drove gene content differences among less related strains. Among the major S. baltica clades, gene signatures related to specific redox-driven and spatial niches within the water column were identified. For instance, genes involved in anaerobic respiration of sulfur compounds may provide key adaptive advantages for clade A strains in anoxic waters where sulfur-containing electron acceptors are present. Genes involved in cell motility, in particular, a secondary flagellar biosynthesis system, may be associated with the free-living lifestyle by clade E strains. Collectively, this study revealed characteristics of genome variations present in the water column and active speciation of S. baltica strains, driven by niche partitioning and horizontal gene transfer (HGT).IMPORTANCE Speciation in nature is a fundamental process driving the formation of the vast microbial diversity on Earth. In the central Baltic Sea, the long-term stratification of water led to formation of a large-scale vertical redoxcline that provided a gradient of environmental niches with respect to the availability of electron acceptors and donors. The region was home to Shewanella baltica populations, which composed the dominant culturable nitrate-reducing bacteria, particularly in the oxic-anoxic transition zone. Using the collection of S. baltica isolates as a model system, genomic variations showed contrasting gene-sharing patterns within versus among S. baltica clades and revealed genomic signatures of S. baltica clades related to redox niche specialization as well as particle association. This study provides important insights into genomic mechanisms underlying bacterial speciation within this unique natural redoxcline.
Collapse
|
8
|
van der Stel AX, Wösten MMSM. Regulation of Respiratory Pathways in Campylobacterota: A Review. Front Microbiol 2019; 10:1719. [PMID: 31417516 PMCID: PMC6682613 DOI: 10.3389/fmicb.2019.01719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/11/2019] [Indexed: 12/19/2022] Open
Abstract
The Campylobacterota, previously known as Epsilonproteobacteria, are a large group of Gram-negative mainly, spiral-shaped motile bacteria. Some members like the Sulfurospirillum spp. are free-living, while others such as Helicobacter spp. can only persist in strict association with a host organism as commensal or as pathogen. Species of this phylum colonize diverse habitats ranging from deep-sea thermal vents to the human stomach wall. Despite their divergent environments, they share common energy conservation mechanisms. The Campylobacterota have a large and remarkable repertoire of electron transport chain enzymes, given their small genomes. Although members of recognized families of transcriptional regulators are found in these genomes, sofar no orthologs known to be important for energy or redox metabolism such as ArcA, FNR or NarP are encoded in the genomes of the Campylobacterota. In this review, we discuss the strategies that members of Campylobacterota utilize to conserve energy and the corresponding regulatory mechanisms that regulate the branched electron transport chains in these bacteria.
Collapse
Affiliation(s)
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, Rushton-Green R, Morgan XC, Koike S, Leahy SC, Kelly WJ, Cann I, Attwood GT, Cook GM, Mackie RI. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME JOURNAL 2019; 13:2617-2632. [PMID: 31243332 PMCID: PMC6776011 DOI: 10.1038/s41396-019-0464-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 01/17/2023]
Abstract
Farmed ruminants are the largest source of anthropogenic methane emissions globally. The methanogenic archaea responsible for these emissions use molecular hydrogen (H2), produced during bacterial and eukaryotic carbohydrate fermentation, as their primary energy source. In this work, we used comparative genomic, metatranscriptomic and co-culture-based approaches to gain a system-wide understanding of the organisms and pathways responsible for ruminal H2 metabolism. Two-thirds of sequenced rumen bacterial and archaeal genomes encode enzymes that catalyse H2 production or consumption, including 26 distinct hydrogenase subgroups. Metatranscriptomic analysis confirmed that these hydrogenases are differentially expressed in sheep rumen. Electron-bifurcating [FeFe]-hydrogenases from carbohydrate-fermenting Clostridia (e.g., Ruminococcus) accounted for half of all hydrogenase transcripts. Various H2 uptake pathways were also expressed, including methanogenesis (Methanobrevibacter), fumarate and nitrite reduction (Selenomonas), and acetogenesis (Blautia). Whereas methanogenesis-related transcripts predominated in high methane yield sheep, alternative uptake pathways were significantly upregulated in low methane yield sheep. Complementing these findings, we observed significant differential expression and activity of the hydrogenases of the hydrogenogenic cellulose fermenter Ruminococcus albus and the hydrogenotrophic fumarate reducer Wolinella succinogenes in co-culture compared with pure culture. We conclude that H2 metabolism is a more complex and widespread trait among rumen microorganisms than previously recognised. There is evidence that alternative hydrogenotrophs, including acetogenic and respiratory bacteria, can prosper in the rumen and effectively compete with methanogens for H2. These findings may help to inform ongoing strategies to mitigate methane emissions by increasing flux through alternative H2 uptake pathways, including through animal selection, dietary supplementation and methanogenesis inhibitors.
Collapse
Affiliation(s)
- Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.
| | - Renae Geier
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Cecilia Wang
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Laura C Woods
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Michael J McDonald
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Rowena Rushton-Green
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Xochitl C Morgan
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Satoshi Koike
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sinead C Leahy
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, 4410, New Zealand
| | | | - Isaac Cann
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Graeme T Attwood
- Grasslands Research Centre, AgResearch Ltd., Palmerston North, 4410, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9016, New Zealand
| | - Roderick I Mackie
- Department of Animal Sciences and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Kameshwar AKS, Ramos LP, Qin W. Metadata Analysis Approaches for Understanding and Improving the Functional Involvement of Rumen Microbial Consortium in Digestion and Metabolism of Plant Biomass. J Genomics 2019; 7:31-45. [PMID: 31001361 PMCID: PMC6470328 DOI: 10.7150/jgen.32164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 01/07/2023] Open
Abstract
Rumen is one of the most complex gastro-intestinal system in ruminating animals. With bountiful of microorganisms supporting in breakdown and consumption of minerals and nutrients from the complex plant biomass. It is predicted that a table spoon of ruminal fluid can reside up to 150 billion microorganisms including various species of bacteria, fungi and protozoa. Several studies in the past have extensively explained about the structural and functional physiology of the rumen. Studies based on rumen and its microbiota has increased significantly in the last decade to understand and reveal applications of the rumen microbiota in food processing, pharmaceutical, biofuel and biorefining industries. Recent high-throughput meta-genomic and proteomic studies have revealed humongous information on rumen microbial diversity. In this study, we have extensively reviewed and reported present-day's progress in understanding the rumen microbial diversity. As of today, NCBI resides about 821,870 records based on rumen with approximately 889 genome sequencing studies. We have retrieved all the rumen-based records from NCBI and extensively catalogued the rumen microbial diversity and the corresponding genomic and proteomic studies respectively. Also, we have provided a brief inventory of metadata analysis software packages and reviewed the metadata analysis approaches for understanding the functional involvement of these microorganisms. Knowing and understanding the present progress on rumen microbiota and performing metadata analysis studies will significantly benefit the researchers in identifying the molecular mechanisms involved in plant biomass degradation. These studies are also necessary for developing highly efficient microorganisms and enzyme mixtures for enhancing the benefits of cattle-feedstock and biofuel industries.
