1
|
Gassmann AJ, Brenizer BD, Kropf AL, McCulloch JB, Radosevich DL, Shrestha RB, Smith EM, St. Clair CR. Sequential evolution of resistance by western corn rootworm to multiple Bacillus thuringiensis traits in transgenic maize. Proc Natl Acad Sci U S A 2025; 122:e2422337122. [PMID: 40063805 PMCID: PMC11929453 DOI: 10.1073/pnas.2422337122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 03/25/2025] Open
Abstract
Transgenic crops that produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are grown worldwide to manage insect pests. Western corn rootworm is a serious pest of maize in the United States and is managed with Bt maize. In the United States, the commercial cultivation of a Bt crop requires an accompanying resistance-management strategy to delay the evolution of Bt resistance. One of the primary resistance-management strategies consists of non-Bt refuges along with a Bt crop that produces two Bt toxins (i.e., a pyramid) that kill the same pest species. This approach delays resistance because individuals with resistance to one toxin are killed by the second. However, if a pest species is resistant to one toxin in a pyramid, the effectiveness of a pyramid to delay resistance is compromised, potentially leading to the evolution of resistance to both toxins. Here, we apply a meta-analysis to demonstrate the sequential evolution of resistance by western corn rootworm to Bt maize producing Cry3Bb1 followed by resistance to Gpp34/Tpp35Ab1 maize, with resistance to each Bt toxin increasing in a linear manner over time. Additionally, we show that Bt-resistant western corn rootworm imposed substantial feeding injury, in the field, to maize containing a pyramid of Gpp34/Tpp35Ab1 and Cry3Bb1. To minimize the risk of sequential evolution of resistance to multiple transgenic traits, an emphasis should be placed on developing transgenic pyramids not compromised by prior resistance, and in cases where resistance is already present, larger non-Bt refuges and more diversified pest-management approaches should be applied.
Collapse
Affiliation(s)
- Aaron J. Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Ben D. Brenizer
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Abigail L. Kropf
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - John B. McCulloch
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Devin L. Radosevich
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Ram B. Shrestha
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Eliott M. Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| | - Coy R. St. Clair
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA50011
| |
Collapse
|
2
|
Ye Z, DiFonzo C, Hennessy DA, Zhao J, Wu F, Conley SP, Gassmann AJ, Hodgson EW, Jensen B, Knodel JJ, McManus B, Meinke LJ, Michel A, Potter B, Seiter NJ, Smith JL, Spencer JL, Tilmon KJ, Wright RJ, Krupke CH. Too much of a good thing: Lessons from compromised rootworm Bt maize in the US Corn Belt. Science 2025; 387:984-989. [PMID: 40014715 DOI: 10.1126/science.adm7634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 07/06/2024] [Accepted: 01/06/2025] [Indexed: 03/01/2025]
Abstract
Widespread use of genetically engineered maize targeting the corn rootworm complex (Diabrotica species) has raised concerns about insect resistance. Twelve years of university field trial and farm survey data from 10 US Corn Belt states indicate that maize hybrids expressing toxins derived from the bacterium Bacillus thuringiensis (Bt maize) exhibited declining protection from rootworm feeding with increased planting while pest pressures simultaneously decreased. The analysis revealed a tendency to overplant Bt maize, leading to substantial economic losses; this was particularly striking in eastern Corn Belt states. Our findings highlight the need to go beyond the "tragedy of the commons" perspective to protect sustainable use of Bt and other crop biotechnology resources. We propose moving toward a more diversified and transparent seed supply.
Collapse
Affiliation(s)
- Ziwei Ye
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing, China
| | - Christina DiFonzo
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - David A Hennessy
- Department of Economics and Center for Agricultural and Rural Development, Iowa State University, Ames, IA, USA
| | - Jinhua Zhao
- Charles H. Dyson School of Applied Economics and Management, Cornell University, Ithaca, NY, USA
| | - Felicia Wu
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
- Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, MI, USA
| | - Shawn P Conley
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Erin W Hodgson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | - Bryan Jensen
- Department of Entomology, University of Wisconsin-Madison, Madison, WI, USA
| | - Janet J Knodel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | - Bradley McManus
- Department of Agronomy, Horticulture, Plant Science, South Dakota State University, Brookings, SD, USA
| | - Lance J Meinke
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Andrew Michel
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| | - Bruce Potter
- Southwest Research and Outreach Center, University of Minnesota, Lamberton, MN, USA
| | - Nicholas J Seiter
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jocelyn L Smith
- School of Environmental Sciences, Ridgetown Campus, University of Guelph, Ridgetown, ON, Canada
| | - Joseph L Spencer
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Kelley J Tilmon
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| | - Robert J Wright
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
3
|
Ruan J, Yang Y, Carrière Y, Wu Y. Development of resistance monitoring for Helicoverpa armigera (Lepidoptera: Noctuidae) resistance to pyramided Bt cotton in China. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2093-2099. [PMID: 39186571 DOI: 10.1093/jee/toae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
The cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), is a significant cotton pest worldwide. Bacillus thuringiensis (Bt) cotton producing Cry1Ac has been used since 1997 for the control of this pest in China and a significant increase in H. armigera resistance to Cry1Ac has occurred in northern China. To mitigate resistance evolution, it is necessary to develop and plant pyramided 2- and 3-toxin Bt cotton to replace Cry1Ac cotton. For sustainable use of pyramided Bt cotton, we used diet overlay bioassays to measure the baseline susceptibility of H. armigera to Cry2Ab in 33 populations collected in 2017, 2018, and 2021 in 12 locations from major cotton-producing areas of China. The lethal concentration killing 50% (LC50) or 99% (LC99) of individuals from the populations ranged from 0.030 to 0.138 µg/cm2 and 0.365 to 2.964 µg/cm2, respectively. The ratio of the LC50 for the most resistant and susceptible population was 4.6, indicating moderate among-population variability in resistance. The susceptibility of H. armigera to Cry2Ab did not vary significantly over years. A diagnostic concentration of 2 µg/cm2 was calculated as twice the LC99 from an analysis of pooled data for the field-collected populations. This concentration discriminated well between susceptible and resistant individuals, as it killed all larvae from a susceptible laboratory strain and 0%, 0%, and 23% of larvae from 3 laboratory strains with > 100-fold resistance to Cry2Ab. These baseline susceptibility data and diagnostic concentration for Cry2Ab will be useful for monitoring the evolution of H. armigera resistance to pyramided Bt cotton in China.
