1
|
Pu L, Wang J, Nilsson L, Zhao L, Williams C, Chi G, Gilthorpe JD, Tuck S, Henriksson J, Tang YQ, Nyunt Wai S, Chen C. Shaker/Kv1 potassium channel SHK-1 protects against pathogen infection and oxidative stress in C. elegans. PLoS Genet 2025; 21:e1011554. [PMID: 39913540 PMCID: PMC11849984 DOI: 10.1371/journal.pgen.1011554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/24/2025] [Accepted: 12/26/2024] [Indexed: 02/26/2025] Open
Abstract
The Shaker/Kv1 subfamily of voltage-gated potassium (K+) channels is essential for modulating membrane excitability. Their loss results in prolonged depolarization and excessive calcium influx. These channels have also been implicated in a variety of other cellular processes, but the underlying mechanisms remain poorly understood. Through comprehensive screening of K+ channel mutants in C. elegans, we discovered that shk-1 mutants are highly susceptible to bacterial pathogen infection and oxidative stress. This vulnerability is associated with reduced glycogen levels and substantial mitochondrial dysfunction, including decreased ATP production and dysregulated mitochondrial membrane potential under stress conditions. SHK-1 is predominantly expressed and functions in body wall muscle to maintain glycogen storage and mitochondrial homeostasis. RNA-sequencing data reveal that shk-1 mutants have decreased expression of a set of cation-transporting ATPases (CATP), which are crucial for maintaining electrochemical gradients. Intriguingly, overexpressing catp-3, but not other catp genes, restores the depolarization of mitochondrial membrane potential under stress and enhances stress tolerance in shk-1 mutants. This finding suggests that increased catp-3 levels may help restore electrochemical gradients disrupted by shk-1 deficiency, thereby rescuing the phenotypes observed in shk-1 mutants. Overall, our findings highlight a critical role for SHK-1 in maintaining stress tolerance by regulating glycogen storage, mitochondrial homeostasis, and gene expression. They also provide insights into how Shaker/Kv1 channels participate in a broad range of cellular processes.
Collapse
Affiliation(s)
- Longjun Pu
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Jing Wang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lars Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Lina Zhao
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Chloe Williams
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Guanqiao Chi
- Institutes of Brain Science, Department of Orthodontics, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | | | - Simon Tuck
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Integrated Science Lab (Icelab), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Yi-Quan Tang
- Institutes of Brain Science, Department of Orthodontics, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Simonson BT, Jegla M, Ryan JF, Jegla T. Functional analysis of ctenophore Shaker K + channels: N-type inactivation in the animal roots. Biophys J 2024; 123:2038-2049. [PMID: 38291751 PMCID: PMC11309979 DOI: 10.1016/j.bpj.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 01/24/2024] [Indexed: 02/01/2024] Open
Abstract
Here we explore the evolutionary origins of fast N-type ball-and-chain inactivation in Shaker (Kv1) K+ channels by functionally characterizing Shaker channels from the ctenophore (comb jelly) Mnemiopsis leidyi. Ctenophores are the sister lineage to other animals and Mnemiopsis has >40 Shaker-like K+ channels, but they have not been functionally characterized. We identified three Mnemiopsis channels (MlShak3-5) with N-type inactivation ball-like sequences at their N termini and functionally expressed them in Xenopus oocytes. Two of the channels, MlShak4 and MlShak5, showed rapid inactivation similar to cnidarian and bilaterian Shakers with rapid N-type inactivation, whereas MlShak3 inactivated ∼100-fold more slowly. Fast inactivation in MlShak4 and MlShak5 required the putative N-terminal inactivation ball sequences. Furthermore, the rate of fast inactivation in these channels depended on the number of inactivation balls/channel, but the rate of recovery from inactivation did not. These findings closely match the mechanism of N-type inactivation first described for Drosophila Shaker in which 1) inactivation balls on the N termini of each subunit can independently block the pore, and 2) only one inactivation ball occupies the pore binding site at a time. These findings suggest classical N-type activation evolved in Shaker channels at the very base of the animal phylogeny in a common ancestor of ctenophores, cnidarians, and bilaterians and that fast-inactivating Shakers are therefore a fundamental type of animal K+ channel. Interestingly, we find evidence from functional co-expression experiments and molecular dynamics that MlShak4 and MlShak5 do not co-assemble, suggesting that Mnemiopsis has at least two functionally independent N-type Shaker channels.