Collapse
Affiliation(s)
- Ayyappa Kumar Sista Kameshwar
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Luiz Pereira Ramos
- Research Center in Applied Chemistry (CEPESQ), Department of Chemistry, Universidade Federal do Paraná, P. O. Box 19032, Curitiba, Paraná, 81531-980, Brazil
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
11
|
Significance of MccR, MccC, MccD, MccL and 8-methylmenaquinone in sulfite respiration of Wolinella succinogenes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:12-21. [DOI: 10.1016/j.bbabio.2018.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 11/17/2022]
|
12
|
Liu MM, Boinett CJ, Chan ACK, Parkhill J, Murphy MEP, Gaynor EC. Investigating the Campylobacter jejuni Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System. mBio 2018; 9:e01347-18. [PMID: 30087169 PMCID: PMC6083913 DOI: 10.1128/mbio.01347-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni is a pathogenic bacterium that causes gastroenteritis in humans yet is a widespread commensal in wild and domestic animals, particularly poultry. Using RNA sequencing, we assessed C. jejuni transcriptional responses to medium supplemented with human fecal versus chicken cecal extracts and in extract-supplemented medium versus medium alone. C. jejuni exposed to extracts had altered expression of 40 genes related to iron uptake, metabolism, chemotaxis, energy production, and osmotic stress response. In human fecal versus chicken cecal extracts, C. jejuni displayed higher expression of genes involved in respiration (fdhTU) and in known or putative iron uptake systems (cfbpA, ceuB, chuC, and CJJ81176_1649-1655 [here designated 1649-1655]). The 1649-1655 genes and downstream overlapping gene 1656 were investigated further. Uncharacterized homologues of this system were identified in 33 diverse bacterial species representing 6 different phyla, 21 of which are associated with human disease. The 1649 and 1650 (p19) genes encode an iron transporter and a periplasmic iron binding protein, respectively; however, the role of the downstream 1651-1656 genes was unknown. A Δ1651-1656 deletion strain had an iron-sensitive phenotype, consistent with a previously characterized Δp19 mutant, and showed reduced growth in acidic medium, increased sensitivity to streptomycin, and higher resistance to H2O2 stress. In iron-restricted medium, the 1651-1656 and p19 genes were required for optimal growth when using human fecal extracts as an iron source. Collectively, this implicates a function for the 1649-1656 gene cluster in C. jejuni iron scavenging and stress survival in the human intestinal environment.IMPORTANCE Direct comparative studies of C. jejuni infection of a zoonotic commensal host and a disease-susceptible host are crucial to understanding the causes of infection outcome in humans. These studies are hampered by the lack of a disease-susceptible animal model reliably displaying a similar pathology to human campylobacteriosis. In this work, we compared the phenotypic and transcriptional responses of C. jejuni to intestinal compositions of humans (disease-susceptible host) and chickens (zoonotic host) by using human fecal and chicken cecal extracts. The mammalian gut is a complex and dynamic system containing thousands of metabolites that contribute to host health and modulate pathogen activity. We identified C. jejuni genes more highly expressed during exposure to human fecal extracts in comparison to chicken cecal extracts and differentially expressed in extracts compared with medium alone, and targeted one specific iron uptake system for further molecular, genetic, and phenotypic study.
Collapse
Affiliation(s)
- Martha M Liu
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Christine J Boinett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Anson C K Chan
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Evolution of higher torque in Campylobacter-type bacterial flagellar motors. Sci Rep 2018; 8:97. [PMID: 29311627 PMCID: PMC5758724 DOI: 10.1038/s41598-017-18115-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/05/2017] [Indexed: 12/24/2022] Open
Abstract
Understanding the evolution of molecular machines underpins our understanding of the development of life on earth. A well-studied case are bacterial flagellar motors that spin helical propellers for bacterial motility. Diverse motors produce different torques, but how this diversity evolved remains unknown. To gain insights into evolution of the high-torque ε-proteobacterial motor exemplified by the Campylobacter jejuni motor, we inferred ancestral states by combining phylogenetics, electron cryotomography, and motility assays to characterize motors from Wolinella succinogenes, Arcobacter butzleri and Bdellovibrio bacteriovorus. Observation of ~12 stator complexes in many proteobacteria, yet ~17 in ε-proteobacteria suggest a “quantum leap” evolutionary event. Campylobacter-type motors have high stator occupancy in wider rings of additional stator complexes that are scaffolded by large proteinaceous periplasmic rings. We propose a model for motor evolution wherein independent inner- and outer-membrane structures fused to form a scaffold for additional stator complexes. Significantly, inner- and outer-membrane associated structures have evolved independently multiple times, suggesting that evolution of such structures is facile and poised the ε-proteobacteria to fuse them to form the high-torque Campylobacter-type motor.
Collapse
|
14
|
Rhie MN, Park B, Ko H, Choi I, Kim OB. Transcriptome analysis and anaerobic C 4 -dicarboxylate transport in Actinobacillus succinogenes. Microbiologyopen 2017; 7:e00565. [PMID: 29230966 PMCID: PMC6011838 DOI: 10.1002/mbo3.565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/07/2022] Open
Abstract
A global transcriptome analysis of the natural succinate producer Actinobacillus succinogenes revealed that 353 genes were differentially expressed when grown on various carbon and energy sources, which were categorized into six functional groups. We then analyzed the expression pattern of 37 potential C4‐dicarboxylate transporters in detail. A total of six transporters were considered potential fumarate transporters: three transporters, Asuc_1999 (Dcu), Asuc_0304 (DASS), and Asuc_0270‐0273 (TRAP), were constitutively expressed, whereas three others, Asuc_1568 (DASS), Asuc_1482 (DASS), and Asuc_0142 (Dcu), were differentially expressed during growth on fumarate. Transport assays under anaerobic conditions with [14C]fumarate and [14C]succinate were performed to experimentally verify that A. succinogenes possesses multiple C4‐dicarboxlayte transport systems with different substrate affinities. Upon uptake of 5 mmol/L fumarate, the systems had substrate specificity for fumarate, oxaloacetate, and malate, but not for succinate. Uptake was optimal at pH 7, and was dependent on both proton and sodium gradients. Asuc_1999 was suspected to be a major C4‐dicarboxylate transporter because of its noticeably high and constitutive expression. An Asuc_1999 deletion (∆1999) decreased fumarate uptake significantly at approximately 5 mmol/L fumarate, which was complemented by the introduction of Asuc_1999. Asuc_1999 expressed in Escherichia coli catalyzed fumarate uptake at a level of 21.6 μmol·gDW−1·min−1. These results suggest that C4‐dicarboxylate transport in A. succinogenes is mediated by multiple transporters, which transport various types and concentrations of C4‐dicarboxylates.
