1
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024; 8:1523-1539. [PMID: 39237709 PMCID: PMC11852397 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Seal S, Carreras-Puigvert J, Singh S, Carpenter AE, Spjuth O, Bender A. From pixels to phenotypes: Integrating image-based profiling with cell health data as BioMorph features improves interpretability. Mol Biol Cell 2024; 35:mr2. [PMID: 38170589 PMCID: PMC10916876 DOI: 10.1091/mbc.e23-08-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Cell Painting assays generate morphological profiles that are versatile descriptors of biological systems and have been used to predict in vitro and in vivo drug effects. However, Cell Painting features extracted from classical software such as CellProfiler are based on statistical calculations and often not readily biologically interpretable. In this study, we propose a new feature space, which we call BioMorph, that maps these Cell Painting features with readouts from comprehensive Cell Health assays. We validated that the resulting BioMorph space effectively connected compounds not only with the morphological features associated with their bioactivity but with deeper insights into phenotypic characteristics and cellular processes associated with the given bioactivity. The BioMorph space revealed the mechanism of action for individual compounds, including dual-acting compounds such as emetine, an inhibitor of both protein synthesis and DNA replication. Overall, BioMorph space offers a biologically relevant way to interpret the cell morphological features derived using software such as CellProfiler and to generate hypotheses for experimental validation.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Jordi Carreras-Puigvert
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge MA 02142
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| | - Andreas Bender
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557100. [PMID: 37745327 PMCID: PMC10515791 DOI: 10.1101/2023.09.11.557100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jason W. Rocks
- Department of Physics, Boston University; Boston, MA 02215, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Andrew J. Walters
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Kshitij Rai
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jing Liu
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Pankaj Mehta
- Department of Physics, Boston University; Boston, MA 02215, USA
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Faculty of Computing and Data Science, Boston University; Boston, MA 02215, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University; Glassboro, NJ 08028, USA
| | - Caleb J. Bashor
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Biosciences, Rice University; Houston, TX 77030, USA
| |
Collapse
|
4
|
Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BIM, Dods G, Liao H, Wilken MS, Ciarlo C, Green S, El-Samad H, Stamatoyannopoulos J, Wysocki VH, Jewett MC, Boyken SE, Baker D. De novo design of protein logic gates. Science 2020; 368:78-84. [PMID: 32241946 DOI: 10.1126/science.aay2790] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo-designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions.
Collapse
Affiliation(s)
- Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jocelynn Pearl
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Mengxuan Jia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Basile I M Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Galen Dods
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hanna Liao
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Matthew S Wilken
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Christie Ciarlo
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Shon Green
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - John Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, Division of Oncology, University of Washington, Seattle, WA 98109, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Quantitative Analysis of the Rewiring of Signaling Pathways to Alter Cancer Cell Fate. J Med Biol Eng 2019. [DOI: 10.1007/s40846-019-00489-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Fink T, Lonzarić J, Praznik A, Plaper T, Merljak E, Leben K, Jerala N, Lebar T, Strmšek Ž, Lapenta F, Benčina M, Jerala R. Design of fast proteolysis-based signaling and logic circuits in mammalian cells. Nat Chem Biol 2019; 15:115-122. [PMID: 30531965 PMCID: PMC7069760 DOI: 10.1038/s41589-018-0181-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023]
Abstract
Cellular signal transduction is predominantly based on protein interactions and their post-translational modifications, which enable a fast response to input signals. Owing to difficulties in designing new unique protein-protein interactions, designed cellular logic has focused on transcriptional regulation; however, that process has a substantially slower response, because it requires transcription and translation. Here, we present de novo design of modular, scalable signaling pathways based on proteolysis and designed coiled coils (CC) and implemented in mammalian cells. A set of split proteases with highly specific orthogonal cleavage motifs was constructed and combined with strategically positioned cleavage sites and designed orthogonal CC dimerizing domains with tunable affinity for competitive displacement after proteolytic cleavage. This framework enabled the implementation of Boolean logic functions and signaling cascades in mammalian cells. The designed split-protease-cleavable orthogonal-CC-based (SPOC) logic circuits enable response to chemical or biological signals within minutes rather than hours and should be useful for diverse medical and nonmedical applications.
Collapse
Affiliation(s)
- Tina Fink
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Lonzarić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Plaper
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Estera Merljak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Leben
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Žiga Strmšek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fabio Lapenta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- ENFIST Centre of Excellence, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- ENFIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Gao XJ, Chong LS, Kim MS, Elowitz MB. Programmable protein circuits in living cells. Science 2018; 361:1252-1258. [PMID: 30237357 DOI: 10.1126/science.aat5062] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Synthetic protein-level circuits could enable engineering of powerful new cellular behaviors. Rational protein circuit design would be facilitated by a composable protein-protein regulation system in which individual protein components can regulate one another to create a variety of different circuit architectures. In this study, we show that engineered viral proteases can function as composable protein components, which can together implement a broad variety of circuit-level functions in mammalian cells. In this system, termed CHOMP (circuits of hacked orthogonal modular proteases), input proteases dock with and cleave target proteases to inhibit their function. These components can be connected to generate regulatory cascades, binary logic gates, and dynamic analog signal-processing functions. To demonstrate the utility of this system, we rationally designed a circuit that induces cell death in response to upstream activators of the Ras oncogene. Because CHOMP circuits can perform complex functions yet be encoded as single transcripts and delivered without genomic integration, they offer a scalable platform to facilitate protein circuit engineering for biotechnological applications.