Collapse
Affiliation(s)
- Benjamin T Simonson
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania
| | - Max Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL; Department of Biology, University of Florida, Gainesville, FL
| | - Timothy Jegla
- Department of Biology and Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania.
| |
Collapse
|
3
|
Gao L, Zhao J, Ardiel EL, Hall Q, Nurrish S, Kaplan JM. Shank promotes action potential repolarization by recruiting BK channels to calcium microdomains. eLife 2022; 11:75140. [PMID: 35266450 PMCID: PMC8937234 DOI: 10.7554/elife.75140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations altering the scaffolding protein Shank are linked to several psychiatric disorders, and to synaptic and behavioral defects in mice. Among its many binding partners, Shank directly binds CaV1 voltage activated calcium channels. Here we show that the C. elegans SHN-1/Shank promotes CaV1 coupling to calcium activated potassium channels. Mutations inactivating SHN-1, and those preventing SHN-1 binding to EGL-19/CaV1 all increase action potential durations in body muscles. Action potential repolarization is mediated by two classes of potassium channels: SHK-1/KCNA and SLO-1 and SLO-2 BK channels. BK channels are calcium-dependent, and their activation requires tight coupling to EGL-19/CaV1 channels. SHN-1's effects on AP duration are mediated by changes in BK channels. In shn-1 mutants, SLO-2 currents and channel clustering are significantly decreased in both body muscles and neurons. Finally, increased and decreased shn-1 gene copy number produce similar changes in AP width and SLO-2 current. Collectively, these results suggest that an important function of Shank is to promote microdomain coupling of BK with CaV1.
Collapse
Affiliation(s)
- Luna Gao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Jian Zhao
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Evan L Ardiel
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Qi Hall
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
4
|
Nicoletti M, Loppini A, Chiodo L, Folli V, Ruocco G, Filippi S. Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. PLoS One 2019; 14:e0218738. [PMID: 31260485 PMCID: PMC6602206 DOI: 10.1371/journal.pone.0218738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
C. elegans neuronal system constitutes the ideal framework for studying simple, yet realistic, neuronal activity, since the whole nervous system is fully characterized with respect to the exact number of neurons and the neuronal connections. Most recent efforts are devoted to investigate and clarify the signal processing and functional connectivity, which are at the basis of sensing mechanisms, signal transmission, and motor control. In this framework, a refined modelof whole neuron dynamics constitutes a key ingredient to describe the electrophysiological processes, both at thecellular and at the network scale. In this work, we present Hodgkin-Huxley-based models of ion channels dynamics black, built on data available both from C. elegans and from other organisms, expressing homologous channels. We combine these channel models to simulate the electrical activity oftwo among the most studied neurons in C. elegans, which display prototypical dynamics of neuronal activation, the chemosensory AWCON and the motor neuron RMD. Our model properly describes the regenerative responses of the two cells. We analyze in detail the role of ion currents, both in wild type and in in silico knockout neurons. Moreover, we specifically investigate the behavior of RMD, identifying a heterogeneous dynamical response which includes bistable regimes and sustained oscillations. We are able to assess the critical role of T-type calcium currents, carried by CCA-1 channels, and leakage currents in the regulation of RMD response. Overall, our results provide new insights in the activity of key C. elegans neurons. The developed mathematical framework constitute a basis for single-cell and neuronal networks analyses, opening new scenarios in the in silico modeling of C. elegans neuronal system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | | | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
5
|
C. elegans AWA Olfactory Neurons Fire Calcium-Mediated All-or-None Action Potentials. Cell 2018; 175:57-70.e17. [PMID: 30220455 DOI: 10.1016/j.cell.2018.08.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/24/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022]
Abstract
Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.