Collapse
Affiliation(s)
- Mi Na Rhie
- Department of Life Science, and Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
| | - Byeonghyeok Park
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - Hyeok‐Jin Ko
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - In‐Geol Choi
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - Ok Bin Kim
- Department of Life Science, and Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
| |
Collapse
|
15
|
Hein S, Witt S, Simon J. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex. Environ Microbiol 2017; 19:4913-4925. [PMID: 28925551 DOI: 10.1111/1462-2920.13935] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/20/2023]
Abstract
Microbial reduction of nitrous oxide (N2 O) is an environmentally significant process in the biogeochemical nitrogen cycle. However, it has been recognized only recently that the gene encoding N2 O reductase (nosZ) is organized in varying genetic contexts, thereby defining clade I (or 'typical') and clade II (or 'atypical') N2 O reductases and nos gene clusters. This study addresses the enzymology of the clade II Nos system from Wolinella succinogenes, a nitrate-ammonifying and N2 O-respiring Epsilonproteobacterium that contains a cytochrome c N2 O reductase (cNosZ). The characterization of single non-polar nos gene deletion mutants demonstrated that the NosG, -C1, -C2, -H and -B proteins were essential for N2 O respiration. Moreover, cells of a W. succinogenes mutant lacking a putative menaquinol-oxidizing Rieske/cytochrome bc complex (QcrABC) were found to be incapable of N2 O (and also nitrate) respiration. Proton motive menaquinol oxidation by N2 O is suggested, supported by the finding that the molar yield for W. succinogenes cells grown by N2 O respiration using formate as electron donor exceeded that of fumarate respiration by about 30%. The results demand revision of the electron transport chain model of clade II N2 O respiration and challenge the assumption that NosGH(NapGH)-type iron-sulfur proteins are menaquinol-reactive.
Collapse
Affiliation(s)
- Sascha Hein
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Samantha Witt
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| |
Collapse
|
16
|
Kruse T, Goris T, Maillard J, Woyke T, Lechner U, de Vos W, Smidt H. Comparative genomics of the genus Desulfitobacterium. FEMS Microbiol Ecol 2017; 93:4443196. [DOI: 10.1093/femsec/fix135] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/10/2017] [Indexed: 02/03/2023] Open
Affiliation(s)
- Thomas Kruse
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tobias Goris
- Department of Applied and Ecological Microbiology, Friedrich-Schiller-University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Julien Maillard
- Laboratory for Environmental Biotechnology, ENAC-IIE-LBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Tanja Woyke
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Ute Lechner
- Institute of Biology/Microbiology, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, Halle 06120, Germany
| | - Willem de Vos
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Research Programme Unit Immunobiology, Department of Bacteriology and Immunology, Helsinki University, P.O. Box 21, 00014 Helsinki, Finland
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
17
|
Barre Y, Nothaft H, Thomas C, Liu X, Li J, Ng KKS, Szymanski CM. A conserved DGGK motif is essential for the function of the PglB oligosaccharyltransferase from Campylobacter jejuni. Glycobiology 2017; 27:978-989. [DOI: 10.1093/glycob/cwx067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 07/20/2017] [Indexed: 11/14/2022] Open
|
18
|
Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci Rep 2017; 7:8764. [PMID: 28821872 PMCID: PMC5562702 DOI: 10.1038/s41598-017-09355-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.
Collapse
|
19
|
The differential ability of asparagine and glutamine in promoting the closed/active enzyme conformation rationalizes the Wolinella succinogenes L-asparaginase substrate specificity. Sci Rep 2017; 7:41643. [PMID: 28139703 PMCID: PMC5282591 DOI: 10.1038/srep41643] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Many side effects of current FDA-approved L-asparaginases have been related to their secondary L-glutaminase activity. The Wolinella succinogenes L-asparaginase (WoA) has been reported to be L-glutaminase free, suggesting it would have fewer side effects. Unexpectedly, the WoA variant with a proline at position 121 (WoA-P121) was found to have L-glutaminase activity in contrast to Uniprot entry P50286 (WoA-S121) that has a serine residue at this position. Towards understanding how this residue impacts the L-glutaminase property, kinetic analysis was coupled with crystal structure determination of these WoA variants. WoA-S121 was confirmed to have much lower L-glutaminase activity than WoA-P121, yet both showed comparable L-asparaginase activity. Structures of the WoA variants in complex with L-aspartic acid versus L-glutamic acid provide insights into their differential substrate selectivity. Structural analysis suggests a mechanism by which residue 121 impacts the conformation of the conserved tyrosine 27, a component of the catalytically-important flexible N-terminal loop. Surprisingly, we could fully model this loop in either its open or closed conformations, revealing the roles of specific residues of an evolutionary conserved motif among this L-asparaginase family. Together, this work showcases critical residues that influence the ability of the flexible N-terminal loop for adopting its active conformation, thereby effecting substrate specificity.
Collapse
|
20
|
Melton ED, Sorokin DY, Overmars L, Chertkov O, Clum A, Pillay M, Ivanova N, Shapiro N, Kyrpides NC, Woyke T, Lapidus AL, Muyzer G. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes. Stand Genomic Sci 2016; 11:67. [PMID: 27617057 PMCID: PMC5016858 DOI: 10.1186/s40793-016-0184-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022] Open
Abstract
Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.
Collapse
Affiliation(s)
- Emily Denise Melton
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, RAS, Moscow, Russia ; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Lex Overmars
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Chertkov
- Bioscience Division, Department of Energy Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - Alicia Clum
- Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | | | | | - Nikos C Kyrpides
- Joint Genome Institute, Walnut Creek, CA USA ; Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, CA USA
| | - Alla L Lapidus
- Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
22
|
Abstract
Campylobacter jejuni is among the most frequent agent of foodborne gastroenteritis in the world, but its physiology and pathogenesis is less well understood than other bacterial enteric pathogens. This is due in part to the incompatibility of the molecular tools that have enabled advances in the characterization of other bacterial species. Most notably, the dearth of plasmid-based complementation, reporter assays, and plasmid-based unmarked mutagenesis procedures in many of the type strains has hindered research progress. The techniques themselves are not inadequate in Campylobacter species, but rather the barrier to genetic transfer of these genetic constructs from non-Campylobacter cloning stains such as Escherichia coli. Here, we review the modes of genetic transfer in C. jejuni and review the current state of research into the mechanism of each. Also reviewed are two systems (CRISPR-Cas and restriction modification) that are common to many strains of C. jejuni and are at least partly responsible for these barriers.
Collapse
|
23
|
Torres M, Simon J, Rowley G, Bedmar E, Richardson D, Gates A, Delgado M. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv Microb Physiol 2016; 68:353-432. [PMID: 27134026 DOI: 10.1016/bs.ampbs.2016.02.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas (GHG) with substantial global warming potential and also contributes to ozone depletion through photochemical nitric oxide (NO) production in the stratosphere. The negative effects of N2O on climate and stratospheric ozone make N2O mitigation an international challenge. More than 60% of global N2O emissions are emitted from agricultural soils mainly due to the application of synthetic nitrogen-containing fertilizers. Thus, mitigation strategies must be developed which increase (or at least do not negatively impact) on agricultural efficiency whilst decrease the levels of N2O released. This aim is particularly important in the context of the ever expanding population and subsequent increased burden on the food chain. More than two-thirds of N2O emissions from soils can be attributed to bacterial and fungal denitrification and nitrification processes. In ammonia-oxidizing bacteria, N2O is formed through the oxidation of hydroxylamine to nitrite. In denitrifiers, nitrate is reduced to N2 via nitrite, NO and N2O production. In addition to denitrification, respiratory nitrate ammonification (also termed dissimilatory nitrate reduction to ammonium) is another important nitrate-reducing mechanism in soil, responsible for the loss of nitrate and production of N2O from reduction of NO that is formed as a by-product of the reduction process. This review will synthesize our current understanding of the environmental, regulatory and biochemical control of N2O emissions by nitrate-reducing bacteria and point to new solutions for agricultural GHG mitigation.