Collapse
Affiliation(s)
- Jianqiu Ruan
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Yang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yves Carrière
- Department of Entomology, The University of Arizona, Tucson, AZ, USA
| | - Yidong Wu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Noack F, Engist D, Gantois J, Gaur V, Hyjazie BF, Larsen A, M'Gonigle LK, Missirian A, Qaim M, Sargent RD, Souza-Rodrigues E, Kremen C. Environmental impacts of genetically modified crops. Science 2024; 385:eado9340. [PMID: 39208101 DOI: 10.1126/science.ado9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024]
Abstract
Genetically modified (GM) crops have been adopted by some of the world's leading agricultural nations, but the full extent of their environmental impact remains largely unknown. Although concerns regarding the direct environmental effects of GM crops have declined, GM crops have led to indirect changes in agricultural practices, including pesticide use, agricultural expansion, and cropping patterns, with profound environmental implications. Recent studies paint a nuanced picture of these environmental impacts, with mixed effects of GM crop adoption on biodiversity, deforestation, and human health that vary with the GM trait and geographic scale. New GM or gene-edited crops with different traits would likely have different environmental and human health impacts.
Collapse
Affiliation(s)
- Frederik Noack
- Food and Resource Economics, University of British Columbia, Vancouver, BC, Canada
| | - Dennis Engist
- Food and Resource Economics, University of British Columbia, Vancouver, BC, Canada
| | - Josephine Gantois
- Food and Resource Economics, University of British Columbia, Vancouver, BC, Canada
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| | - Vasundhara Gaur
- Institute for Policy Integrity, New York University School of Law, New York, NY
| | - Batoule F Hyjazie
- Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Ashley Larsen
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA
| | - Leithen K M'Gonigle
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Anouch Missirian
- Toulouse School of Economics, INRAe, University of Toulouse Capitole, Toulouse, France
| | - Matin Qaim
- Center for Development Research (ZEF), University of Bonn, Germany
- Institute for Food and Resource Economics, University of Bonn, Germany
| | - Risa D Sargent
- Land and Food Systems, University of British Columbia, Vancouver, BC, Canada
| | - Eduardo Souza-Rodrigues
- Department of Economics, University of Toronto, Toronto, Ontario, Canada
- Centre for Economic Policy Research, London, England
| | - Claire Kremen
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Sappington TW. Aseasonal, undirected migration in insects: 'Invisible' but common. iScience 2024; 27:110040. [PMID: 38883831 PMCID: PMC11177203 DOI: 10.1016/j.isci.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Many insect pests are long-distance migrants, moving from lower latitudes where they overwinter to higher latitudes in spring to exploit superabundant, but seasonally ephemeral, host crops. These seasonal long-distance migration events are relatively easy to recognize, and justifiably garner much research attention. Evidence indicates several pest species that overwinter in diapause, and thus inhabit a year-round range, also engage in migratory flight, which is somewhat "invisible" because displacement is nondirectional and terminates among conspecifics. Support for aseasonal, undirected migration is related to recognizing true migratory flight behavior, which differs fundamentally from most other kinds of flight in that it is nonappetitive. Migrating adults are not searching for resources and migratory flight is not arrested by encounters with potential resources. The population-level consequence of aseasonal, undirected migration is spatial mixing of individuals within the larger metapopulation, which has important implications for population dynamics, gene flow, pest management, and insect resistance management.
Collapse
Affiliation(s)
- Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Carrière Y, Tabashnik BE. Negative association between host plant suitability and the fitness cost of resistance to Bacillus thuringiensis (Bacillales: Bacillaceae). JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1106-1112. [PMID: 38603568 DOI: 10.1093/jee/toae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Transgenic crops producing Bacillus thuringiensis (Bt) toxins are commonly used for controlling insect pests. Nearby refuges of non-Bt host plants play a central role in delaying the evolution of resistance to Bt toxins by pests. Pervasive fitness costs associated with resistance, which entail lower fitness of resistant than susceptible individuals in refuges, can increase the ability of refuges to delay resistance. Moreover, these costs are affected by environmental factors such as host plant suitability, implying that manipulating refuge plant suitability could improve the success of the refuge strategy. Based on results from a previous study of Trichoplusia ni resistant to Bt sprays, it was proposed that low-suitability host plants could magnify costs. To test this hypothesis, we investigated the association between host plant suitability and fitness costs for 80 observations from 30 cases reported in 18 studies of 8 pest species from 5 countries. Consistent with the hypothesis, the association between plant suitability and fitness cost was negative. With plant suitability scaled to range from 0 (low) to 1 (high), the expected cost was 20.7% with a suitability of 1 and the fitness cost increased 2.5% for each 0.1 decrease in suitability. The most common type of resistance to Bt toxins involves mutations affecting a few types of midgut proteins to which Bt toxins bind to kill insects. A better understanding of how such mutations interact with host plant suitability to generate fitness costs could be useful for enhancing the refuge strategy and sustaining the efficacy of Bt crops.