Collapse
|
6
|
Aoki I, Tateyama M, Shimomura T, Ihara K, Kubo Y, Nakano S, Mori I. SLO potassium channels antagonize premature decision making in C. elegans. Commun Biol 2018; 1:123. [PMID: 30272003 PMCID: PMC6123717 DOI: 10.1038/s42003-018-0124-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Animals must modify their behavior with appropriate timing to respond to environmental changes. Yet, the molecular and neural mechanisms regulating the timing of behavioral transition remain largely unknown. By performing forward genetics to reveal mechanisms that underlie the plasticity of thermotaxis behavior in C. elegans, we demonstrated that SLO potassium channels and a cyclic nucleotide-gated channel, CNG-3, determine the timing of transition of temperature preference after a shift in cultivation temperature. We further revealed that SLO and CNG-3 channels act in thermosensory neurons and decelerate alteration in the responsiveness of these neurons, which occurs prior to the preference transition after a temperature shift. Our results suggest that regulation of sensory adaptation is a major determinant of latency before animals make decisions to change their behavior.
Collapse
Affiliation(s)
- Ichiro Aoki
- Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Group of Molecular Neurobiology, Graduate School of Science, Nnagoya University, Nagoya, 464-8602, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Shunji Nakano
- Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Group of Molecular Neurobiology, Graduate School of Science, Nnagoya University, Nagoya, 464-8602, Japan
| | - Ikue Mori
- Neuroscience Institute of the Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan.
- Group of Molecular Neurobiology, Graduate School of Science, Nnagoya University, Nagoya, 464-8602, Japan.
| |
Collapse
|
7
|
Behavioral Deficits Following Withdrawal from Chronic Ethanol Are Influenced by SLO Channel Function in Caenorhabditis elegans. Genetics 2017; 206:1445-1458. [PMID: 28546434 DOI: 10.1534/genetics.116.193102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/29/2017] [Indexed: 01/03/2023] Open
Abstract
Symptoms of withdrawal from chronic alcohol use are a driving force for relapse in alcohol dependence. Thus, uncovering molecular targets to lessen their severity is key to breaking the cycle of dependence. Using the nematode Caenorhabditis elegans, we tested whether one highly conserved ethanol target, the large-conductance, calcium-activated potassium channel (known as the BK channel or Slo1), modulates ethanol withdrawal. Consistent with a previous report, we found that C. elegans displays withdrawal-related behavioral impairments after cessation of chronic ethanol exposure. We found that the degree of impairment is exacerbated in worms lacking the worm BK channel, SLO-1, and is reduced by selective rescue of this channel in the nervous system. Enhanced SLO-1 function, via gain-of-function mutation or overexpression, also dramatically reduced behavioral impairment during withdrawal. Consistent with these results, we found that chronic ethanol exposure decreased SLO-1 expression in a subset of neurons. In addition, we found that the function of a distinct, conserved Slo family channel, SLO-2, showed an inverse relationship to withdrawal behavior, and this influence depended on SLO-1 function. Together, our findings show that modulation of either Slo family ion channel bidirectionally regulates withdrawal behaviors in worm, supporting further exploration of the Slo family as targets for normalizing behaviors during alcohol withdrawal.
Collapse
|
8
|
Alqadah A, Hsieh YW, Schumacher JA, Wang X, Merrill SA, Millington G, Bayne B, Jorgensen EM, Chuang CF. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification. PLoS Genet 2016; 12:e1005654. [PMID: 26771544 PMCID: PMC4714817 DOI: 10.1371/journal.pgen.1005654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jennifer A. Schumacher
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaohong Wang
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Sean A. Merrill
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Grethel Millington
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Brittany Bayne
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Erik M. Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
9
|
KChIP-like auxiliary subunits of Kv4 channels regulate excitability of muscle cells and control male turning behavior during mating in Caenorhabditis elegans. J Neurosci 2015; 35:1880-91. [PMID: 25653349 DOI: 10.1523/jneurosci.3429-14.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Kv4 channels control the excitability of neurons and cardiac myocytes by conducting rapidly activating-inactivating currents. The function of Kv4 channels is profoundly modulated by K(+) channel interacting protein (KChIP) soluble auxiliary subunits. However, the in vivo mechanism of the modulation is not fully understood. Here, we identified three C. elegans KChIP-like (ceKChIP) proteins, NCS-4, NCS-5, and NCS-7. All three ceKChIPs alter electrical characteristics of SHL-1, a C. elegans Kv4 channel ortholog, currents by slowing down inactivation kinetics and shifting voltage dependence of activation to more hyperpolarizing potentials. Native SHL-1 current is completely abolished in cultured myocytes of Triple KO worms in which all three ceKChIP genes are deleted. Reexpression of NCS-4 partially restored expression of functional SHL-1 channels, whereas NCS-4(efm), a NCS-4 mutant with impaired Ca(2+)-binding ability, only enhanced expression of SHL-1 proteins, but failed to transport them from the Golgi apparatus to the cell membrane in body wall muscles of Triple KO worms. Moreover, translational reporter revealed that NCS-4 assembles with SHL-1 K(+) channels in male diagonal muscles. Deletion of either ncs-4 or shl-1 significantly impairs male turning, a behavior controlled by diagonal muscles during mating. The phenotype of the ncs-4 null mutant could be rescued by reexpression of NCS-4, but not NCS-4(efm), further emphasizing the importance of Ca(2+) binding to ceKChIPs in regulating native SHL-1 channel function. Together, these data reveal an evolutionarily conserved mechanism underlying the regulation of Kv4 channels by KChIPs and unravel critical roles of ceKChIPs in regulating muscle cell excitability and animal behavior in C. elegans.