Collapse
|
24
|
Keller AH, Schleinitz KM, Starke R, Bertilsson S, Vogt C, Kleinsteuber S. Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer. Front Microbiol 2015; 6:1396. [PMID: 26696999 PMCID: PMC4674564 DOI: 10.3389/fmicb.2015.01396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/23/2015] [Indexed: 11/13/2022] Open
Abstract
The population genome of an uncultured bacterium assigned to the Campylobacterales (Epsilonproteobacteria) was reconstructed from a metagenome dataset obtained by whole-genome shotgun pyrosequencing. Genomic DNA was extracted from a sulfate-reducing, m-xylene-mineralizing enrichment culture isolated from groundwater of a benzene-contaminated sulfidic aquifer. The identical epsilonproteobacterial phylotype has previously been detected in toluene- or benzene-mineralizing, sulfate-reducing consortia enriched from the same site. Previous stable isotope probing (SIP) experiments with 13C6-labeled benzene suggested that this phylotype assimilates benzene-derived carbon in a syntrophic benzene-mineralizing consortium that uses sulfate as terminal electron acceptor. However, the type of energy metabolism and the ecophysiological function of this epsilonproteobacterium within aromatic hydrocarbon-degrading consortia and in the sulfidic aquifer are poorly understood. Annotation of the epsilonproteobacterial population genome suggests that the bacterium plays a key role in sulfur cycling as indicated by the presence of an sqr gene encoding a sulfide quinone oxidoreductase and psr genes encoding a polysulfide reductase. It may gain energy by using sulfide or hydrogen/formate as electron donors. Polysulfide, fumarate, as well as oxygen are potential electron acceptors. Auto- or mixotrophic carbon metabolism seems plausible since a complete reductive citric acid cycle was detected. Thus the bacterium can thrive in pristine groundwater as well as in hydrocarbon-contaminated aquifers. In hydrocarbon-contaminated sulfidic habitats, the epsilonproteobacterium may generate energy by coupling the oxidation of hydrogen or formate and highly abundant sulfide with the reduction of fumarate and/or polysulfide, accompanied by efficient assimilation of acetate produced during fermentation or incomplete oxidation of hydrocarbons. The highly efficient assimilation of acetate was recently demonstrated by a pulsed 13C2-acetate protein SIP experiment. The capability of nitrogen fixation as indicated by the presence of nif genes may provide a selective advantage in nitrogen-depleted habitats. Based on this metabolic reconstruction, we propose acetate capture and sulfur cycling as key functions of Epsilonproteobacteria within the intermediary ecosystem metabolism of hydrocarbon-rich sulfidic sediments.
Collapse
Affiliation(s)
- Andreas H Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany ; Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Kathleen M Schleinitz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Robert Starke
- Department of Proteomics, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University Uppsala, Sweden
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ Leipzig, Germany
| |
Collapse
|
25
|
Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere 2015; 1:mSphere00028-15. [PMID: 27303676 PMCID: PMC4863622 DOI: 10.1128/msphere.00028-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins. The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins.
Collapse
|
26
|
Beeby M. Motility in the epsilon-proteobacteria. Curr Opin Microbiol 2015; 28:115-21. [DOI: 10.1016/j.mib.2015.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/24/2022]
|
27
|
Kern M, Simon J. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol 2015; 18:2899-912. [PMID: 26395430 DOI: 10.1111/1462-2920.13060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/16/2015] [Indexed: 12/30/2022]
Abstract
Sensing potential nitrogen-containing respiratory substrates such as nitrate, nitrite, hydroxylamine, nitric oxide (NO) or nitrous oxide (N2 O) in the environment and subsequent upregulation of corresponding catabolic enzymes is essential for many microbial cells. The molecular mechanisms of such adaptive responses are, however, highly diverse in different species. Here, induction of periplasmic nitrate reductase (Nap), cytochrome c nitrite reductase (Nrf) and cytochrome c N2 O reductase (cNos) was investigated in cells of the Epsilonproteobacterium Wolinella succinogenes grown either by fumarate, nitrate or N2 O respiration. Furthermore, fumarate respiration in the presence of various nitrogen compounds or NO-releasing chemicals was examined. Upregulation of each of the Nap, Nrf and cNos enzyme systems was found in response to the presence of nitrate, NO-releasers or N2 O, and the cells were shown to employ three transcription regulators of the Crp-Fnr superfamily (homologues of Campylobacter jejuni NssR), designated NssA, NssB and NssC, to mediate the upregulation of Nap, Nrf and cNos. Analysis of single nss mutants revealed that NssA controls production of the Nap and Nrf systems in fumarate-grown cells, while NssB was required to induce the Nap, Nrf and cNos systems specifically in response to NO-generators. NssC was indispensable for cNos production under any tested condition. The data indicate dedicated signal transduction routes responsive to nitrate, NO and N2 O and imply the presence of an N2 O-sensing mechanism.
Collapse
Affiliation(s)
- Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany.
| |
Collapse
|
28
|
Vorwerk H, Huber C, Mohr J, Bunk B, Bhuju S, Wensel O, Spröer C, Fruth A, Flieger A, Schmidt-Hohagen K, Schomburg D, Eisenreich W, Hofreuter D. A transferable plasticity region in Campylobacter coli allows isolates of an otherwise non-glycolytic food-borne pathogen to catabolize glucose. Mol Microbiol 2015; 98:809-30. [PMID: 26259566 DOI: 10.1111/mmi.13159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 12/31/2022]
Abstract
Thermophilic Campylobacter species colonize the intestine of agricultural and domestic animals commensally but cause severe gastroenteritis in humans. In contrast to other enteropathogenic bacteria, Campylobacter has been considered to be non-glycolytic, a metabolic property originally used for their taxonomic classification. Contrary to this dogma, we demonstrate that several Campylobacter coli strains are able to utilize glucose as a growth substrate. Isotopologue profiling experiments with (13) C-labeled glucose suggested that these strains catabolize glucose via the pentose phosphate and Entner-Doudoroff (ED) pathways and use glucose efficiently for de novo synthesis of amino acids and cell surface carbohydrates. Whole genome sequencing of glycolytic C. coli isolates identified a genomic island located within a ribosomal RNA gene cluster that encodes for all ED pathway enzymes and a glucose permease. We could show in vitro that a non-glycolytic C. coli strain could acquire glycolytic activity through natural transformation with chromosomal DNA of C. coli and C. jejuni subsp. doylei strains possessing the ED pathway encoding plasticity region. These results reveal for the first time the ability of a Campylobacter species to catabolize glucose and provide new insights into how genetic macrodiversity through intra- and interspecies gene transfer expand the metabolic capacity of this food-borne pathogen.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sabin Bhuju
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olga Wensel
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Angelika Fruth
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella (FG11), German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institute, Wernigerode, Germany
| | - Kerstin Schmidt-Hohagen
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dietmar Schomburg
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes. Appl Environ Microbiol 2015; 81:7290-304. [PMID: 26253660 DOI: 10.1128/aem.01223-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/02/2015] [Indexed: 11/20/2022] Open
Abstract
Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides.
