1
|
Elezaby A, Lin AJ, Vijayan V, Pokhrel S, Kraemer BR, Bechara LRG, Larus I, Sun J, Baena V, Syed ZA, Murphy E, Glancy B, Ostberg NP, Queliconi BB, Campos JC, Ferreira JCB, Haileselassie B, Mochly-Rosen D. Cardiac troponin I directly binds and inhibits mitochondrial ATP synthase with a noncanonical role in the post-ischemic heart. NATURE CARDIOVASCULAR RESEARCH 2024; 3:987-1002. [PMID: 39196031 PMCID: PMC11700703 DOI: 10.1038/s44161-024-00512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress. Direct, specific and saturable binding of cTnI to F1FO-ATP synthase was demonstrated in vitro using immune-captured ATP synthase and in cells using proximity ligation assay. cTnI binding doubled ATPase activity, whereas skeletal troponin I and several human pathogenic cTnI variants associated with familial hypertrophic cardiomyopathy did not. A rationally designed peptide, P888, inhibited cTnI binding to ATP synthase, inhibited cTnI-induced increase in ATPase activity in vitro and reduced cardiac injury following transient ischemia in vivo. We suggest that cTnI-bound ATP synthase results in lower ATP levels, and releasing this interaction during cardiac ischemia-reperfusion may increase the reservoir of functional mitochondria to reduce cardiac injury.
Collapse
Affiliation(s)
- Aly Elezaby
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Amanda J Lin
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Vijith Vijayan
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Suman Pokhrel
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin R Kraemer
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Isabel Larus
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Junhui Sun
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Baena
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zulfeqhar A Syed
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth Murphy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicolai P Ostberg
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bruno B Queliconi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Julio C B Ferreira
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Bereketeab Haileselassie
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Division of Critical Care Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
2
|
Menezes Junior ADS, de França-e-Silva ALG, de Oliveira HL, de Lima KBA, Porto IDOP, Pedroso TMA, Silva DDME, Freitas AF. Genetic Mutations and Mitochondrial Redox Signaling as Modulating Factors in Hypertrophic Cardiomyopathy: A Scoping Review. Int J Mol Sci 2024; 25:5855. [PMID: 38892064 PMCID: PMC11173352 DOI: 10.3390/ijms25115855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a heart condition characterized by cellular and metabolic dysfunction, with mitochondrial dysfunction playing a crucial role. Although the direct relationship between genetic mutations and mitochondrial dysfunction remains unclear, targeting mitochondrial dysfunction presents promising opportunities for treatment, as there are currently no effective treatments available for HCM. This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews guidelines. Searches were conducted in databases such as PubMed, Embase, and Scopus up to September 2023 using "MESH terms". Bibliographic references from pertinent articles were also included. Hypertrophic cardiomyopathy (HCM) is influenced by ionic homeostasis, cardiac tissue remodeling, metabolic balance, genetic mutations, reactive oxygen species regulation, and mitochondrial dysfunction. The latter is a common factor regardless of the cause and is linked to intracellular calcium handling, energetic and oxidative stress, and HCM-induced hypertrophy. Hypertrophic cardiomyopathy treatments focus on symptom management and complication prevention. Targeted therapeutic approaches, such as improving mitochondrial bioenergetics, are being explored. This includes coenzyme Q and elamipretide therapies and metabolic strategies like therapeutic ketosis. Understanding the biomolecular, genetic, and mitochondrial mechanisms underlying HCM is crucial for developing new therapeutic modalities.
Collapse
Affiliation(s)
- Antonio da Silva Menezes Junior
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Ana Luísa Guedes de França-e-Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Henrique Lima de Oliveira
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Khissya Beatryz Alves de Lima
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Iane de Oliveira Pires Porto
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Thays Millena Alves Pedroso
- Faculdade de Medicina, Universidade de Rio Verde (UniRV), Campus Aparecida, Aparecida de Goiânia 74345-030, Brazil; (I.d.O.P.P.); (T.M.A.P.)
| | - Daniela de Melo e Silva
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| | - Aguinaldo F. Freitas
- Faculdade de Medicina, Departamento de Clínica Médica, Universidade Federal de Goiás (UFG), Goiânia 74020-020, Brazil; (A.L.G.d.F.-e.-S.); (H.L.d.O.); (K.B.A.d.L.); (D.d.M.e.S.); (A.F.F.J.)
