1
|
Yoshida T, Kawakami A. Mild cryoinjury in zebrafish fin induces regenerative response without blastema formation. Dev Growth Differ 2025; 67:174-181. [PMID: 39891514 PMCID: PMC11997731 DOI: 10.1111/dgd.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
Previous studies have shown that tissue regeneration induces expression of genes that play important roles in regeneration. Recently, several studies have identified regeneration-response enhancers (RREs) that activate gene expression by tissue injury. Particularly, we showed that RREs contain two transcription factor-binding motifs: a bHLH transcription factor-binding motif, an E-box, and an AP-1/bZIP transcription factor-binding motif, a 12-O-Tetradecanoylphorbol 13-acetate response element (TRE). However, the triggers and subsequent signals generated by injury are still unclear. In this study, we analyzed RRE activation using various injury models. Although inter-ray incisions and skin exfoliation injuries did not activate RREs or regeneration genes, the fin puncture injury activated RREs and several regeneration-response genes. After fin puncture injury, msxc was activated only on the proximal side of the hole where blastema-like tissue was formed, whereas RREs, junbb, and fibronectin 1b (fn1b) were activated on both the proximal and distal sides, implying that activation of RREs, junbb, and fn1b is independent of blastema formation. Here, we also established a mild cryoinjury method. After this injury, transient vascular destruction, an increase in cell death, and an accumulation of myeloid cells were observed; however, no major morphological damage was observed. Importantly, msxc was not induced by cryoinjury, whereas fn1b, junbb, and 1.8 k RRE (-1.8 kb promoter of fn1b) were activated, suggesting that cryoinjury induces the responses of fn1b, junbb, and 1.8 k RRE without forming the blastema. Thus, our study shows that the cryoinjury model and the RRE transgenic (Tg) zebrafish may provide a useful platform for exploring injury signals.
Collapse
Affiliation(s)
- Takafumi Yoshida
- School of Life Science and TechnologyInstitute of Science TokyoYokohamaJapan
| | - Atsushi Kawakami
- School of Life Science and TechnologyInstitute of Science TokyoYokohamaJapan
| |
Collapse
|
2
|
Le Bleu HK, Kioussi RG, Henner AL, Lewis VM, Stewart S, Stankunas K. Voltage-gated calcium channels generate blastema Ca 2+ fluxes restraining zebrafish fin regenerative outgrowth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.21.608903. [PMID: 39229087 PMCID: PMC11370486 DOI: 10.1101/2024.08.21.608903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Adult zebrafish fins regenerate to their original size regardless of damage extent, providing a tractable model of organ size and scale control. Gain-of-function of voltage-gated K + channels expressed in fibroblast-lineage blastema cells promotes excessive fin outgrowth, leading to a long-finned phenotype. Similarly, inhibition of the Ca 2+ -dependent phosphatase calcineurin during regeneration causes dramatic fin overgrowth. However, Ca 2+ fluxes and their potential origins from dynamic membrane voltages have not been explored or linked to fin size restoration. We used fibroblast-lineage GCaMP imaging of regenerating adult fins to identify widespread, heterogeneous Ca 2+ transients in distal blastema cells. Membrane depolarization of isolated regenerating fin fibroblasts triggered Ca 2+ spikes dependent on voltage-gated Ca 2+ channel activity. Single cell transcriptomics identified the voltage-gated Ca 2+ channels cacna1c (L-type channel), cacna1ba (N-type), and cacna1g (T-type) as candidate mediators of fibroblast-lineage Ca 2+ signaling. Small molecule inhibition revealed L- and/or N-type voltage-gated Ca 2+ channels act during regenerative outgrowth to restore fins to their original scale. Strikingly, cacna1g homozygous mutant zebrafish regenerated extraordinarily long fins due to prolonged outgrowth. The regenerated fins far exceeded their original length but with otherwise normal ray skeletons. Therefore, cacna1g mutants uniquely provide a genetic loss-of-function long-finned model that decouples developmental and regenerative fin outgrowth. Live GCaMP imaging of regenerating fins showed T-type Cacna1g channels enable Ca 2+ dynamics in distal fibroblast-lineage blastemal mesenchyme during the outgrowth phase. We conclude "bioelectricity" for fin size control likely entirely reflects voltage-modulated Ca 2+ dynamics in fibroblast-lineage blastemal cells that specifically and steadily decelerates outgrowth at a rate tuned to restore the original fin size.