Collapse
|
10
|
Liu Q, Frerck MJ, Holman HA, Jorgensen EM, Rabbitt RD. Exciting cell membranes with a blustering heat shock. Biophys J 2014; 106:1570-7. [PMID: 24739156 DOI: 10.1016/j.bpj.2014.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/30/2022] Open
Abstract
Brief heat shocks delivered to cells by pulsed laser light can evoke action potentials in neurons and contraction in cardiomyocytes, but the primary biophysical mechanism has been elusive. In this report we show in the neuromuscular junction of Caenorhabditis elegans that application of a 500°C/s heat shock for 500 μs evoked ~35 pA of excitatory current and injected ~23 fC(femtocoulomb) of charge into the cell while raising the temperature only 0.25°C. The key variable driving the current was the rate of change of temperature (dT/dt heat shock), not temperature itself. The photothermal heat shock current was voltage-dependent and was from thermally driven displacement of ions near the plasma membrane. The charge movement was rapid during the heat shock and slow during thermal relaxation, thus leading to an asymmetrical capacitive current that briefly depolarized the cell. A simple quantitative model is introduced to describe modulation of the membrane potential and facilitate practical application of optical heat shock stimuli.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Biology, University of Utah, Salt Lake City, Utah
| | - Micah J Frerck
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Holly A Holman
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Erik M Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah; Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah
| | - Richard D Rabbitt
- Department of Bioengineering, University of Utah, Salt Lake City, Utah; Marine Biological Laboratory, Woods Hole, Massachusetts.
| |
Collapse
|
11
|
Liu P, Chen B, Wang ZW. SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans. Nat Commun 2014; 5:5155. [PMID: 25300429 PMCID: PMC4197135 DOI: 10.1038/ncomms6155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/04/2014] [Indexed: 12/04/2022] Open
Abstract
Slo2 channels are prominent K(+) channels in mammalian neurons but their physiological functions are not well understood. Here we investigate physiological functions and regulation of the Caenorhabditis elegans homologue SLO-2 in motor neurons through electrophysiological analyses of wild-type and mutant worms. We find that SLO-2 is the primary K(+) channel conducting delayed outward current in cholinergic motor neurons, and one of two K(+) channels with this function in GABAergic motor neurons. Loss-of-function mutation of slo-2 increases the duration and charge transfer rate of spontaneous postsynaptic current bursts at the neuromuscular junction, which are physiological signals used by motor neurons to control muscle cells, without altering postsynaptic receptor sensitivity. SLO-2 activity in motor neurons depends on Ca(2+) entry through EGL-19, an L-type voltage-gated Ca(2+) channel (CaV1), but not on other proteins implicated in either Ca(2+) entry or intracellular Ca(2+) release. Thus, SLO-2 is functionally coupled with CaV1 and regulates neurotransmitter release.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center,
Farmington, CT 06001, USA
| | - Bojun Chen
- Department of Neuroscience, University of Connecticut Health Center,
Farmington, CT 06001, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Health Center,
Farmington, CT 06001, USA
| |
Collapse
|
12
|