Collapse
|
7
|
Yang L, Wang C, He X, Liang H, Wu Q, Sun X, Liu M, Shen P. Multi-year crop rotation and quicklime application promote stable peanut yield and high nutrient-use efficiency by regulating soil nutrient availability and bacterial/fungal community. Front Microbiol 2024; 15:1367184. [PMID: 38827150 PMCID: PMC11140132 DOI: 10.3389/fmicb.2024.1367184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Diversifying cultivation management, including different crop rotation patterns and soil amendment, are effective strategies for alleviating the obstacles of continuous cropping in peanut (Arachis hypogaea L.). However, the peanut yield enhancement effect and temporal changes in soil chemical properties and microbial activities in response to differential multi-year crop rotation patterns and soil amendment remain unclear. In the present study, a multi-year localization experiment with the consecutive application of five different cultivation managements (including rotation with different crops under the presence or absence of external quicklime as soil amendment) was conducted to investigate the dynamic changes in peanut nutrient uptake and yield status, soil chemical property, microbial community composition and function. Peanut continuous cropping led to a reduction in peanut yield, while green manure-peanut rotation and wheat-maize-peanut rotation increased peanut yield by 40.59 and 81.95%, respectively. A combination of quicklime application increased yield by a further 28.76 and 24.34%. Alterations in cultivation management also strongly affected the soil pH, nutrient content, and composition and function of the microbial community. The fungal community was more sensitive than the bacterial community to cultivation pattern shift. Variation in bacterial community was mainly attributed to soil organic carbon, pH and calcium content, while variation in fungal community was more closely related to soil phosphorus content. Wheat-maize-peanut rotation combined with quicklime application effectively modifies the soil acidification environment, improves the soil fertility, reshapes the composition of beneficial and harmful microbial communities, thereby improving soil health, promoting peanut development, and alleviating peanut continuous cropping obstacles. We concluded that wheat-maize-peanut rotation in combination with quicklime application was the effective practice to improve the soil fertility and change the composition of potentially beneficial and pathogenic microbial communities in the soil, which is strongly beneficial for building a healthy soil micro-ecology, promoting the growth and development of peanut, and reducing the harm caused by continuous cropping obstacles to peanut.
Collapse
Affiliation(s)
- Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Caibin Wang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Xuewu Sun
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Miao Liu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetic & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| |
Collapse
|
8
|
Huang PC, Yuan P, Grunseich JM, Taylor J, Tiénébo EO, Pierson EA, Bernal JS, Kenerley CM, Kolomiets MV. Trichoderma virens and Pseudomonas chlororaphis Differentially Regulate Maize Resistance to Anthracnose Leaf Blight and Insect Herbivores When Grown in Sterile versus Non-Sterile Soils. PLANTS (BASEL, SWITZERLAND) 2024; 13:1240. [PMID: 38732455 PMCID: PMC11085588 DOI: 10.3390/plants13091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR.
Collapse
Affiliation(s)
- Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - John M. Grunseich
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - James Taylor
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Eric-Olivier Tiénébo
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
- Agronomic Sciences and Transformation Processes Joint Research and Innovation Unit, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro P.O. Box 1093, Côte d’Ivoire
| | - Elizabeth A. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA;
| | - Julio S. Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA; (J.M.G.); (J.S.B.)
| | - Charles M. Kenerley
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132, USA; (P.-C.H.); (P.Y.); (J.T.); (E.A.P.); (C.M.K.)
| |
Collapse
|
9
|
Tabe-Ojong MPJ, Kedinga ME, Gebrekidan BH. Behavioural factors matter for the adoption of climate-smart agriculture. Sci Rep 2024; 14:798. [PMID: 38191776 PMCID: PMC10774420 DOI: 10.1038/s41598-023-50264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
Increasing agricultural productivity while ensuring environmental sustainability are two important targets in achieving the sustainable development goals under climatic shocks. In this regard, different climate-smart agricultural (CSA) practices have been recommended and promoted to meet these goals and targets. However, the adoption of these practices remains low and variable. For the most part, low adoption has been attributed to external factors. Behavioural and psychological factors also matter but have received little empirical and policy attention. In this study, we examine the relationship between aspirations, aspiration gaps, and the adoption of CSA practices such as crop rotation, intercropping, fallowing, and organic soil amendments. Employing parametric and non-parametric estimation techniques on a pooled farm household survey from Cameroon and Kenya, we show that aspirations are associated with the use of crop rotation and organic soil amendments. We also investigate the theorized non-monotonic inverse U-shaped relationship between aspiration gaps and investments. We find evidence of this relationship for the adoption of these CSA practices, suggesting an aspiration failure for smallholder farmers. These results imply that aspirations that are ahead but not too far ahead of the current state serve as the best incentives for stimulating the adoption of CSA practices. Employing the multivariate probit model, we further highlight interdependencies in the use of these CSA practices. Specifically, we underscore significant complementarities, suggesting the bundled use of these practices. Overall, the analysis demonstrates that aspirations matter for farmer decision-making with many implications for agricultural, food, and environmental policies.