Collapse
Affiliation(s)
- Xiaojing J Gao
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, Broad Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Lucy S Chong
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, Broad Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Matthew S Kim
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, Broad Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Michael B Elowitz
- Howard Hughes Medical Institute, Division of Biology and Biological Engineering, Broad Center, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
8
|
Aper SJA, den Hamer A, Wouters SFA, Lemmens LJM, Ottmann C, Brunsveld L, Merkx M. Protease-Activatable Scaffold Proteins as Versatile Molecular Hubs in Synthetic Signaling Networks. ACS Synth Biol 2018; 7:2216-2225. [PMID: 30125482 PMCID: PMC6154215 DOI: 10.1021/acssynbio.8b00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Protease signaling and scaffold-induced control of protein-protein interactions represent two important mechanisms for intracellular signaling. Here we report a generic and modular approach to control the activity of scaffolding proteins by protease activity, creating versatile molecular platforms to construct synthetic signaling networks. Using 14-3-3 proteins as a structurally well-characterized and important class of scaffold proteins, three different architectures were explored to achieve optimal protease-mediated control of scaffold activity, fusing either one or two monovalent inhibitory ExoS peptides or a single bivalent ExoS peptide to T14-3-3 using protease-cleavable linkers. Analysis of scaffolding activity before and after protease-induced cleavage revealed optimal control of 14-3-3 activity for the system that contained monovalent ExoS peptides fused to both the N-and C-terminus, each blocking a single T14-3-3 binding site. The protease-activatable 14-3-3 scaffolds were successfully applied to construct a three-step signaling cascade in which dimerization and activation of FGG-caspase-9 on an orthogonal supramolecular platform resulted in activation of a 14-3-3 scaffold, which in turn allowed 14-3-3-templated complementation of a split-luciferase. In addition, by combining 14-3-3-templated activation of caspase-9 with a caspase-9-activatable 14-3-3 scaffold, the first example of a synthetic self-activating protease signaling network was created. Protease-activatable 14-3-3 proteins thus represent a modular platform whose properties can be rationally engineered to fit different applications, both to create artificial in vitro synthetic molecular networks and as a novel signaling hub to re-engineer intracellular signaling pathways.
Collapse
Affiliation(s)
- Stijn J. A. Aper
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anniek den Hamer
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Simone F. A. Wouters
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Abstract
Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry—biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function.
Collapse
Affiliation(s)
- Caleb J. Bashor
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;,
- Harvard–MIT Program in Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
10
|
den Hamer A, Lemmens LJM, Nijenhuis MAD, Ottmann C, Merkx M, de Greef TFA, Brunsveld L. Small-Molecule-Induced and Cooperative Enzyme Assembly on a 14-3-3 Scaffold. Chembiochem 2017; 18:331-335. [PMID: 27897387 PMCID: PMC5299510 DOI: 10.1002/cbic.201600631] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 12/23/2022]
Abstract
Scaffold proteins regulate cell signalling by promoting the proximity of putative interaction partners. Although they are frequently applied in cellular settings, fundamental understanding of them in terms of, amongst other factors, quantitative parameters has been lagging behind. Here we present a scaffold protein platform that is based on the native 14-3-3 dimeric protein and is controllable through the action of a small-molecule compound, thus permitting study in an in vitro setting and mathematical description. Robust small-molecule regulation of caspase-9 activity through induced dimerisation on the 14-3-3 scaffold was demonstrated. The individual parameters of this system were precisely determined and used to develop a mathematical model of the scaffolding concept. This model was used to elucidate the strong cooperativity of the enzyme activation mediated by the 14-3-3 scaffold. This work provides an entry point for the long-needed quantitative insights into scaffold protein functioning and paves the way for the optimal use of reengineered 14-3-3 proteins as chemically inducible scaffolds in synthetic systems.
Collapse
Affiliation(s)
- Anniek den Hamer
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Lenne J. M. Lemmens
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Minke A. D. Nijenhuis
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Maarten Merkx
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Tom F. A. de Greef
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyDepartment of Biomedical Engineering andInstitute of Complex Molecular SystemsEindhoven University of TechnologyDen Dolech 25612AZ EindhovenNetherlands
| |
Collapse
|
11
|
Engelmann BW. High-Throughput Quantification of SH2 Domain-Phosphopeptide Interactions with Cellulose-Peptide Conjugate Microarrays. Methods Mol Biol 2017; 1555:375-394. [PMID: 28092044 DOI: 10.1007/978-1-4939-6762-9_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
Collapse
Affiliation(s)
- Brett W Engelmann
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Protein design: Past, present, and future. Biopolymers 2016; 104:334-50. [PMID: 25784145 DOI: 10.1002/bip.22639] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/16/2023]
Abstract
Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.