CLHM-1 is a functionally conserved and conditionally toxic Ca2+-permeable ion channel in Caenorhabditis elegans. J Neurosci 2013; 33:12275-86. [PMID: 23884934 DOI: 10.1523/jneurosci.5919-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disruption of neuronal Ca(2+) homeostasis contributes to neurodegenerative diseases through mechanisms that are not fully understood. A polymorphism in CALHM1, a recently described ion channel that regulates intracellular Ca(2+) levels, is a possible risk factor for late-onset Alzheimer's disease. Since there are six potentially redundant CALHM family members in humans, the physiological and pathophysiological consequences of CALHM1 function in vivo remain unclear. The nematode Caenorhabditis elegans expresses a single CALHM1 homolog, CLHM-1. Here we find that CLHM-1 is expressed at the plasma membrane of sensory neurons and muscles. Like human CALHM1, C. elegans CLHM-1 is a Ca(2+)-permeable ion channel regulated by voltage and extracellular Ca(2+). Loss of clhm-1 in the body-wall muscles disrupts locomotory kinematics and biomechanics, demonstrating that CLHM-1 has a physiologically significant role in vivo. The motility defects observed in clhm-1 mutant animals can be rescued by muscle-specific expression of either C. elegans CLHM-1 or human CALHM1, suggesting that the function of these proteins is conserved in vivo. Overexpression of either C. elegans CLHM-1 or human CALHM1 in neurons is toxic, causing degeneration through a necrotic-like mechanism that is partially Ca(2+) dependent. Our data show that CLHM-1 is a functionally conserved ion channel that plays an important but potentially toxic role in excitable cell function.
Collapse
|
13
|
Cell excitability necessary for male mating behavior in Caenorhabditis elegans is coordinated by interactions between big current and ether-a-go-go family K(+) channels. Genetics 2011; 190:1025-41. [PMID: 22174070 DOI: 10.1534/genetics.111.137455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Variations in K(+) channel composition allow for differences in cell excitability and, at an organismal level, provide flexibility to behavioral regulation. When the function of a K(+) channel is disrupted, the remaining K(+) channels might incompletely compensate, manifesting as abnormal organismal behavior. In this study, we explored how different K(+) channels interact to regulate the neuromuscular circuitry used by Caenorhabditis elegans males to protract their copulatory spicules from their tail and insert them into the hermaphrodite's vulva during mating. We determined that the big current K(+) channel (BK)/SLO-1 genetically interacts with ether-a-go-go (EAG)/EGL-2 and EAG-related gene/UNC-103 K(+) channels to control spicule protraction. Through rescue experiments, we show that specific slo-1 isoforms affect spicule protraction. Gene expression studies show that slo-1 and egl-2 expression can be upregulated in a calcium/calmodulin-dependent protein kinase II-dependent manner to compensate for the loss of unc-103 and conversely, unc-103 can partially compensate for the loss of SLO-1 function. In conclusion, an interaction between BK and EAG family K(+) channels produces the muscle excitability levels that regulate the timing of spicule protraction and the success of male mating behavior.
Collapse
|
14
|
Action potentials drive body wall muscle contractions in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2011; 108:2557-62. [PMID: 21248227 DOI: 10.1073/pnas.1012346108] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sinusoidal locomotion exhibited by Caenorhabditis elegans predicts a tight regulation of contractions and relaxations of its body wall muscles. Vertebrate skeletal muscle contractions are driven by voltage-gated sodium channel-dependent action potentials. How coordinated motor outputs are regulated in C. elegans, which does not have voltage-gated sodium channels, remains unknown. Here, we show that C. elegans body wall muscles fire all-or-none, calcium-dependent action potentials that are driven by the L-type voltage-gated calcium and Kv1 voltage-dependent potassium channels. We further demonstrate that the excitatory and inhibitory motoneuron activities regulate the frequency of action potentials to coordinate muscle contraction and relaxation, respectively. This study provides direct evidence for the dual-modulatory model of the C. elegans motor circuit; moreover, it reveals a mode of motor control in which muscle cells integrate graded inputs of the nervous system and respond with all-or-none electrical signals.