Collapse
Affiliation(s)
- Martin Paul Jr Tabe-Ojong
- World Bank, Washington, DC, USA
- Disaster Management Training and Education Centre (DiMTEC) for Africa, University of the Free State, UFS Internal 66, P.O. Box 339, Bloemfontein, South Africa
- University of Applied Sciences, Sankt Augustin, Germany
| | | | | |
Collapse
|
10
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
11
|
Tabashnik BE, Fabrick JA, Carrière Y. Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:297-309. [PMID: 36610076 DOI: 10.1093/jee/toac183] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/29/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have improved pest management and reduced reliance on insecticide sprays. However, evolution of practical resistance by some pests has reduced the efficacy of Bt crops. We analyzed global resistance monitoring data for 24 pest species based on the first 25 yr of cultivation of Bt crops including corn, cotton, soybean, and sugarcane. Each of the 73 cases examined represents the response of one pest species in one country to one Bt toxin produced by one or more Bt crops. The cases of practical resistance rose from 3 in 2005 to 26 in 2020. Practical resistance has been documented in some populations of 11 pest species (nine lepidopterans and two coleopterans), collectively affecting nine widely used crystalline (Cry) Bt toxins in seven countries. Conversely, 30 cases reflect no decrease in susceptibility to Bt crops in populations of 16 pest species in 10 countries. The remaining 17 cases provide early warnings of resistance, which entail genetically based decreases in susceptibility without evidence of reduced field efficacy. The early warnings involve four Cry toxins and the Bt vegetative insecticidal protein Vip3Aa. Factors expected to favor sustained susceptibility include abundant refuges of non-Bt host plants, recessive inheritance of resistance, low resistance allele frequency, fitness costs, incomplete resistance, and redundant killing by multi-toxin Bt crops. Also, sufficiently abundant refuges can overcome some unfavorable conditions for other factors. These insights may help to increase the sustainability of current and future transgenic insecticidal crops.
Collapse
Affiliation(s)
| | - Jeffrey A Fabrick
- USDA ARS, U. S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Smith EM, Shrestha RB, Gassmann AJ. Inheritance and Fitness Costs of Laboratory-Selected Resistance to Gpp34/Tpp35Ab1 Corn in Western Corn Rootworm (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:565-573. [PMID: 36799000 PMCID: PMC10483582 DOI: 10.1093/jee/toad022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Indexed: 05/30/2023]
Abstract
Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a serious pest of corn and is currently managed with corn hybrids that produce insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt). Bt corn kills rootworm larvae and reduces larval feeding injury to corn roots. The Bt protein Gpp34/Tpp35Ab1, previously named Cry34/35Ab1, has been widely used in transgenic Bt corn for management of western corn rootworm, and field-evolved resistance has been found in some populations. In the United States, the refuge strategy is used to manage Bt resistance, with refuges of non-Bt host plants serving as a source of Bt-susceptible individuals, which in turn reduce the frequency of homozygous resistant individuals within a population. As such, the dominance of resistance strongly influences resistance evolution, with faster evolution of resistance when resistance is not recessive. Additionally, selection for resistance by a Bt crop leads to the accumulation of resistance alleles within refuge populations, thereby reducing the capacity of refuges to delay resistance. However, fitness costs can remove resistance alleles from refuge populations and preserve the dynamic of refuges producing Bt-susceptible genotypes. Bt-susceptible and Gpp34/Tpp35Ab1-resistant western corn rootworm were used to quantify the inheritance and fitness costs of resistance. We found that Gpp34/Tpp35Ab1 resistance was not recessive and had the accompanying fitness costs of slower developmental rate to adulthood and lower egg viability. This research will help improve insect resistance management by providing a better understanding of the risk of western corn rootworm evolving resistance to transgenic corn that produces Gpp34/Tpp35Ab1.
Collapse
Affiliation(s)
- Eliott M Smith
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Ram B Shrestha
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Aaron J Gassmann
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
García M, García-Benítez C, Ortego F, Farinós GP. Monitoring Insect Resistance to Bt Maize in the European Union: Update, Challenges, and Future Prospects. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:275-288. [PMID: 36610405 PMCID: PMC10125040 DOI: 10.1093/jee/toac154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 05/30/2023]
Abstract
Transgenic maize producing the Cry1Ab toxin of Bacillus thuringiensis (Bt maize) was approved for cultivation in the European Union (EU) in 1998 to control the corn borers Sesamia nonagrioides (Lefèbvre) and Ostrinia nubilalis (Hübner). In the EU since then, Cry1Ab is the only Bt toxin produced by Bt maize and Spain is the only country where Bt maize has been planted every year. In 2021, about 100,000 hectares of Bt maize producing Cry1Ab were cultivated in the EU, with Spain accounting for 96% and Portugal 4% of this area. In both countries, Bt maize represented less than 25% of all maize planted in 2021, with a maximum regional adoption of 64% Bt maize in northeastern Spain. Insect resistance management based on the high-dose/refuge strategy has been implemented in the EU since 1998. This has been accompanied by monitoring to enable early detection of resistance. The monitoring data from laboratory bioassays show no decrease in susceptibility to Cry1Ab had occurred in either pest as of 2021. Also, control failures have not been reported, confirming that Bt maize producing Cry1Ab remains effective against both pests. Conditions in the EU preventing approval of new genetically modified crops, including maize producing two or more Bt toxins targeting corn borers, may limit the future effectiveness of resistance management strategies.