| |
Collapse
|
3
|
A maladaptive feedback mechanism between the extracellular matrix and cytoskeleton contributes to hypertrophic cardiomyopathy pathophysiology. Commun Biol 2023; 6:4. [PMID: 36596888 PMCID: PMC9810744 DOI: 10.1038/s42003-022-04278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/17/2022] [Indexed: 01/04/2023] Open
Abstract
Hypertrophic cardiomyopathy is an inherited disorder due to mutations in contractile proteins that results in a stiff, hypercontractile myocardium. To understand the role of cardiac stiffness in disease progression, here we create an in vitro model of hypertrophic cardiomyopathy utilizing hydrogel technology. Culturing wild-type cardiac myocytes on hydrogels with a Young's Moduli (stiffness) mimicking hypertrophic cardiomyopathy myocardium is sufficient to induce a hypermetabolic mitochondrial state versus myocytes plated on hydrogels simulating healthy myocardium. Significantly, these data mirror that of myocytes isolated from a murine model of human hypertrophic cardiomyopathy (cTnI-G203S). Conversely, cTnI-G203S myocyte mitochondrial function is completely restored when plated on hydrogels mimicking healthy myocardium. We identify a mechanosensing feedback mechanism between the extracellular matrix and cytoskeletal network that regulates mitochondrial function under healthy conditions, but participates in the progression of hypertrophic cardiomyopathy pathophysiology resulting from sarcomeric gene mutations. Importantly, we pinpoint key 'linker' sites in this schema that may represent potential therapeutic targets.
Collapse
|
4
|
Hool LC. Elucidating the role of the L-type calcium channel in excitability and energetics in the heart: The ISHR 2020 Research Achievement Award Lecture. J Mol Cell Cardiol 2022; 172:100-108. [PMID: 36041287 DOI: 10.1016/j.yjmcc.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease continues to be the leading health burden worldwide and with the rising rates in obesity and type II diabetes and ongoing effects of long COVID, it is anticipated that the burden of cardiovascular morbidity and mortality will increase. Calcium is essential to cardiac excitation and contraction. The main route for Ca2+ influx is the L-type Ca2+ channel (Cav1.2) and embryos that are homozygous null for the Cav1.2 gene are lethal at day 14 postcoitum. Acute changes in Ca2+ influx through the channel contribute to arrhythmia and sudden death, and chronic increases in intracellular Ca2+ contribute to pathological hypertrophy and heart failure. We use a multidisciplinary approach to study the regulation of the channel from the molecular level through to in vivo CRISPR mutant animal models. Here we describe some examples of our work from over 2 decades studying the role of the channel under physiological and pathological conditions. Our single channel analysis of purified human Cav1.2 protein in proteoliposomes has contributed to understanding direct molecular regulation of the channel including identifying the critical serine involved in the "fight or flight" response. Using the same approach we identified the cysteine responsible for altered function during oxidative stress. Chronic activation of the L-type Ca2+ channel during oxidative stress occurs as a result of persistent glutathionylation of the channel that contributes to the development of hypertrophy. We describe for the first time that activation of the channel alters mitochondrial function (and energetics) on a beat-to-beat basis via movement of cytoskeletal proteins. In translational studies we have used this response to "report" mitochondrial function in models of cardiomyopathy and to test efficacy of novel therapies to prevent cardiomyopathy.
Collapse
Affiliation(s)
- Livia C Hool
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
6
|
Solomon T, Filipovska A, Hool L, Viola H. Preventative therapeutic approaches for hypertrophic cardiomyopathy. J Physiol 2020; 599:3495-3512. [PMID: 32822065 PMCID: PMC8359240 DOI: 10.1113/jp279410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022] Open
Abstract
Sarcomeric gene mutations are associated with the development of hypertrophic cardiomyopathy (HCM). Current drug therapeutics for HCM patients are effective in relieving symptoms, but do not prevent or reverse disease progression. Moreover, due to heterogeneity in the clinical manifestations of the disease, patients experience variable outcomes in response to therapeutics. Mechanistically, alterations in calcium handling, sarcomeric disorganization, energy metabolism and contractility participate in HCM disease progression. While some similarities exist, each mutation appears to lead to mutation‐specific pathophysiology. Furthermore, these alterations may precede or proceed development of the pathology. This review assesses the efficacy of HCM therapeutics from studies performed in animal models of HCM and human clinical trials. Evidence suggests that a preventative rather than corrective therapeutic approach may be more efficacious in the treatment of HCM. In addition, a clear understanding of mutation‐specific mechanisms may assist in informing the most effective therapeutic mode of action.
![]()
Collapse
Affiliation(s)
- Tanya Solomon
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia, Australia.,Centre for Medical Research, University of Western Australia, QEII Medical Centre, Nedlands, Western Australia, Australia.,Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Livia Hool
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Helena Viola
- School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|