Collapse
|
15
|
Liu P, Ge Q, Chen B, Salkoff L, Kotlikoff MI, Wang ZW. Genetic dissection of ion currents underlying all-or-none action potentials in C. elegans body-wall muscle cells. J Physiol 2010; 589:101-17. [PMID: 21059759 DOI: 10.1113/jphysiol.2010.200683] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although the neuromuscular system of C. elegans has been studied intensively, little is known about the properties of muscle action potentials (APs). By combining mutant analyses with in vivo electrophysiological recording techniques and Ca2+ imaging, we have established the fundamental properties and molecular determinants of body-wall muscle APs. We show that, unlike mammalian skeletal muscle APs, C. elegans muscle APs occur in spontaneous trains, do not require the function of postsynaptic receptors, and are all-or-none overshooting events, rather than graded potentials as has been previously reported. Furthermore, we show that muscle APs depend on Ca2+ entry through the L-type Ca2+ channel EGL-19 with a contribution from the T-type Ca2+ channel CCA-1. Both the Shaker K+ channel SHK-1 and the Ca2+/Cl−-gated K+ channel SLO-2 play important roles in controlling the speed of membrane repolarization, the amplitude of afterhyperpolarization (AHP) and the pattern of AP firing; SLO-2 is also important in setting the resting membrane potential. Finally, AP-elicited elevations of [Ca2+]i require both EGL-19 and the ryanodine receptor UNC-68. Thus, like mammalian skeletal muscle, C. elegans body-wall myocytes generate all-or-none APs, which evoke Ca2+ release from the sarcoplasmic reticulum (SR), although the specific ion channels used for AP upstroke and repolarization differ.
Collapse
Affiliation(s)
- Ping Liu
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | | | | | | | |
Collapse
|
16
|
Cai SQ, Sesti F. Oxidation of a potassium channel causes progressive sensory function loss during aging. Nat Neurosci 2009; 12:611-7. [PMID: 19330004 PMCID: PMC2685168 DOI: 10.1038/nn.2291] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/09/2009] [Indexed: 11/16/2022]
Abstract
A central question is whether potassium (K+) channels, which are key regulators of neuronal excitability, are targets of reactive oxygen species (ROS) and whether these interactions have a role in the mechanisms underlying neurodegeneration. Here, we show that oxidation of K+ channel KVS-1 during ageing causes sensory function loss in Caenorhabditis elegans, and that protection of this channel from oxidation preserves neuronal function. Chemotaxis, a function controlled by KVS-1, was significantly impaired in worms exposed to oxidizing agents, but only moderately affected in worms harboring an oxidation-resistant KVS-1 mutant (C113S). In ageing C113S transgenic worms, the effects of free radical accumulation were significantly attenuated compared to wild type. Electrophysiological analyses showed that both ROS accumulation during ageing, or acute exposure to oxidizing agents, acted primarily to alter the excitability of the neurons that mediate chemotaxis. Together, these findings establish a pivotal role for ROS-mediated oxidation of voltage-gated K+ channels in sensorial decline during ageing in invertebrates.
Collapse
Affiliation(s)
- Shi-Qing Cai
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, USA
| | | |
Collapse
|
17
|
Fawcett GL, Santi CM, Butler A, Harris T, Covarrubias M, Salkoff L. Mutant analysis of the Shal (Kv4) voltage-gated fast transient K+ channel in Caenorhabditis elegans. J Biol Chem 2006; 281:30725-35. [PMID: 16899454 PMCID: PMC2259281 DOI: 10.1074/jbc.m605814200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Shal (Kv4) alpha-subunits are the most conserved among the family of voltage-gated potassium channels. Previous work has shown that the Shal potassium channel subfamily underlies the predominant fast transient outward current in Drosophila neurons (Tsunoda, S., and Salkoff, L. (1995) J. Neurosci. 15, 1741-1754) and the fast transient outward current in mouse heart muscle (Guo, W., Jung, W. E., Marionneau, C., Aimond, F., Xu, H., Yamada, K. A., Schwarz, T. L., Demolombe, S., and Nerbonne, J. M. (2005) Circ. Res. 97, 1342-1350). We show that Shal channels also play a role as the predominant transient outward current in Caenorhabditis elegans muscle. Green fluorescent protein promoter experiments also revealed SHL-1 expression in a subset of neurons as well as in C. elegans body wall muscle and in male-specific diagonal muscles. The shl-1 (ok1168) null mutant removed all fast transient outward current from muscle cells. SHL-1 currents strongly resembled Shal currents in other species except that they were active in a more depolarized voltage range. We also determined that the remaining delayed-rectifier current in cultured myocytes was carried by the Shaker ortholog SHK-1. In shl-1 (ok1168) mutants there was a significant compensatory increase in the SHK-1 current. Male shl-1 (ok1168) animals exhibited reduced mating efficiency resulting from an apparent difficulty in locating the hermaphrodite vulva. SHL-1 channels are apparently important in fine-tuning complex behaviors, such as mating, that play a crucial role in the survival and propagation of the species.