Collapse
|
30
|
Bocian-Ostrzycka KM, Grzeszczuk MJ, Dziewit L, Jagusztyn-Krynicka EK. Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 2015; 6:570. [PMID: 26106374 PMCID: PMC4460558 DOI: 10.3389/fmicb.2015.00570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
The bacterial proteins of the Dsb family-important components of the post-translational protein modification system-catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and activity. Dsb systems play an essential role in the assembly of many virulence factors. Recent rapid advances in global analysis of bacteria have thrown light on the enormous diversity among bacterial Dsb systems. While the Escherichia coli disulfide bond-forming system is quite well understood, the mechanisms of action of Dsb systems in other bacteria, including members of class Epsilonproteobacteria that contain pathogenic and non-pathogenic bacteria colonizing extremely diverse ecological niches, are poorly characterized. Here we present a review of current knowledge on Epsilonproteobacteria Dsb systems. We have focused on the Dsb systems of Campylobacter spp. and Helicobacter spp. because our knowledge about Dsb proteins of Wolinella and Arcobacter spp. is still scarce and comes mainly from bioinformatic studies. Helicobacter pylori is a common human pathogen that colonizes the gastric epithelium of humans with severe consequences. Campylobacter spp. is a leading cause of zoonotic enteric bacterial infections in most developed and developing nations. We focus on various aspects of the diversity of the Dsb systems and their influence on pathogenicity, particularly because Dsb proteins are considered as potential targets for a new class of anti-virulence drugs to treat human infections by Campylobacter or Helicobacter spp.
Collapse
|
31
|
Pan-genome analysis of human gastric pathogen H. pylori: comparative genomics and pathogenomics approaches to identify regions associated with pathogenicity and prediction of potential core therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2015; 2015:139580. [PMID: 25705648 PMCID: PMC4325212 DOI: 10.1155/2015/139580] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori is a human gastric pathogen implicated as the major cause of peptic ulcer and second leading cause of gastric cancer (~70%) around the world. Conversely, an increased resistance to antibiotics and hindrances in the development of vaccines against H. pylori are observed. Pan-genome analyses of the global representative H. pylori isolates consisting of 39 complete genomes are presented in this paper. Phylogenetic analyses have revealed close relationships among geographically diverse strains of H. pylori. The conservation among these genomes was further analyzed by pan-genome approach; the predicted conserved gene families (1,193) constitute ~77% of the average H. pylori genome and 45% of the global gene repertoire of the species. Reverse vaccinology strategies have been adopted to identify and narrow down the potential core-immunogenic candidates. Total of 28 nonhost homolog proteins were characterized as universal therapeutic targets against H. pylori based on their functional annotation and protein-protein interaction. Finally, pathogenomics and genome plasticity analysis revealed 3 highly conserved and 2 highly variable putative pathogenicity islands in all of the H. pylori genomes been analyzed.
Collapse
|
32
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Abstract
Knowledge gained from early and recent studies that define the functions of microbial populations within the rumen microbiome is essential to allow for directed rumen manipulation strategies. A large number of omic studies have focused on carbohydrate active enzymes either for improved fiber digestion within the animal or for use in industries such as biofuels. Studies of the rumen microbiome with respect to methane production and abatement strategies have led to initiatives for defining the microbiome of low- and high-methane-emitting animals while ensuring optimal feed conversion. With advances in omic technologies, the ability to link host genetics and the rumen microbiome by studying all the biological components (holobiont) through the use of hologenomics has begun. However, a program to culture and isolate microbial species for the purpose of standard microbial characterization to aid in assigning function to genomic data remains critical, especially for genes of unknown function.
Collapse
Affiliation(s)
- Stuart E Denman
- The Commonwealth Scientific and Industrial Research Organisation, St. Lucia, Brisbane, Queensland, 4067 Australia; ,
| | | |
Collapse
|
34
|
Goris T, Schubert T, Gadkari J, Wubet T, Tarkka M, Buscot F, Adrian L, Diekert G. Insights into organohalide respiration and the versatile catabolism ofSulfurospirillum multivoransgained from comparative genomics and physiological studies. Environ Microbiol 2014; 16:3562-80. [DOI: 10.1111/1462-2920.12589] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/31/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Goris
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Torsten Schubert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Jennifer Gadkari
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| | - Tesfaye Wubet
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
| | - Mika Tarkka
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
| | - Francois Buscot
- Department of Soil Ecology; Helmholtz Centre for Environmental Research - UFZ; Halle 06120 Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig; Leipzig 04103 Germany
| | - Lorenz Adrian
- Department Isotope Biogeochemistry; Helmholtz Centre for Environmental Research - UFZ; Leipzig 04318 Germany
| | - Gabriele Diekert
- Department of Applied and Ecological Microbiology; Institute of Microbiology; Friedrich Schiller University; Jena 07743 Germany
| |
Collapse
|
35
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gao B, Lara-Tejero M, Lefebre M, Goodman AL, Galán JE. Novel components of the flagellar system in epsilonproteobacteria. mBio 2014; 5:e01349-14. [PMID: 24961693 PMCID: PMC4073491 DOI: 10.1128/mbio.01349-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 06/02/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Motility is essential for the pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a cell wall-anchored motor using chemical energy. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant differences in the flagellar structures of different bacterial species. The molecular bases for these differences, however, are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. Using next-generation sequencing combined with transposon mutagenesis, we have conducted a comprehensive high-throughput genetic screen in Campylobacter jejuni, which identified several novel components of its flagellar system. Biochemical analyses detected interactions between the identified proteins and known components of the flagellar machinery, and in vivo imaging located them to the bacterial poles, where flagella assemble. Most of the identified new components are conserved within but restricted to epsilonproteobacteria. These studies provide insight into the divergent flagella of this group of bacteria and highlight the complexity of this remarkable structure, which has adapted to carry out its conserved functions in the context of widely diverse bacterial species. IMPORTANCE Motility is essential for the normal physiology and pathogenesis of many bacterial species. Most bacteria move using flagella, which are multiprotein filaments that rotate propelled by a motor that uses chemical energy as fuel. Although some components of the flagellar apparatus are common to many bacterial species, recent studies have shown significant divergence in the flagellar structures across bacterial species. However, the molecular bases for these differences are not understood. The flagella from epsilonproteobacteria, which include the bacterial pathogens Campylobacter jejuni and Helicobacter pylori, are among the most divergent. We conducted a comprehensive genetic screen in Campylobacter jejuni and identified several novel components of the flagellar system. These studies provide important information to understand how flagella have adapted to function in the context of widely diverse sets of bacterial species and bring unique insight into the evolution and function of this remarkable bacterial organelle.