Collapse
Affiliation(s)
| | | | - Félix Ortego
- Laboratory of Applied Entomology for Human and Plant Health, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain
| | | |
Collapse
|
14
|
Anees Siddiqui H, Asif M, Zahra Naqvi R, Shehzad A, Sarwar M, Amin I, Mansoor S. Development of modified Cry1Ac for the control of resistant insect pest of cotton, Pectinophora gossypiella. Gene 2023; 856:147113. [PMID: 36543309 DOI: 10.1016/j.gene.2022.147113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Cotton has been one of the most important cash crops in Pakistan, but its production is adversely affected by biotic and abiotic stresses. Insect pests such as pink bollworm present a colossal vulnerability to such a financially important commodity. Bt toxins have been widely used to safeguard agricultural plants against notorious insect pests such as cotton bollworm and pink bollworm, and they have proven to be effective in reducing chewing insect pests. However, its efficacy has been challenged due to the development of resistance in insect pests against Bt toxins such as Cry1Ac and this poses a significant risk to the long-term adoption of these Bt crops. Resistance in insect pests against Bt toxin Cry1Ac is developed due to the mutations in the midgut receptors such as cadherin. In this study first 56 amino acids which also includes helix alpha-1 portion from N-terminus of the Cry1Ac were removed and the gene was commercially synthesized following codon optimization. Modified Cry1Ac was used to develop transgenic plants of Nicotiana tabacum and insect bioassays were conducted to check the efficacy of Cry1Ac through leaf bioassays. Cry1Ac, a modified Bt toxin, was produced pET-28a (+), and diet bioassays were performed using purified protein at various doses against Pectinophora gossypiella. Based on the insect mortality and LC50, the Cry1AcM3 form of the modified toxins was shown to be more potent than the other modified versions (Cry1AcM1, Cry1AcM2), with more than 80 % mortality against resistant pink bollworm at 1.25 g/mL and an LC50 of 0.48. The results suggest that modified toxin cry1Ac may be useful in controlling population of pink bollworm resistant against cry1Ac.
Collapse
Affiliation(s)
- Hamid Anees Siddiqui
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan; Department of Biotechnology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Asif
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan
| | - Rubab Zahra Naqvi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan
| | - Aamir Shehzad
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan
| | - Muhammad Sarwar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE) College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
15
|
Yang X, Zhao S, Liu B, Gao Y, Hu C, Li W, Yang Y, Li G, Wang L, Yang X, Yuan H, Liu J, Liu D, Shen X, Wyckhuys KAG, Lu Y, Wu K. Bt maize can provide non-chemical pest control and enhance food safety in China. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:391-404. [PMID: 36345605 PMCID: PMC9884019 DOI: 10.1111/pbi.13960] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 05/26/2023]
Abstract
China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.
Collapse
Affiliation(s)
- Xianming Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Shengyuan Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Yu Gao
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Chaoxing Hu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of Entomology, Guizhou UniversityGuiyangChina
| | - Wenjing Li
- Institute of Plant Protection and Soil FertilityHubei Academy of Agricultural SciencesWuhanChina
| | - Yizhong Yang
- College of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsu ProvinceChina
| | - Guoping Li
- Institute of Plant ProtectionHenan Academy of Agricultural SciencesZhengzhouChina
| | - Lili Wang
- Yantai Academy of Agricultural SciencesYantaiChina
| | - Xueqing Yang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
| | - Haibin Yuan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Jian Liu
- College of AgricultureNortheast Agricultural UniversityHarbinChina
| | - Dazhong Liu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Agricultural Information InstituteChinese Academy of Agricultural SciencesBeijingChina
| | - Xiujing Shen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kris A. G. Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
- Fujian Agriculture and Forestry UniversityFuzhouChina
- University of QueenslandBrisbaneQueenslandAustralia
- Chrysalis ConsultingHanoiVietnam
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
16
|
Chromobacterium Csp_P biopesticide is toxic to larvae of three Diabrotica species including strains resistant to Bacillus thuringiensis. Sci Rep 2022; 12:17858. [PMID: 36284199 PMCID: PMC9596699 DOI: 10.1038/s41598-022-22229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 01/20/2023] Open
Abstract
The development of new biopesticides to control the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is urgent due to resistance evolution to various control methods. We tested an air-dried non-live preparation of Chromobacterium species Panama (Csp_P), against multiple corn rootworm species, including Bt-resistant and -susceptible WCR strains, northern (NCR, D. barberi Smith & Lawrence), and southern corn rootworm (SCR, D. undecimpunctata howardi Barber), in diet toxicity assays. Our results documented that Csp_P was toxic to all three corn rootworms species based on lethal (LC50), effective (EC50), and molt inhibition concentration (MIC50). In general, toxicity of Csp_P was similar among all WCR strains and ~ 3-fold less toxic to NCR and SCR strains. Effective concentration (EC50) was also similar among WCR and SCR strains, and 5-7-fold higher in NCR strains. Molt inhibition (MIC50) was similar among all corn rootworm strains except NCR diapause strain that was 2.5-6-fold higher when compared to all other strains. There was no apparent cross-resistance between Csp_P and any of the currently available Bt proteins. Our results indicate that Csp_P formulation was effective at killing multiple corn rootworm strains including Bt-resistant WCR and could be developed as a potential new management tool for WCR control.