Collapse
Affiliation(s)
- Gloria L Fawcett
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
18
|
Cotella D, Jost N, Darna M, Radicke S, Ravens U, Wettwer E. Silencing the cardiac potassium channel Kv4.3 by RNA interference in a CHO expression system. Biochem Biophys Res Commun 2005; 330:555-60. [PMID: 15796918 DOI: 10.1016/j.bbrc.2005.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Indexed: 11/30/2022]
Abstract
RNA interference (RNAi) is a powerful technique for gene silencing, in which the downregulation of mRNA is triggered by short RNAs complementary to a target mRNA sequence, with consequent reduction of the encoded protein. The aim of this study was to test the effects of silencing the expression of the cardiac potassium channel Kv4.3 in a heterologous expression system, in order to investigate the effect of RNAi on channel properties. A Chinese hamster ovary cell line stably expressing Kv4.3 and the accessory beta-subunit KChIP2 was transfected with small-interfering RNAs (siRNAs) targeting Kv4.3. Effects of RNAi were monitored at the mRNA, protein, and functional levels. Real-time PCR and immunofluorescence staining revealed significant reduction of Kv4.3 mRNA and protein expression. These results were confirmed by functional patch-clamp measurements of the transient outward current (I(to)) which was reduced up to 80% by RNAi. We conclude that the use of siRNAs reagents for post-transcriptional gene silencing is a new effective method for the reduction of the expression and function of different ionic channels which may be adapted for studying their role also in native cells.
Collapse
Affiliation(s)
- Diego Cotella
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, University of Technology, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
The human KCNQ gene family encodes potassium channels linked to several genetic syndromes including neonatal epilepsy, cardiac arrhythmia, and progressive deafness. KCNQ channels form M-type potassium channels, which are critical regulators of neuronal excitability that mediate autonomic responses, pain, and higher brain function. Fundamental mechanisms of the normal and abnormal cellular roles for these channels may be gained from their study in simple model organisms. Here we report that a multigene family of KCNQ-like channels is present in the nematode, Caenorhabditis elegans. We show that many aspects of the functional properties, tissue expression pattern, and modulation of these C. elegans channels are conserved, including suppression by the M1 muscarinic receptor. We also describe a conserved mechanism of modulation by diacylglycerol for a subset of C. elegans and vertebrate KCNQ/KQT channels, which is dependent upon the carboxyl-terminal domains of channel subunits and activated protein kinase C.
Collapse
Affiliation(s)
- Aguan D Wei
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
20
|
Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci 2005; 27:343-69. [PMID: 15555915 DOI: 10.1016/j.mcn.2004.06.011] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 05/22/2004] [Accepted: 06/08/2004] [Indexed: 11/23/2022] Open
Abstract
The somatodendritic subthreshold A-type K+ current (ISA) in nerve cells is a critical component of the ensemble of voltage-gated ionic currents that determine somatodendritic signal integration. The underlying K+ channel belongs to the Shal subfamily of voltage-gated K+ channels. Most Shal channels across the animal kingdom share a high degree of structural conservation, operate in the subthreshold range of membrane potentials, and exhibit relatively fast inactivation and recovery from inactivation. Mammalian Shal K+ channels (Kv4) undergo preferential closed-state inactivation with features that are generally inconsistent with the classical mechanisms of inactivation typical of Shaker K+ channels. Here, we review (1) the physiological and genetic properties of ISA, 2 the molecular mechanisms of Kv4 inactivation and its remodeling by a family of soluble calcium-binding proteins (KChIPs) and a membrane-bound dipeptidase-like protein (DPPX), and (3) the modulation of Kv4 channels by protein phosphorylation.
Collapse
Affiliation(s)
- Henry H Jerng
- Division of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
21
|
Dow JAT. POTASSIUM CHANNELS – WHY SO MANY? J Exp Biol 2004. [DOI: 10.1242/jeb.00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|