Collapse
Affiliation(s)
- Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT
| | - Diego Caballero
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT
| | - Michael R Hinrichsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Corey S O'Hern
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT.,Department of Applied Physics, Yale University, New Haven, CT
| |
Collapse
|
13
|
Kemp JA, Shim MS, Heo CY, Kwon YJ. "Combo" nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev 2016; 98:3-18. [PMID: 26546465 DOI: 10.1016/j.addr.2015.10.019] [Citation(s) in RCA: 357] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/23/2022]
Abstract
The dynamic and versatile nature of diseases such as cancer has been a pivotal challenge for developing efficient and safe therapies. Cancer treatments using a single therapeutic agent often result in limited clinical outcomes due to tumor heterogeneity and drug resistance. Combination therapies using multiple therapeutic modalities can synergistically elevate anti-cancer activity while lowering doses of each agent, hence, reducing side effects. Co-administration of multiple therapeutic agents requires a delivery platform that can normalize pharmacokinetics and pharmacodynamics of the agents, prolong circulation, selectively accumulate, specifically bind to the target, and enable controlled release in target site. Nanomaterials, such as polymeric nanoparticles, gold nanoparticles/cages/shells, and carbon nanomaterials, have the desired properties, and they can mediate therapeutic effects different from those generated by small molecule drugs (e.g., gene therapy, photothermal therapy, photodynamic therapy, and radiotherapy). This review aims to provide an overview of developing multi-modal therapies using nanomaterials ("combo" nanomedicine) along with the rationale, up-to-date progress, further considerations, and the crucial roles of interdisciplinary approaches.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea
| | - Chan Yeong Heo
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Plastic Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Plastic Surgery, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Chemical Engineering and Materials Science,University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering,University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States.
| |
Collapse
|
14
|
Liu W, Tu W, Liu Y, Sun R, Liu C, Yang C. The N-terminal domain of Lhcb proteins is critical for recognition of the LHCII kinase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:79-88. [DOI: 10.1016/j.bbabio.2015.10.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/06/2015] [Accepted: 10/11/2015] [Indexed: 12/14/2022]
|
15
|
Strumillo M, Beltrao P. Towards the computational design of protein post-translational regulation. Bioorg Med Chem 2015; 23:2877-82. [PMID: 25956846 PMCID: PMC4673319 DOI: 10.1016/j.bmc.2015.04.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/19/2022]
Abstract
Protein post-translational modifications (PTMs) are a fast and versatility mechanism used by the cell to regulate the function of proteins in response to changing conditions. PTMs can alter the activity of proteins by allosteric regulation or by controlling protein interactions, localization and abundance. Recent advances in proteomics have revealed the extent of regulation by PTMs and the different mechanisms used in nature to exert control over protein function via PTMs. These developments can serve as the foundation for the rational design of protein regulation. Here we review the advances in methods to determine the function of PTMs, protein allosteric control and examples of rational design of PTM regulation. These advances create an opportunity to move synthetic biology forward by making use of a level of regulation that is of yet unexplored.
Collapse
Affiliation(s)
- Marta Strumillo
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Pedro Beltrao
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK; iBiMED and Department of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Bayer T, Milker S, Wiesinger T, Rudroff F, Mihovilovic MD. Designer Microorganisms for Optimized Redox Cascade Reactions - Challenges and Future Perspectives. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500202] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Campbell ST, Carlson KJ, Buchholz CJ, Helmers MR, Ghosh I. Mapping the BH3 Binding Interface of Bcl-xL, Bcl-2, and Mcl-1 Using Split-Luciferase Reassembly. Biochemistry 2015; 54:2632-43. [PMID: 25844633 DOI: 10.1021/bi501505y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recognition of helical BH3 domains by Bcl-2 homology (BH) receptors plays a central role in apoptosis. The residues that determine specificity or promiscuity in this interactome are difficult to predict from structural and computational data. Using a cell free split-luciferase system, we have generated a 276 pairwise interaction map for 12 alanine mutations at the binding interface for three receptors, Bcl-xL, Bcl-2, and Mcl-1, and interrogated them against BH3 helices derived from Bad, Bak, Bid, Bik, Bim, Bmf, Hrk, and Puma. This panel, in conjunction with previous structural and functional studies, starts to provide a more comprehensive portrait of this interactome, explains promiscuity, and uncovers surprising details; for example, the Bcl-xL R139A mutation disrupts binding to all helices but the Bad-BH3 peptide, and Mcl-1 binding is particularly perturbed by only four mutations of the 12 tested (V220A, N260A, R263A, and F319A), while Bcl-xL and Bcl-2 have a more diverse set of important residues depending on the bound helix.
Collapse
Affiliation(s)
- Sean T Campbell
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Kevin J Carlson
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Carl J Buchholz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Mark R Helmers
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Indraneel Ghosh
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Stein V, Alexandrov K. Synthetic protein switches: design principles and applications. Trends Biotechnol 2015; 33:101-10. [DOI: 10.1016/j.tibtech.2014.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
19
|
An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism. Sci Rep 2014; 4:7570. [PMID: 25531212 PMCID: PMC4273604 DOI: 10.1038/srep07570] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/02/2014] [Indexed: 12/29/2022] Open
Abstract
The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary “hitchhiker” mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.