Collapse
|
17
|
Boeckman CJ, Ballou S, Gunderson T, Huang E, Linderblood C, Olson T, Stolte B, LeRoy K, Walker C, Wang Y, Woods R, Zhang J. Characterization of the Spectrum of Activity of IPD079Ea: A Protein Derived From Ophioglossum pendulum (Ophioglossales: Ophioglossaceae) With Activity Against Western Corn Rootworm [Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)]. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1531-1538. [PMID: 35640234 PMCID: PMC9554786 DOI: 10.1093/jee/toac079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a major pest of corn in both North America and Europe and as such presents significant challenges for farmers. IPD079Ea protein is encoded by the ipd079Ea gene from Ophioglossum pendulum (a species of fern) and was found to have activity against western corn rootworm in multiple corn events transformed to express the IPD079Ea protein. In chronic laboratory hazard studies, IPD079Ea protein was fed to eleven species in the order Coleoptera and four species in the order Lepidoptera to assess the spectrum of activity. Activity was observed on certain species of the Chrysomelidae and Coccinellidae families, with western corn rootworm as the most sensitive insect tested. No adverse effects on mortality or other sublethal endpoints were observed on any species within Lepidoptera. Overall, IPD079Ea protein appears not to have broad insecticidal properties and has potential value as an effective trait to control western corn rootworm in agricultural systems.
Collapse
Affiliation(s)
| | - Stephan Ballou
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Tim Gunderson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | | | - Taylor Olson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Brian Stolte
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Kristine LeRoy
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Carl Walker
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Rachel Woods
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
18
|
Benowitz KM, Allan CW, Degain BA, Li X, Fabrick JA, Tabashnik BE, Carrière Y, Matzkin LM. Novel genetic basis of resistance to Bt toxin Cry1Ac in Helicoverpa zea. Genetics 2022; 221:iyac037. [PMID: 35234875 PMCID: PMC9071530 DOI: 10.1093/genetics/iyac037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 11/14/2022] Open
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis have advanced pest management, but their benefits are diminished when pests evolve resistance. Elucidating the genetic basis of pest resistance to Bacillus thuringiensis toxins can improve resistance monitoring, resistance management, and the design of new insecticides. Here, we investigated the genetic basis of resistance to Bacillus thuringiensis toxin Cry1Ac in the lepidopteran Helicoverpa zea, one of the most damaging crop pests in the United States. To facilitate this research, we built the first chromosome-level genome assembly for this species, which has 31 chromosomes containing 375 Mb and 15,482 predicted proteins. Using a genome-wide association study, fine-scale mapping, and RNA-seq, we identified a 250-kb quantitative trait locus on chromosome 13 that was strongly associated with resistance in a strain of Helicoverpa zea that had been selected for resistance in the field and lab. The mutation in this quantitative trait locus contributed to but was not sufficient for resistance, which implies alleles in more than one gene contributed to resistance. This quantitative trait locus contains no genes with a previously reported role in resistance or susceptibility to Bacillus thuringiensis toxins. However, in resistant insects, this quantitative trait locus has a premature stop codon in a kinesin gene, which is a primary candidate as a mutation contributing to resistance. We found no changes in gene sequence or expression consistently associated with resistance for 11 genes previously implicated in lepidopteran resistance to Cry1Ac. Thus, the results reveal a novel and polygenic basis of resistance.
Collapse
Affiliation(s)
- Kyle M Benowitz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Biology, Austin Peay State University, Clarksville, TN 37040, USA
| | - Carson W Allan
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin A Degain
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Jeffrey A Fabrick
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Arid Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Luciano M Matzkin
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
19
|
Tang B, Xu K, Liu Y, Zhou Z, Karthi S, Yang H, Li C. A review of physiological resistance to insecticide stress in Nilaparvata lugens. 3 Biotech 2022; 12:84. [PMID: 35251886 PMCID: PMC8882538 DOI: 10.1007/s13205-022-03137-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/02/2022] [Indexed: 01/02/2023] Open
Abstract
Insecticides are widely used in agriculture as effective means to control pests. However, pests have not been completely mitigated with the increased use of insecticides. Instead, many side effects have arisen, especially the '3Rs' (resistance, resurgence, and residue). The brown planthopper, Nilaparvata lugens, is one of the most threatening rice pests. The main insecticides for controlling N. lugens belong to organochlorine, organophosphorus, carbamate, neonicotinoid and pyrethroid groups. However, metabolic enzymes, including cytochrome P450s, esterases, glutathione-S-transferases, and ATP-binding cassette transporters, effectively promote the detoxification of insecticides. Besides, mutations of neurological target sites, such as acetylcholinesterase, nicotinic acetylcholine, γ-aminobutyric acid receptor, and ryanodine receptor, result in insensitivity to insecticides. Here, we review the physiological metabolic resistance in N. lugens under insecticide stress to provide a theoretical basis for identifying and developing more effective and harmless insecticides.