Collapse
Affiliation(s)
- Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Matthew Lefebre
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
37
|
Luckmann M, Mania D, Kern M, Bakken LR, Frostegård Å, Simon J. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells. MICROBIOLOGY-SGM 2014; 160:1749-1759. [PMID: 24781903 DOI: 10.1099/mic.0.079293-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Global warming is moving more and more into the public consciousness. Besides the commonly mentioned carbon dioxide and methane, nitrous oxide (N2O) is a powerful greenhouse gas in addition to its contribution to depletion of stratospheric ozone. The increasing concern about N2O emission has focused interest on underlying microbial energy-converting processes and organisms harbouring N2O reductase (NosZ), such as denitrifiers and ammonifiers of nitrate and nitrite. Here, the epsilonproteobacterial model organism Wolinella succinogenes is investigated with regard to its capacity to produce and consume N2O during growth by anaerobic nitrate ammonification. This organism synthesizes an unconventional cytochrome c nitrous oxide reductase (cNosZ), which is encoded by the first gene of an atypical nos gene cluster. However, W. succinogenes lacks a nitric oxide (NO)-producing nitrite reductase of the NirS- or NirK-type as well as an NO reductase of the Nor-type. Using a robotized incubation system, the wild-type strain and suitable mutants of W. succinogenes that either produced or lacked cNosZ were analysed as to their production of NO, N2O and N2 in both nitrate-sufficient and nitrate-limited growth medium using formate as electron donor. It was found that cells growing in nitrate-sufficient medium produced small amounts of N2O, which derived from nitrite and, most likely, from the presence of NO. Furthermore, cells employing cNosZ were able to reduce N2O to N2. This reaction, which was fully inhibited by acetylene, was also observed after adding N2O to the culture headspace. The results indicate that W. succinogenes cells are competent in N2O and N2 production despite being correctly grouped as respiratory nitrate ammonifiers. N2O production is assumed to result from NO detoxification and nitrosative stress defence, while N2O serves as a terminal electron acceptor in anaerobic respiration. The ecological implications of these findings are discussed.
Collapse
Affiliation(s)
- Monique Luckmann
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Daniel Mania
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr Falsens vei 1, N1432 Ås, Norway
| | - Melanie Kern
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Lars R Bakken
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, PO Box 5003, N1432 Ås, Norway
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Chr Falsens vei 1, N1432 Ås, Norway
| | - Jörg Simon
- Microbial Energy Conversion and Biotechnology, Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| |
Collapse
|
38
|
Handley KM, Bartels D, O'Loughlin EJ, Williams KH, Trimble WL, Skinner K, Gilbert JA, Desai N, Glass EM, Paczian T, Wilke A, Antonopoulos D, Kemner KM, Meyer F. The complete genome sequence for putative H2- and S-oxidizerCandidatusSulfuricurvum sp., assembledde novofrom an aquifer-derived metagenome. Environ Microbiol 2014; 16:3443-62. [DOI: 10.1111/1462-2920.12453] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Kim M. Handley
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
- Institute for Genomics and Systems Biology; Argonne National Laboratory; Lemont IL 60439 USA
| | - Daniela Bartels
- Institute for Genomics and Systems Biology; Argonne National Laboratory; Lemont IL 60439 USA
- Computation Institute; University of Chicago; Chicago IL 60637 USA
| | | | - Kenneth H. Williams
- Earth Science Division; Lawrence Berkeley National Laboratory; Berkeley CA USA
| | - William L. Trimble
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Kelly Skinner
- Biosciences Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Jack A. Gilbert
- Department of Ecology and Evolution; University of Chicago; Chicago IL 60637 USA
- Institute for Genomics and Systems Biology; Argonne National Laboratory; Lemont IL 60439 USA
- Biosciences Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Narayan Desai
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Elizabeth M. Glass
- Computation Institute; University of Chicago; Chicago IL 60637 USA
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Tobias Paczian
- Computation Institute; University of Chicago; Chicago IL 60637 USA
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Andreas Wilke
- Computation Institute; University of Chicago; Chicago IL 60637 USA
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Dionysios Antonopoulos
- Institute for Genomics and Systems Biology; Argonne National Laboratory; Lemont IL 60439 USA
- Biosciences Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Kenneth M. Kemner
- Biosciences Division; Argonne National Laboratory; Lemont IL 60439 USA
| | - Folker Meyer
- Institute for Genomics and Systems Biology; Argonne National Laboratory; Lemont IL 60439 USA
- Computation Institute; University of Chicago; Chicago IL 60637 USA
- Mathematics and Computer Science Division; Argonne National Laboratory; Lemont IL 60439 USA
| |
Collapse
|
39
|
van Overbeek LS, van Doorn J, Wichers JH, van Amerongen A, van Roermund HJW, Willemsen PTJ. The arable ecosystem as battleground for emergence of new human pathogens. Front Microbiol 2014; 5:104. [PMID: 24688484 PMCID: PMC3960585 DOI: 10.3389/fmicb.2014.00104] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Disease incidences related to Escherichia coli and Salmonella enterica infections by consumption of (fresh) vegetables, sprouts, and occasionally fruits made clear that these pathogens are not only transmitted to humans via the "classical" routes of meat, eggs, and dairy products, but also can be transmitted to humans via plants or products derived from plants. Nowadays, it is of major concern that these human pathogens, especially the ones belonging to the taxonomical family of Enterobacteriaceae, become adapted to environmental habitats without losing their virulence to humans. Adaptation to the plant environment would lead to longer persistence in plants, increasing their chances on transmission to humans via consumption of plant-derived food. One of the mechanisms of adaptation to the plant environment in human pathogens, proposed in this paper, is horizontal transfer of genes from different microbial communities present in the arable ecosystem, like the ones originating from soil, animal digestive track systems (manure), water and plants themselves. Genes that would confer better adaptation to the phytosphere might be genes involved in plant colonization, stress resistance and nutrient acquisition and utilization. Because human pathogenic enterics often were prone to genetic exchanges via phages and conjugative plasmids, it was postulated that these genetic elements may be hold key responsible for horizontal gene transfers between human pathogens and indigenous microbes in agroproduction systems. In analogy to zoonosis, we coin the term phytonosis for a human pathogen that is transmitted via plants and not exclusively via animals.
Collapse
Affiliation(s)
- Leonard S van Overbeek
- Plant Research International, Wageningen University and Research Centre Wageningen, Netherlands
| | - Joop van Doorn
- Applied Plant Research, Wageningen University and Research Centre Lisse, Netherlands
| | - Jan H Wichers
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Aart van Amerongen
- Food and Biobased Research, Wageningen University and Research Centre Wageningen, Netherlands
| | - Herman J W van Roermund
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| | - Peter T J Willemsen
- Central Veterinary Institute, Wageningen University and Research Centre Lelystad, Netherlands
| |
Collapse
|
40
|
Xie JB, Du Z, Bai L, Tian C, Zhang Y, Xie JY, Wang T, Liu X, Chen X, Cheng Q, Chen S, Li J. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 2014; 10:e1004231. [PMID: 24651173 PMCID: PMC3961195 DOI: 10.1371/journal.pgen.1004231] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/26/2014] [Indexed: 11/18/2022] Open
Abstract
We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70)-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.