Collapse
|
20
|
Camacho-Soto K, Castillo-Montoya J, Tye B, Ogunleye LO, Ghosh I. Small molecule gated split-tyrosine phosphatases and orthogonal split-tyrosine kinases. J Am Chem Soc 2014; 136:17078-86. [PMID: 25409264 DOI: 10.1021/ja5080745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein kinases phosphorylate client proteins, while protein phosphatases catalyze their dephosphorylation and thereby in concert exert reversible control over numerous signal transduction pathways. We have recently reported the design and validation of split-protein kinases that can be conditionally activated by an added small molecule chemical inducer of dimerization (CID), rapamycin. Herein, we provide the rational design and validation of three split-tyrosine phosphatases (PTPs) attached to FKBP and FRB, where catalytic activity can be modulated with rapamycin. We further demonstrate that the orthogonal CIDs, abscisic acid and gibberellic acid, can be used to impart control over the activity of split-tyrosine kinases (PTKs). Finally, we demonstrate that designed split-phosphatases and split-kinases can be activated by orthogonal CIDs in mammalian cells. In sum, we provide a methodology that allows for post-translational orthogonal small molecule control over the activity of user defined split-PTKs and split-PTPs. This methodology has the long-term potential for both interrogating and redesigning phosphorylation dependent signaling pathways.
Collapse
Affiliation(s)
- Karla Camacho-Soto
- Department of Chemistry and Biochemistry, University of Arizona , 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | | | | | | | |
Collapse
|
21
|
Mol M, Raj Bejugam P, Singh S. Synthetic biology at the interface of functional genomics. Brief Funct Genomics 2014; 14:180-8. [PMID: 25212484 DOI: 10.1093/bfgp/elu031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional genomics is considered a powerful tool that helps understand the relation between an organism's genotype and possible phenotypes. Volumes of data generated on several 'omics' platforms have revealed the network complexities underlying biological processes. Systems and synthetic biology have garnered much attention because of the ability to infer and comprehend the uncertainties associated with such complexities. Also, part-wise characterization of the network components (e.g. DNA, RNA, protein) has rendered an engineering perspective in life sciences to build modular and functional devices. This approach can be used to combat one of the many concerns of the world, i.e. in the area of biomedical translational research by designing and constructing novel therapeutic devices to intervene network perturbation in a diseased state to transform to a healthy state.
Collapse
|
22
|
Zhou L, Xu N, Sun Y, Liu XM. Targeted biopharmaceuticals for cancer treatment. Cancer Lett 2014; 352:145-51. [PMID: 25016064 DOI: 10.1016/j.canlet.2014.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/21/2014] [Accepted: 06/29/2014] [Indexed: 01/02/2023]
Abstract
Cancer is a complex invasive genetic disease that causes significant mortality rate worldwide. Protein-based biopharmaceuticals have significantly extended the lives of millions of cancer patients. This article reviews the biological function and application of targeted anticancer biopharmaceuticals. We first discuss the specific antigens and core pathways that are used in the development of targeted cancer therapy. The innovative monoclonal antibodies, non-antibody proteins, and small molecules targeting these antigens or pathways are then reviewed. Finally, the current challenges in anticancer biopharmaceuticals development and the potential solutions to address these challenges are discussed.
Collapse
Affiliation(s)
- Lufang Zhou
- Departments of Medicine and Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ningning Xu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Yan Sun
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoguang Margaret Liu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|
23
|
Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 2014; 15:95-107. [PMID: 24434884 DOI: 10.1038/nrm3738] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies.
Collapse
|
24
|
Chen R, Chen Q, Kim H, Siu KH, Sun Q, Tsai SL, Chen W. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol 2013; 28:59-68. [PMID: 24832076 DOI: 10.1016/j.copbio.2013.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022]
Abstract
Proteins inherently are not designed to be standalone entities. Whether it is a multi-step biochemical reaction or a signaling event that triggers several other cascading events, proteins are naturally designed to function cohesively. Several natural systems have been developed through evolution to co-localize the functional proteins of the same pathway in order to ensure efficient communication of signals or intermediates. This review focuses on some selected examples of where synthetic scaffolds inspired by nature have been used to enhance the overall biological pathway performance. Applications encompass both in vivo and in vitro systems that address two key biological events in cell signaling and biosynthesis will be discussed.
Collapse
Affiliation(s)
- Rebecca Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Heejae Kim
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qing Sun
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
25
|
Fulle S, Sancilio S, Mancinelli R, Gatta V, Di Pietro R. Dual role of the caspase enzymes in satellite cells from aged and young subjects. Cell Death Dis 2013; 4:e955. [PMID: 24336075 PMCID: PMC3877545 DOI: 10.1038/cddis.2013.472] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 02/08/2023]
Abstract
Satellite cell (SC) proliferation and differentiation have critical roles in skeletal muscle recovery after injury and adaptation in response to hypertrophic stimuli. Normal ageing hinders SC proliferation and differentiation, and is associated with increased expression of a number of pro-apoptotic factors in skeletal muscle. In light of previous studies that have demonstrated age-related altered expression of genes involved in SC antioxidant and repair activity, this investigation was aimed at evaluating the incidence of apoptotic features in human SCs. Primary cells were obtained from vastus lateralis of nine young (27.3±2.0 years old) and nine old (71.1±1.8 years old) subjects, and cultured in complete medium for analyses at 4, 24, 48, and 72 h. Apoptosis was assessed using AnnexinV/propidium iodide staining, the terminal deoxynucleotidyl transferase dUTP nick-end labelling technique, RT-PCR, DNA microarrays, flow cytometry, and immunofluorescence analysis. There was an increased rate of apoptotic cells in aged subjects at all of the experimental time points, with no direct correlation between AnnexinV-positive cells and caspase-8 activity. On the other hand, CASP2, CASP6, CASP7, and CASP9 and a number of cell death genes were upregulated in the aged SCs. Altogether, our data show age-related enhanced susceptibility of human SCs to apoptosis, which might be responsible for their reduced response to muscle damage.