Collapse
Affiliation(s)
- Bin Tang
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China ,College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang People’s Republic of China
| | - Kangkang Xu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China ,Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Yongkang Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121 Zhejiang People’s Republic of China
| | - Zhongshi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China
| | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tirunelveli, Tamil Nadu 627 412 India
| | - Hong Yang
- Institute of Entomology, Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guizhou University, Guiyang, 550025 People’s Republic of China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Department of Biology and Engineering of Environment, Guiyang University, Guiyang, 550005 People’s Republic of China
| |
Collapse
|
20
|
Han P, Lavoir AV, Rodriguez-Saona C, Desneux N. Bottom-Up Forces in Agroecosystems and Their Potential Impact on Arthropod Pest Management. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:239-259. [PMID: 34606362 DOI: 10.1146/annurev-ento-060121-060505] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bottom-up effects are major ecological forces in crop-arthropod pest-natural enemy multitrophic interactions. Over the past two decades, bottom-up effects have been considered key levers for optimizing integrated pest management (IPM). Irrigation, fertilization, crop resistance, habitat manipulation, organic management practices, and landscape characteristics have all been shown to trigger marked bottom-up effects and thus impact pest management. In this review, we summarize current knowledge on the role of bottom-up effects in pest management and the associated mechanisms, and discuss several key study cases showing how bottom-up effects practically promote natural pest control. Bottom-up effects on IPM also contribute to sustainable intensification of agriculture in the context of agricultural transition and climate change. Finally, we highlight new research priorities in this important area. Together with top-down forces (biological control), future advances in understanding ecological mechanisms underlying key bottom-up forces could pave the way for developing novel pest management strategies and new optimized IPM programs.
Collapse
Affiliation(s)
- Peng Han
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Laboratory of Ecology and Evolutionary Biology, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China;
| | | | | | - Nicolas Desneux
- Université Cote d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France;
| |
Collapse
|
21
|
Van den Berg J, Prasanna BM, Midega CAO, Ronald PC, Carrière Y, Tabashnik BE. Managing Fall Armyworm in Africa: Can Bt Maize Sustainably Improve Control? JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1934-1949. [PMID: 34505143 DOI: 10.1093/jee/toab161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/28/2023]
Abstract
The recent invasion of Africa by fall armyworm, Spodoptera frugiperda, a lepidopteran pest of maize and other crops, has heightened concerns about food security for millions of smallholder farmers. Maize genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) is a potentially useful tool for controlling fall armyworm and other lepidopteran pests of maize in Africa. In the Americas, however, fall armyworm rapidly evolved practical resistance to maize producing one Bt toxin (Cry1Ab or Cry1Fa). Also, aside from South Africa, Bt maize has not been approved for cultivation in Africa, where stakeholders in each nation will make decisions about its deployment. In the context of Africa, we address maize production and use; fall armyworm distribution, host range, and impact; fall armyworm control tactics other than Bt maize; and strategies to make Bt maize more sustainable and accessible to smallholders. We recommend mandated refuges of non-Bt maize or other non-Bt host plants of at least 50% of total maize hectares for single-toxin Bt maize and 20% for Bt maize producing two or more distinct toxins that are each highly effective against fall armyworm. The smallholder practices of planting more than one maize cultivar and intercropping maize with other fall armyworm host plants could facilitate compliance. We also propose creating and providing smallholder farmers access to Bt maize that produces four distinct Bt toxins encoded by linked genes in a single transgene cassette. Using this novel Bt maize as one component of integrated pest management could sustainably improve control of lepidopteran pests including fall armyworm.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi, 00601, Kenya
| | - Charles A O Midega
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom, 2520, South Africa
- Poverty and Health Integrated Solutions, Kisumu, 40141, Kenya
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA 95616, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
22
|
Arthur AL, Maino J, Hoffmann AA, Jasper M, Lord A, Micic S, Edwards O, van Rooyen A, Umina PA. Learnings from over a decade of increasing pesticide resistance in the redlegged earth mite, Halotydeus destructor (Tucker). PEST MANAGEMENT SCIENCE 2021; 77:3013-3024. [PMID: 33638285 DOI: 10.1002/ps.6340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/01/2021] [Accepted: 02/26/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND The redlegged earth mite, Halotydeus destructor (Tucker), is a destructive and economically important pest of winter grain crops and pastures in Australia. It is largely controlled by pesticides, but this mite has evolved resistance to pyrethroid and organophosphate chemicals. A national Resistance Management Strategy has been developed for pro-active management to delay further resistance evolution, though its success is reliant on a detailed understanding of the incidence, patterns of spread, current distribution and the nature of resistance in the field. Here, we report on a long-term resistance surveillance programme undertaken between 2006 and 2019 informed by resistance risk forecasting. RESULTS By mapping the Australian distribution of resistance through time, we show that resistance is present across three Australian states and covers more than 3000 km. This current range includes a recently identified population exhibiting organophosphate resistance representing the most easterly location of resistance in H. destructor. Using field history information, we identify associations for the first time between crop management practices employed by farmers and the presence of pyrethroid resistance. Management strategies that could minimize the risk of further resistance include limiting local spread of resistance through farm hygiene practices, crop rotations and reducing pesticide usage. CONCLUSION This study highlights the challenges of resistance in H. destructor but also indicates how quantitative resistance risk analysis can be developed to target field surveillance and delay further resistance. The management strategies highlighted in this study can help maintain the effectiveness of control options but will depend on farmer engagement and adoption. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Moshe Jasper
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| | - Alan Lord
- Department of Primary Industries and Regional Development, Industry and Economic Development, South Perth, Australia
| | - Svetlana Micic
- Department of Primary Industries and Regional Development, Industry and Economic Development, South Perth, Australia
| | | | | | - Paul A Umina
- Cesar Australia, Parkville, Australia
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
The plant metabolome guides fitness-relevant foraging decisions of a specialist herbivore. PLoS Biol 2021; 19:e3001114. [PMID: 33600420 PMCID: PMC7924754 DOI: 10.1371/journal.pbio.3001114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/02/2021] [Accepted: 01/26/2021] [Indexed: 01/01/2023] Open
Abstract
Plants produce complex mixtures of primary and secondary metabolites. Herbivores use these metabolites as behavioral cues to increase their fitness. However, how herbivores combine and integrate different metabolite classes into fitness-relevant foraging decisions in planta is poorly understood. We developed a molecular manipulative approach to modulate the availability of sugars and benzoxazinoid secondary metabolites as foraging cues for a specialist maize herbivore, the western corn rootworm. By disrupting sugar perception in the western corn rootworm and benzoxazinoid production in maize, we show that sugars and benzoxazinoids act as distinct and dynamically combined mediators of short-distance host finding and acceptance. While sugars improve the capacity of rootworm larvae to find a host plant and to distinguish postembryonic from less nutritious embryonic roots, benzoxazinoids are specifically required for the latter. Host acceptance in the form of root damage is increased by benzoxazinoids and sugars in an additive manner. This pattern is driven by increasing damage to postembryonic roots in the presence of benzoxazinoids and sugars. Benzoxazinoid- and sugar-mediated foraging directly improves western corn rootworm growth and survival. Interestingly, western corn rootworm larvae retain a substantial fraction of their capacity to feed and survive on maize plants even when both classes of chemical cues are almost completely absent. This study unravels fine-grained differentiation and combination of primary and secondary metabolites into herbivore foraging and documents how the capacity to compensate for the lack of important chemical cues enables a specialist herbivore to survive within unpredictable metabolic landscapes.