Collapse
Affiliation(s)
- Jian-Bo Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lanqing Bai
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Changfu Tian
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Yunzhi Zhang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Jiu-Yan Xie
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Tianshu Wang
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xiaomeng Liu
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Xi Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Sanfeng Chen
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
- * E-mail: (QC); (SC)
| | - Jilun Li
- Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
41
|
Yadegar A, Alebouyeh M, Lawson AJ, Mirzaei T, Nazemalhosseini Mojarad E, Zali MR. Differentiation of non-pylori Helicobacter species based on PCR-restriction fragment length polymorphism of the 23S rRNA gene. World J Microbiol Biotechnol 2014; 30:1909-17. [PMID: 24493015 DOI: 10.1007/s11274-014-1615-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/27/2014] [Indexed: 01/21/2023]
Abstract
Phenotypic identification of non-pylori Helicobacter species has always been problematic and time-consuming in comparison with many other bacteria. We developed a rapid two-step identification assay based on PCR-restriction fragment length polymorphism (PCR-RFLP) analysis of the 23S rRNA gene for differentiating between non-pylori Helicobacter species. A new genus-specific primer pair based on all available complete and partial 23S rRNA sequences of Helicobacter species was designed. In silico restriction analysis of variable regions of the 23S rRNA gene suggested SmaI and HindIII endonucleases would provide a good level of differentiation. Analysis of the obtained 23S rRNA RFLP patterns divided all Helicobacter study strains into three species groups (groups A-C) and 12 unique restriction patterns. Wolinella succinogenes also gave a unique pattern. Our proposed PCR-RFLP method was found to be as a valuable tool for routine identification of non-pylori Helicobacter species from human or animal samples.
Collapse
Affiliation(s)
- Abbas Yadegar
- Gastroenterology and Liver Diseases Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
42
|
REVIEW: The rumen microbiome: Composition, abundance, diversity, and new investigative tools. ACTA ACUST UNITED AC 2014. [DOI: 10.15232/s1080-7446(15)30076-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Mitchell HM, Rocha GA, Kaakoush NO, O’Rourke JL, Queiroz DMM. The Family Helicobacteraceae. THE PROKARYOTES 2014:337-392. [DOI: 10.1007/978-3-642-39044-9_275] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
Lizak C, Gerber S, Zinne D, Michaud G, Schubert M, Chen F, Bucher M, Darbre T, Zenobi R, Reymond JL, Locher KP. A catalytically essential motif in external loop 5 of the bacterial oligosaccharyltransferase PglB. J Biol Chem 2013; 289:735-46. [PMID: 24275651 DOI: 10.1074/jbc.m113.524751] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Asparagine-linked glycosylation is a post-translational protein modification that is conserved in all domains of life. The initial transfer of a lipid-linked oligosaccharide (LLO) onto acceptor asparagines is catalyzed by the integral membrane protein oligosaccharyltransferase (OST). The previously reported structure of a single-subunit OST enzyme, the Campylobacter lari protein PglB, revealed a partially disordered external loop (EL5), whose role in catalysis was unclear. We identified a new and functionally important sequence motif in EL5 containing a conserved tyrosine residue (Tyr293) whose aromatic side chain is essential for catalysis. A synthetic peptide containing the conserved motif can partially but specifically rescue in vitro activity of mutated PglB lacking Tyr293. Using site-directed disulfide cross-linking, we show that disengagement of the structurally ordered part of EL5 is an essential step of the glycosylation reaction, probably by allowing sequon binding or glyco-product release. Our findings define two distinct mechanistic roles of EL5 in OST-catalyzed glycosylation. These functions, exerted by the two halves of EL5, are independent, because the loop can be cleaved by specific proteolysis with only slight reduction in activity.
Collapse
Affiliation(s)
- Christian Lizak
- From the Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Genome sequencing of rumen bacteria and archaea and its application to methane mitigation strategies. Animal 2013; 7 Suppl 2:235-43. [PMID: 23739466 DOI: 10.1017/s1751731113000700] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ruminant-derived methane (CH4), a potent greenhouse gas, is a consequence of microbial fermentation in the digestive tract of livestock. Development of mitigation strategies to reduce CH4 emissions from farmed animals is currently the subject of both scientific and environmental interest. Methanogens are the sole producers of ruminant CH4, and therefore CH4 abatement strategies can either target the methanogens themselves or target the other members of the rumen microbial community that produce substrates necessary for methanogenesis. Understanding the relationship that methanogens have with other rumen microbes is crucial when considering CH4 mitigation strategies for ruminant livestock. Genome sequencing of rumen microbes is an important tool to improve our knowledge of the processes that underpin those relationships. Currently, several rumen bacterial and archaeal genome projects are either complete or underway. Genome sequencing is providing information directly applicable to CH4 mitigation strategies based on vaccine and small molecule inhibitor approaches. In addition, genome sequencing is contributing information relevant to other CH4 mitigation strategies. These include the selection and breeding of low CH4-emitting animals through the interpretation of large-scale DNA and RNA sequencing studies and the modification of other microbial groups within the rumen, thereby changing the dynamics of microbial fermentation.
Collapse
|
46
|
Porcelli I, Reuter M, Pearson BM, Wilhelm T, van Vliet AHM. Parallel evolution of genome structure and transcriptional landscape in the Epsilonproteobacteria. BMC Genomics 2013; 14:616. [PMID: 24028687 PMCID: PMC3847290 DOI: 10.1186/1471-2164-14-616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 02/26/2023] Open
Abstract
Background Gene reshuffling, point mutations and horizontal gene transfer contribute to bacterial genome variation, but require the genome to rewire its transcriptional circuitry to ensure that inserted, mutated or reshuffled genes are transcribed at appropriate levels. The genomes of Epsilonproteobacteria display very low synteny, due to high levels of reshuffling and reorganisation of gene order, but still share a significant number of gene orthologs allowing comparison. Here we present the primary transcriptome of the pathogenic Epsilonproteobacterium Campylobacter jejuni, and have used this for comparative and predictive transcriptomics in the Epsilonproteobacteria. Results Differential RNA-sequencing using 454 sequencing technology was used to determine the primary transcriptome of C. jejuni NCTC 11168, which consists of 992 transcription start sites (TSS), which included 29 putative non-coding and stable RNAs, 266 intragenic (internal) TSS, and 206 antisense TSS. Several previously unknown features were identified in the C. jejuni transcriptional landscape, like leaderless mRNAs and potential leader peptides upstream of amino acid biosynthesis genes. A cross-species comparison of the primary transcriptomes of C. jejuni and the related Epsilonproteobacterium Helicobacter pylori highlighted a lack of conservation of operon organisation, position of intragenic and antisense promoters or leaderless mRNAs. Predictive comparisons using 40 other Epsilonproteobacterial genomes suggests that this lack of conservation of transcriptional features is common to all Epsilonproteobacterial genomes, and is associated with the absence of genome synteny in this subdivision of the Proteobacteria. Conclusions Both the genomes and transcriptomes of Epsilonproteobacteria are highly variable, both at the genome level by combining and division of multicistronic operons, but also on the gene level by generation or deletion of promoter sequences and 5′ untranslated regions. Regulatory features may have evolved after these species split from a common ancestor, with transcriptome rewiring compensating for changes introduced by genomic reshuffling and horizontal gene transfer.