Collapse
Affiliation(s)
- S Fulle
- Department of Neurosciences and Imaging, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- Stem Tech Group, Centre for Research into Ageing (CeSI), ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- IIM-Interuniversity Institute of Myology, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
| | - S Sancilio
- Stem Tech Group, Centre for Research into Ageing (CeSI), ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- Department of Pharmacy, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
| | - R Mancinelli
- Department of Neurosciences and Imaging, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- Stem Tech Group, Centre for Research into Ageing (CeSI), ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- IIM-Interuniversity Institute of Myology, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
| | - V Gatta
- Laboratory of Molecular Genetics, Department of Psychological, Humanities and Territorial Sciences, ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- CeSI, Ageing Research Center, ‘G. d'Annunzio' University Foundation, Chieti, Italy
| | - R Di Pietro
- Stem Tech Group, Centre for Research into Ageing (CeSI), ‘G. d′Annunzio' University, Chieti–Pescara, Italy
- Section of Human Morphology, Department of Medicine and Ageing Sciences, ‘G. d'Annunzio' University, Chieti–Pescara, Italy
- Section of Human Morphology, Department of Medicine and Ageing Sciences, Building D, Level 1, ‘G. d'Annunzio' University of Chieti–Pescara, Via dei Vestini, 31, Chieti 66100, Italy. Tel: +39 0871 3554567; Fax: +39 0871 3554568. E-mail:
| |
Collapse
|
26
|
Di Roberto RB, Peisajovich SG. The role of domain shuffling in the evolution of signaling networks. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 322:65-72. [DOI: 10.1002/jez.b.22551] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/28/2013] [Indexed: 01/05/2023]
|
27
|
Hobert EM, Doerner AE, Walker AS, Schepartz A. Effective molarity redux: Proximity as a guiding force in chemistry and biology. Isr J Chem 2013; 53:567-576. [PMID: 25418998 PMCID: PMC4238305 DOI: 10.1002/ijch.201300063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cell interior is a complex and demanding environment. An incredible variety of molecules jockey to identify the correct position-the specific interactions that promote biology that are hidden among countless unproductive options. Ensuring that the business of the cell is successful requires sophisticated mechanisms to impose temporal and spatial specificity-both on transient interactions and their eventual outcomes. Two strategies employed to regulate macromolecular interactions in a cellular context are co-localization and compartmentalization. Macromolecular interactions can be promoted and specified by localizing the partners within the same subcellular compartment, or by holding them in proximity through covalent or non-covalent interactions with proteins, lipids, or DNA- themes that are familiar to any biologist. The net result of these strategies is an increase in effective molarity: the local concentration of a reactive molecule near its reaction partners. We will focus on this general mechanism, employed by Nature and adapted in the lab, which allows delicate control in complex environments: the power of proximity to accelerate, guide, or otherwise influence the reactivity of signaling proteins and the information that they encode.
Collapse
|
28
|
Interaction domains of Sos1/Grb2 are finely tuned for cooperative control of embryonic stem cell fate. Cell 2013; 152:1008-20. [PMID: 23452850 DOI: 10.1016/j.cell.2013.01.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/18/2012] [Accepted: 01/31/2013] [Indexed: 12/28/2022]
Abstract
Metazoan evolution involves increasing protein domain complexity, but how this relates to control of biological decisions remains uncertain. The Ras guanine nucleotide exchange factor (RasGEF) Sos1 and its adaptor Grb2 are multidomain proteins that couple fibroblast growth factor (FGF) signaling to activation of the Ras-Erk pathway during mammalian development and drive embryonic stem cells toward the primitive endoderm (PrE) lineage. We show that the ability of Sos1/Grb2 to appropriately regulate pluripotency and differentiation factors and to initiate PrE development requires collective binding of multiple Sos1/Grb2 domains to their protein and phospholipid ligands. This provides a cooperative system that only allows lineage commitment when all ligand-binding domains are occupied. Furthermore, our results indicate that the interaction domains of Sos1 and Grb2 have evolved so as to bind ligands not with maximal strength but with specificities and affinities that maintain cooperativity. This optimized system ensures that PrE lineage commitment occurs in a timely and selective manner during embryogenesis.
Collapse
|
29
|
Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:2540-55. [PMID: 22889906 DOI: 10.1098/rstb.2012.0106] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
30
|
Abstract
Modular protein interaction domains (PIDs) that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some PIDs such as SH2, 14-3-3, Chromo, and Bromo domains serve to recognize posttranslational modification (PTM) of amino acids (such as phosphorylation, acetylation, methylation, etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PSD-95/Discs-large/ZO-1 (PDZ) domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate-specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High-throughput (HTP) analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry, or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls associated with HTP analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of PIDs and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
31
|
Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SSC. Superbinder SH2 Domains Act as Antagonists of Cell Signaling. Sci Signal 2012; 5:ra68. [DOI: 10.1126/scisignal.2003021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Abstract
Signaling networks process vast amounts of environmental information to generate specific cellular responses. As cellular environments change, signaling networks adapt accordingly. Here, I will discuss how the integration of synthetic biology and directed evolution approaches is shedding light on the molecular mechanisms that guide the evolution of signaling networks. In particular, I will review studies that demonstrate how different types of mutations, from the replacement of individual amino acids to the shuffling of modular domains, lead to markedly different evolutionary trajectories and consequently to diverse network rewiring. Moreover, I will argue that intrinsic evolutionary properties of signaling proteins, such as the robustness of wild type functions, the promiscuous nature of evolutionary intermediates, and the modular decoupling between binding and catalysis, play important roles in the evolution of signaling networks. Finally, I will argue that rapid advances in our ability to synthesize DNA will radically alter how we study signaling network evolution at the genome-wide level.