Collapse
|
24
|
Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest-Crop Interaction and the Agricultural Landscape on Resistance. INSECTS 2021; 12:insects12020136. [PMID: 33562469 PMCID: PMC7915852 DOI: 10.3390/insects12020136] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Since the 1990s, an important innovation in the management of agricultural pest insects has been the commercial cultivation of genetically engineered crops that produce insecticidal toxins, which in turn act to protect plants from feeding injury by insects. To date, these transgenic crops, which include cotton, maize and soybean, have produced insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt). Benefits associated with planting of Bt crops include reduced feeding injury from pest insects, decreased yield losses from pests and less harm to the environment. However, the evolution of Bt resistance by insect pests can diminish these benefits. One serious insect pest currently managed with Bt maize is the western corn rootworm. The larval stage of this insect feeds on maize roots and can substantially reduce yield. In some parts of the US Corn Belt, western corn rootworm rapidly adapted to Bt maize, and currently, some populations show resistance to all commercially available Bt traits. This review summarizes the time course of resistance development in the field, key factors contributing to resistance evolution, and steps that biotechnology companies, farmers and regulatory agencies can take to delay additional cases of pest resistance to current and future transgenic technologies. Abstract The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious pests of maize in the United States. Since 2003, transgenic maize that produces insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) has been used to manage western corn rootworm by killing rootworm larvae, which feed on maize roots. In 2009, the first cases of field-evolved resistance to Bt maize were documented. These cases occurred in Iowa and involved maize that produced Bt toxin Cry3Bb1. Since then, resistance has expanded to include other geographies and additional Bt toxins, with some rootworm populations displaying resistance to all commercially available Bt traits. Factors that contributed to field-evolved resistance likely included non-recessive inheritance of resistance, minimal fitness costs of resistance and limited adult dispersal. Additionally, because maize is the primary agricultural crop on which rootworm larvae can survive, continuous maize cultivation, in particular continuous cultivation of Bt maize, appears to be another key factor facilitating resistance evolution. More diversified management of rootworm larvae, including rotating fields out of maize production and using soil-applied insecticide with non-Bt maize, in addition to planting refuges of non-Bt maize, should help to delay the evolution of resistance to current and future transgenic traits.
Collapse
|
25
|
Willse A, Flagel L, Head G. Estimation of Cry3Bb1 resistance allele frequency in field populations of western corn rootworm using a genetic marker. G3-GENES GENOMES GENETICS 2021; 11:6070152. [PMID: 33561248 PMCID: PMC8022712 DOI: 10.1093/g3journal/jkaa013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022]
Abstract
Following the discovery of western corn rootworm (WCR; Diabrotica virgifera virgifera) populations resistant to the Bacillus thuringiensis (Bt) protein Cry3Bb1, resistance was genetically mapped to a single locus on WCR chromosome 8 and linked SNP markers were shown to correlate with the frequency of resistance among field-collected populations from the US Corn Belt. The purpose of this paper is to further investigate the relationship between one of these resistance-linked markers and the causal resistance locus. Using data from laboratory bioassays and field experiments, we show that one allele of the resistance-linked marker increased in frequency in response to selection, but was not perfectly linked to the causal resistance allele. By coupling the response to selection data with a genetic model of the linkage between the marker and the causal allele, we developed a model that allowed marker allele frequencies to be mapped to causal allele frequencies. We then used this model to estimate the resistance allele frequency distribution in the US Corn Belt based on collections from 40 populations. These estimates suggest that chromosome 8 Cry3Bb1 resistance allele frequency was generally low (<10%) for 65% of the landscape, though an estimated 13% of landscape has relatively high (>25%) resistance allele frequency.
Collapse
Affiliation(s)
- Alan Willse
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Lex Flagel
- Bayer Crop Science, Chesterfield, MO 63017, USA
| | - Graham Head
- Bayer Crop Science, Chesterfield, MO 63017, USA
| |
Collapse
|