Collapse
Affiliation(s)
- Ida Porcelli
- Gut Health and Food Safety Programme, Institute of Food Research, Colney Lane, Norwich, NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
47
|
Peters J, Giudici-Orticoni MT, Zaccai G, Guiral M. Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:78. [PMID: 23880731 DOI: 10.1140/epje/i2013-13078-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/01/2013] [Accepted: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Various models on membrane structure and organization of proteins and complexes in natural membranes emerged during the last years. However, the lack of systematic dynamical studies to complement structural investigations hindered the establishment of a more complete picture of these systems. Elastic incoherent neutron scattering gives access to the dynamics on a molecular level and was applied to natural membranes extracted from the hyperthermophile Aquifex aeolicus and the mesophile Wolinella succinogenes bacteria. The results permitted to extract a hierarchy of dynamic flexibility and atomic resilience within the samples, which correlated with the organization of proteins in bioenergetics complexes and the functionality of the membranes.
Collapse
Affiliation(s)
- J Peters
- Institut Laue Langevin, 6 rue J. Horowitz, BP 156, F-38042 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
48
|
Han C, Kotsyurbenko O, Chertkov O, Held B, Lapidus A, Nolan M, Lucas S, Hammon N, Deshpande S, Cheng JF, Tapia R, Goodwin LA, Pitluck S, Liolios K, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Brambilla EM, Rohde M, Spring S, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Detter JC. Complete genome sequence of the sulfur compounds oxidizing chemolithoautotroph Sulfuricurvum kujiense type strain (YK-1(T)). Stand Genomic Sci 2012; 6:94-103. [PMID: 22675602 PMCID: PMC3368400 DOI: 10.4056/sigs.2456004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sulfuricurvum kujiense Kodama and Watanabe 2004 is the type species of the monotypic genus Sulfuricurvum, which belongs to the family Helicobacteraceae in the class Epsilonproteobacteria. The species is of interest because it is frequently found in crude oil and oil sands where it utilizes various reduced sulfur compounds such as elemental sulfur, sulfide and thiosulfate as electron donors. Members of the species do not utilize sugars, organic acids or hydrocarbons as carbon and energy sources. This genome sequence represents the type strain of the only species in the genus Sulfuricurvum. The genome, which consists of a circular chromosome of 2,574,824 bp length and four plasmids of 118,585 bp, 71,513 bp, 51,014 bp, and 3,421 bp length, respectively, harboring a total of 2,879 protein-coding and 61 RNA genes and is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
Affiliation(s)
- Cliff Han
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Oleg Kotsyurbenko
- Technical University of Braunschweig, Institute for Microbiology, Braunschweig, Germany
- Lomonosov Moscow State University, Biological Department, Moscow, Russia
| | - Olga Chertkov
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Brittany Held
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Alla Lapidus
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Matt Nolan
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Susan Lucas
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Nancy Hammon
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Jan-Fang Cheng
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Lynne A. Goodwin
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | - Ioanna Pagani
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | | | | | | | - Amrita Pati
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Amy Chen
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Krishna Palaniappan
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Miriam Land
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Loren Hauser
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Yun-juan Chang
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Cynthia D. Jeffries
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Evelyne-Marie Brambilla
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Manfred Rohde
- HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stefan Spring
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - James Bristow
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Jonathan A. Eisen
- DOE Joint Genome Institute, Walnut Creek, California, USA
- University of California Davis Genome Center, Davis, California, USA
| | - Victor Markowitz
- Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Philip Hugenholtz
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | - Hans-Peter Klenk
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - John C. Detter
- DOE Joint Genome Institute, Walnut Creek, California, USA
- Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
| |
Collapse
|
49
|
Abstract
Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of enteric methane are key functions that could be manipulated by having a thorough understanding of the rumen microbiome. Advances in DNA sequencing technologies and bioinformatics are transforming our understanding of complex microbial ecosystems, including the gastrointestinal tract of mammals. The application of these techniques to the rumen ecosystem has allowed the study of the microbial diversity under different dietary and production conditions. Furthermore, the sequencing of genomes from several cultured rumen bacterial and archaeal species is providing detailed information about their physiology. More recently, metagenomics, mainly aimed at understanding the enzymatic machinery involved in the degradation of plant structural polysaccharides, is starting to produce new insights by allowing access to the total community and sidestepping the limitations imposed by cultivation. These advances highlight the promise of these approaches for characterising the rumen microbial community structure and linking this with the functions of the rumen microbiota. Initial results using high-throughput culture-independent technologies have also shown that the rumen microbiome is far more complex and diverse than the human caecum. Therefore, cataloguing its genes will require a considerable sequencing and bioinformatic effort. Nevertheless, the construction of a rumen microbial gene catalogue through metagenomics and genomic sequencing of key populations is an attainable goal. A rumen microbial gene catalogue is necessary to understand the function of the microbiome and its interaction with the host animal and feeds, and it will provide a basis for integrative microbiome-host models and inform strategies promoting less-polluting, more robust and efficient ruminants.
Collapse
|
50
|
Craven M, Recordati C, Gualdi V, Pengo G, Luini M, Scanziani E, Simpson KW. Evaluation of the Helicobacteraceae in the oral cavity of dogs. Am J Vet Res 2012; 72:1476-81. [PMID: 22023125 DOI: 10.2460/ajvr.72.11.1476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the Helicobacter spp present in the oral cavity of dogs and the relationship of those organisms with gastric Helicobacter spp to better define the potential for dog-human and dog-dog transmission. SAMPLE Saliva and dental plaque from 28 dogs and gastric biopsy specimens from a subset of 8 dogs. PROCEDURES PCR-based screening for Helicobacter spp was conducted on samples obtained from the oral cavity of 28 dogs. Comparative analysis was conducted on Helicobacteraceae 16S rDNA clone libraries from the oral cavity and stomach of a subset of 8 dogs (5 vomiting and 3 healthy) that had positive PCR results for Helicobacter spp. RESULTS Helicobacteraceae DNA was identified in the oral cavity of 24 of 28 dogs. Analysis of cloned 16S rDNA amplicons from 8 dogs revealed that Wolinella spp was the most common (8/8 dogs) and abundant (52/57 [91%] clones) member of the Helicobacteraceae family in the oral cavity. Only 2 of 8 dogs harbored Helicobacter spp in the oral cavity, and 1 of those was coinfected with Helicobacter heilmannii and Helicobacter felis in samples obtained from the stomach and saliva. Evaluation of oral cavity DNA with Wolinella-specific PCR primers yielded positive results for 16 of 20 other dogs (24/28 samples were positive for Wolinella spp). CONCLUSIONS AND CLINICAL RELEVANCE Wolinella spp rather than Helicobacter spp were the predominant Helicobacteraceae in the oral cavity of dogs. The oral cavity of dogs was apparently not a zoonotically important reservoir of Helicobacter spp that were non-Helicobacter pylori organisms.
Collapse
Affiliation(s)
- Melanie Craven
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|