Collapse
Affiliation(s)
- Sergio G. Peisajovich
- Department
of Cell and Systems Biology, University of Toronto, Toronto, M5S 3G5 Canada
| |
Collapse
|
33
|
Nash PD. Why modules matter. FEBS Lett 2012; 586:2572-4. [PMID: 22710154 DOI: 10.1016/j.febslet.2012.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/29/2022]
Abstract
The serendipitous discovery of the SH2 domain unleashed a sea-change in our conceptual molecular understanding of protein function. The reductionist approaches that followed from the recognition of modular protein interaction domains transformed our understanding of cellular signal transduction systems, how they evolve and how they may be manipulated. We now recognize thousands of conserved protein modules - many of which have been described in structure and function, implicated in disease, or underlie targeted therapeutics. The reductionist study of isolated protein modules has enabled the reconstruction of the protein interaction networks that underlie cellular signalling. Protein modules themselves are becoming tools to probe cellular activation states and identify key interactions hubs in both normal and diseased cells and the concept of protein modularity is central to the field of synthetic biology. This brief word of introduction serves to highlight the historical impact of the very powerful idea of protein modules and sets the stage for the exciting on-going discoveries discussed in this issue.
Collapse
Affiliation(s)
- Piers D Nash
- Ben May Department for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Abstract
Signaling cascades are managed in time and space by interactions between and among proteins. These interactions are often aided by adaptor proteins, which guide enzyme-substrate pairs into proximity. Miniature proteins are a class of small, well-folded protein domains possessing engineered binding properties. Here we made use of two miniature proteins with complementary binding properties to create a synthetic adaptor protein that effectively redirects a ubiquitous signaling event: tyrosine phosphorylation. We report that miniature-protein-based adaptor 3 uses templated catalysis to redirect the Src family kinase Hck to phosphorylate hDM2, a negative regulator of the p53 tumor suppressor and a poor Hck substrate. Phosphorylation occurs with multiple turnover and at a single site targeted by c-Abl kinase in the cell.
Collapse
Affiliation(s)
- Elissa M. Hobert
- Department of Chemistry, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States
| | - Alanna Schepartz
- Department of Chemistry, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8107, United States
| |
Collapse
|
35
|
Abstract
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Collapse
Affiliation(s)
- Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, Freiburg, D-79104 Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Hebelstrasse 25, Freiburg, D-79104 Germany
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058 Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058 Switzerland
| |
Collapse
|
36
|
Shankar S, Pillai MR. Translating cancer research by synthetic biology. MOLECULAR BIOSYSTEMS 2011; 7:1802-10. [PMID: 21437339 DOI: 10.1039/c1mb05016h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Synthetic biology concerns applying engineering principles to biological systems. Engineering properties such as fine tuning, novel specificity, and modularity could be components of a synthetic toolkit that can be exploited to explore various issues in cancer research such as elucidation of mechanisms and pathways, creating new diagnostic tools and novel therapeutic approaches. A repertoire of synthetic biology toolkits involving DNA, RNA and protein bio-parts, have been applied to address the issues of drug target identification, drug discovery and therapeutic treatment in cancer research, thereby projecting a new dimension in oncology research.
Collapse
Affiliation(s)
- Sumitra Shankar
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud. PO, Thiruvananthapuram, 695 014, Kerala State, India
| | | |
Collapse
|
37
|
Marchisio MA, Rudolf F. Synthetic biosensing systems. Int J Biochem Cell Biol 2011; 43:310-9. [DOI: 10.1016/j.biocel.2010.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/12/2010] [Accepted: 11/16/2010] [Indexed: 01/03/2023]
|
38
|
Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. Synthetic human cell fate regulation by protein-driven RNA switches. Nat Commun 2011; 2:160. [PMID: 21245841 PMCID: PMC3105309 DOI: 10.1038/ncomms1157] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 12/08/2010] [Indexed: 02/07/2023] Open
Abstract
Understanding how to control cell fate is crucial in biology, medical science and engineering. In this study, we introduce a method that uses an intracellular protein as a trigger for regulating human cell fate. The ON/OFF translational switches, composed of an intracellular protein L7Ae and its binding RNA motif, regulate the expression of a desired target protein and control two distinct apoptosis pathways in target human cells. Combined use of the switches demonstrates that a specific protein can simultaneously repress and activate the translation of two different mRNAs: one protein achieves both up- and downregulation of two different proteins/pathways. A genome-encoded protein fused to L7Ae controlled apoptosis in both directions (death or survival) depending on its cellular expression. The method has potential for curing cellular defects or improving the intracellular production of useful molecules by bypassing or rewiring intrinsic signal networks. The control of cell fate and apoptosis is a continuing challenge in synthetic biology. In this study, systems are developed in which an intracellularly expressed genome-encoded protein simultaneously achieves up- and downregulation of two distinct apoptosis pathways.
Collapse
Affiliation(s)
- Hirohide Saito
- 1] Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan. [2] International Cooperative Research Project, Japan Science and Technology Agency, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan. [3] The Hakubi Center, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
39
|
Petty RT, Mrksich M. De novo motif for kinase mediated signaling across the cell membrane. Integr Biol (Camb) 2011; 3:816-22. [DOI: 10.1039/c1ib00009h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
An active intracellular device to prevent lethal disease outcomes in virus-infected bacterial cells. Biotechnol Bioeng 2010; 108:645-54. [DOI: 10.1002/bit.22969] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 09/10/2010] [Accepted: 09/27/2010] [Indexed: 01/26/2023]
|
41
|
Fritz BR, Timmerman LE, Daringer NM, Leonard JN, Jewett MC. Biology by design: from top to bottom and back. J Biomed Biotechnol 2010; 2010:232016. [PMID: 21052559 PMCID: PMC2971569 DOI: 10.1155/2010/232016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology is a nascent technical discipline that seeks to enable the design and construction of novel biological systems to meet pressing societal needs. However, engineering biology still requires much trial and error because we lack effective approaches for connecting basic "parts" into higher-order networks that behave as predicted. Developing strategies for improving the performance and sophistication of our designs is informed by two overarching perspectives: "bottom-up" and "top-down" considerations. Using this framework, we describe a conceptual model for developing novel biological systems that function and interact with existing biological components in a predictable fashion. We discuss this model in the context of three topical areas: biochemical transformations, cellular devices and therapeutics, and approaches that expand the chemistry of life. Ten years after the construction of synthetic biology's first devices, the drive to look beyond what does exist to what can exist is ushering in an era of biology by design.
Collapse
Affiliation(s)
- Brian R. Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Laura E. Timmerman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Nichole M. Daringer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
42
|
Abstract
In this series of four minireviews the field of scaffold proteins and proteins of similar molecular/cellular functions is overviewed. By binding and bringing into proximity two or more signaling proteins, these proteins direct the flow of information in the cell by activating, coordinating and regulating signaling events in regulatory networks. Here we discuss the categories of scaffolds, anchors, docking proteins and adaptors in some detail, and using many examples we demonstrate that they cover a wide range of functional modes that appear to segregate into three practical categories, simple proteins binding two partners together (adaptors), larger multidomain proteins targeting and regulating more proteins in complex ways (scaffold/anchoring proteins) and proteins specialized to initiate signaling cascades by localizing partners at the cell membrane (docking proteins). It will also be shown, however, that the categories partially overlap and often their names are used interchangeably in the literature. In addition, although not usually considered as scaffolds, several other proteins, such as regulatory proteins with catalytic activity, phosphatase targeting subunits, E3 ubiquitin ligases, ESCRT proteins in endosomal sorting and DNA damage sensors also function by bona fide scaffolding mechanisms. Thus, the field is in a state of continuous advance and expansion, which demands that the classification scheme be regularly updated and, if needed, revised.
Collapse
Affiliation(s)
- László Buday
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.
| | | |
Collapse
|
43
|
|
44
|
Abstract
Living cells have evolved a broad array of complex signalling responses, which enables them to survive diverse environmental challenges and execute specific physiological functions. Our increasingly sophisticated understanding of the molecular mechanisms of cell signalling networks in eukaryotes has revealed a remarkably modular organization and synthetic biologists are exploring how this can be exploited to engineer cells with novel signalling behaviours. This approach is beginning to reveal the logic of how cells might evolve innovative new functions and moves us towards the exciting possibility of engineering custom cells with precise sensing-response functions that could be useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute and Department of Cellular and Molecular Pharmacology, University of California San Francisco, California 94158, USA.
| |
Collapse
|
45
|
Lenas P, Moos M, Luyten FP. Developmental engineering: a new paradigm for the design and manufacturing of cell-based products. Part II: from genes to networks: tissue engineering from the viewpoint of systems biology and network science. TISSUE ENGINEERING PART B-REVIEWS 2010; 15:395-422. [PMID: 19589040 DOI: 10.1089/ten.teb.2009.0461] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The field of tissue engineering is moving toward a new concept of "in vitro biomimetics of in vivo tissue development." In Part I of this series, we proposed a theoretical framework integrating the concepts of developmental biology with those of process design to provide the rules for the design of biomimetic processes. We named this methodology "developmental engineering" to emphasize that it is not the tissue but the process of in vitro tissue development that has to be engineered. To formulate the process design rules in a rigorous way that will allow a computational design, we should refer to mathematical methods to model the biological process taking place in vitro. Tissue functions cannot be attributed to individual molecules but rather to complex interactions between the numerous components of a cell and interactions between cells in a tissue that form a network. For tissue engineering to advance to the level of a technologically driven discipline amenable to well-established principles of process engineering, a scientifically rigorous formulation is needed of the general design rules so that the behavior of networks of genes, proteins, or cells that govern the unfolding of developmental processes could be related to the design parameters. Now that sufficient experimental data exist to construct plausible mathematical models of many biological control circuits, explicit hypotheses can be evaluated using computational approaches to facilitate process design. Recent progress in systems biology has shown that the empirical concepts of developmental biology that we used in Part I to extract the rules of biomimetic process design can be expressed in rigorous mathematical terms. This allows the accurate characterization of manufacturing processes in tissue engineering as well as the properties of the artificial tissues themselves. In addition, network science has recently shown that the behavior of biological networks strongly depends on their topology and has developed the necessary concepts and methods to describe it, allowing therefore a deeper understanding of the behavior of networks during biomimetic processes. These advances thus open the door to a transition for tissue engineering from a substantially empirical endeavor to a technology-based discipline comparable to other branches of engineering.
Collapse
Affiliation(s)
- Petros Lenas
- Department of Biochemistry and Molecular Biology IV, Veterinary Faculty, Complutense University of Madrid , Madrid, Spain
| | | | | |
Collapse
|
46
|
Peisajovich SG, Garbarino JE, Wei P, Lim WA. Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 2010; 328:368-72. [PMID: 20395511 DOI: 10.1126/science.1182376] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell signaling proteins are often modular, containing distinct catalytic and regulatory domains. Recombination of such biological modules has been proposed to be a major source of evolutionary innovation. We systematically analyzed the phenotypic diversity of a signaling response that results from domain recombination by using 11 proteins in the yeast mating pathway to construct a library of 66 chimeric domain recombinants. Domain recombination resulted in greater diversity in pathway response dynamics than did duplication of genes, of single domains, or of two unlinked domains. Domain recombination also led to changes in mating phenotype, including recombinants with increased mating efficiency over the wild type. Thus, novel linkages between preexisting domains may have a major role in the evolution of protein networks and novel phenotypic behaviors.
Collapse
Affiliation(s)
- Sergio G Peisajovich
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Proteins are the most versatile among the various biological building blocks and a mature field of protein engineering has lead to many industrial and biomedical applications. But the strength of proteins—their versatility, dynamics and interactions—also complicates and hinders systems engineering. Therefore, the design of more sophisticated, multi-component protein systems appears to lag behind, in particular, when compared to the engineering of gene regulatory networks. Yet, synthetic biologists have started to tinker with the information flow through natural signaling networks or integrated protein switches. A successful strategy common to most of these experiments is their focus on modular interactions between protein domains or domains and peptide motifs. Such modular interaction swapping has rewired signaling in yeast, put mammalian cell morphology under the control of light, or increased the flux through a synthetic metabolic pathway. Based on this experience, we outline an engineering framework for the connection of reusable protein interaction devices into self-sufficient circuits. Such a framework should help to ‘refacture’ protein complexity into well-defined exchangeable devices for predictive engineering. We review the foundations and initial success stories of protein synthetic biology and discuss the challenges and promises on the way from protein- to protein systems design.
Collapse
Affiliation(s)
- Raik Grünberg
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, 08003 Barcelona, Spain.
| | | |
Collapse
|
48
|
Liao X, Su J, Mrksich M. An adaptor domain-mediated autocatalytic interfacial kinase reaction. Chemistry 2010; 15:12303-9. [PMID: 19821459 PMCID: PMC2856317 DOI: 10.1002/chem.200901345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper describes a model system for studying the autocatalytic phosphorylation of an immobilized substrate by a kinase enzyme. This work uses self-assembled monolayers (SAMs) of alkanethiolates on gold to present the peptide substrate on a planar surface. Treatment of the monolayer with Abl kinase results in phosphorylation of the substrate. The phosphorylated peptide then serves as a ligand for the SH2 adaptor domain of the kinase and thereby directs the kinase activity to nearby peptide substrates. This directed reaction is intramolecular and proceeds with a faster rate than does the initial, intermolecular reaction, making this an autocatalytic process. The kinetic non-linearity gives rise to properties that have no counterpart in the corresponding homogeneous phase reaction: in one example, the rate for phosphorylation of a mixture of two peptides is faster than the sum of the rates for phosphorylation of each peptide when presented alone. This work highlights the use of an adaptor domain in modulating the activity of a kinase enzyme for an immobilized substrate and offers a new approach for studying biochemical reactions in spatially inhomogeneous settings.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
49
|
Lin Q, Zhu F, Yang W. Coupling cellular mitogenesis to apoptosis by designed biomolecules. Cell Signal 2010; 22:190-6. [DOI: 10.1016/j.cellsig.2009.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 09/06/2009] [Indexed: 01/13/2023]
|
50
|
Jørgensen C, Linding R. Simplistic pathways or complex networks? Curr Opin Genet Dev 2010; 20:15-22. [PMID: 20096559 DOI: 10.1016/j.gde.2009.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/17/2009] [Accepted: 12/28/2009] [Indexed: 01/09/2023]
Abstract
Signaling events are frequently described in textbooks as linear cascades. However, in reality, input cues are processed by dynamic and context-specific networks, which are assembled from numerous signaling molecules. Diseases, such as cancer, are typically associated with multiple genomic alterations that likely change the structure and dynamics of cellular signaling networks. To assess the impact of such genomic alterations on the structure of signaling networks and on the ability of cells to accurately translate environmental cues into phenotypic changes, we argue studies must be conducted on a network level. Advances in technologies and computational approaches for data integration have permitted network studies of signaling events in both cancer and normal cells. Here we will review recent advances and how they have impacted our view on signaling networks with a specific angle on signal processing in cancer.
Collapse
Affiliation(s)
- Claus Jørgensen
- Cell Communication Team, The Institute of Cancer Research, Section of Cell and Molecular Biology, SW3 6JB, London, UK.
| | | |
Collapse
|