Collapse
|
3
|
Zhang S, Wang H, Meng Y, Li M, Li Y, Ye X, Duan S, Xiao S, Lu H, Zhong K. Ethyl butyrate inhibits caudal fin regeneration in adult zebrafish by disrupting extracellular matrix remodeling. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107111. [PMID: 39366190 DOI: 10.1016/j.aquatox.2024.107111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Wound healing and tissue regeneration are influenced by a variety of factors. Adverse lifestyle habits, such as excessive alcohol consumption, delay wound healing and increase the risk of secondary infections. Ethyl butyrate is a common food additive widely used to enhance the aroma of alcoholic beverages. This additive is generally considered harmless to human health in both industrial and domestic settings. However, the ecotoxicity and its effects on wound healing have not been elucidated. In this study, we used zebrafish as the experimental animal, and the caudal fins were amputated to explore the effects of ethyl butyrate on wound healing and tissue regeneration. The effect of ethyl butyrate on blastema and bone regeneration and its impact on the transcriptional levels of regeneration-related genes and inflammation-related genes were evaluated. RNA-seq was conducted to determine the differentially expressed genes (DEGs) between the treatment and the control groups. KEGG and GO analysis was conducted to explore the functions of DEGs. Significantly enriched GO terms and KEGG pathways were identified to explore the molecular mechanism underlying the inhibition of zebrafish caudal fin regeneration by ethyl butyrate. The results demonstrated that ethyl butyrate significantly inhibited the regeneration of zebrafish caudal fins, including blastema and bone regeneration. Ethyl butyrate exposure significantly downregulated the expression of genes associated with bone and blastema regeneration and inflammation response. KEGG and GO functional analyses revealed that the DEGs were associated with significant enrichment of extracellular matrix-receptor interactions. Ethyl butyrate treatment downregulated the expression of most extracellular matrix-related genes. These findings indicate that ethyl butyrate potentially modulates pathways associated with the structure, adhesion, modification, and degradation of the extracellular matrix, thereby disrupting extracellular matrix remodeling, inhibiting wound inflammation, impairing blastema and bone regeneration and ultimately hindering caudal fin regeneration. In summary, the findings demonstrate that ethyl butyrate disrupts extracellular matrix remodeling and inhibits the regeneration of zebrafish caudal fins. These results provide valuable insights into the rational use of ethyl butyrate and further investigation of wound healing mechanisms.
Collapse
Affiliation(s)
- Sijie Zhang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Hao Wang
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- School of Medicine, Tongji University, Shanghai 200000, China
| | - Mijia Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Yang Li
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Xinhao Ye
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shiyi Duan
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Shimei Xiao
- National Center of Quality Testing and Inspection for Tungsten and Rare Earth Products, Ganzhou 341000, China; Jiangxi Institute of Tungsten and Rare Earth, Ganzhou 341000, China
| | - Huiqiang Lu
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China
| | - Keyuan Zhong
- Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Shiyuan South Rd, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
4
|
Pfannenstiel JJ, Duong MTH, Cluff D, Sherrill LM, Colquhoun I, Cadoux G, Thorne D, Pääkkönen J, Schemmel NF, O’Connor J, Saenjamsai P, Feng M, Hageman MJ, Johnson DK, Roy A, Lehtiö L, Ferraris DV, Fehr AR. Identification of a series of pyrrolo-pyrimidine based SARS-CoV-2 Mac1 inhibitors that repress coronavirus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620664. [PMID: 39554145 PMCID: PMC11565749 DOI: 10.1101/2024.10.28.620664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Coronaviruses (CoVs) can emerge from zoonotic sources and cause severe diseases in humans and animals. All CoVs encode for a macrodomain (Mac1) that binds to and removes ADP-ribose from target proteins. SARS-CoV-2 Mac1 promotes virus replication in the presence of interferon (IFN) and blocks the production of IFN, though the mechanisms by which it mediates these functions remain unknown. Mac1 inhibitors could help elucidate these mechanisms and serve as therapeutic agents against CoV-induced diseases. We previously identified compound 4a (a.k.a. MCD-628), a pyrrolo-pyrimidine that inhibited Mac1 activity in vitro at low micromolar levels. Here, we determined the binding mode of 4a by crystallography, further defining its interaction with Mac1. However, 4a did not reduce CoV replication, which we hypothesized was due to its acidic side chain limiting permeability. To test this hypothesis, we developed several hydrophobic derivatives of 4a. We identified four compounds that both inhibited Mac1 in vitro and inhibited murine hepatitis virus (MHV) replication: 5a, 5c, 6d, and 6e. Furthermore, 5c and 6e inhibited SARS-CoV-2 replication only in the presence of IFNγ, similar to a Mac1 deletion virus. To confirm their specificity, we passaged MHV in the presence of 5a to identify drug-resistant mutations and identified an alanine-to-threonine and glycine-to-valine double mutation in Mac1. Recombinant virus with these mutations had enhanced replication compared to WT virus when treated with 5a, demonstrating the specificity of these compounds during infection. However, this virus is highly attenuated in vivo, indicating that drug-resistance emerged at the expense of viral fitness.
Collapse
Affiliation(s)
| | - Men Thi Hoai Duong
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Daniel Cluff
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Lavania M. Sherrill
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Iain Colquhoun
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Gabrielle Cadoux
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Devyn Thorne
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Johan Pääkkönen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Joseph O’Connor
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Pradtahna Saenjamsai
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Mei Feng
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas 66047, USA
| | - Michael J. Hageman
- Biopharmaceutical Innovation & Optimization Center, University of Kansas, Lawrence, Kansas 66047, USA
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | - David K. Johnson
- Molecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core, University of Kansas, Lawrence, Kansas, USA
| | - Anuradha Roy
- Infectious Disease Assay Development Laboratory/HTS, University of Kansas, Lawrence, Kansas, USA
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Dana V. Ferraris
- McDaniel College Department of Chemistry, 2 College Hill, McDaniel College, Westminster, Maryland 21157, USA
| | - Anthony R. Fehr
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Massoz L, Bergemann D, Lavergne A, Reynders C, Désiront C, Goossens C, Flasse L, Peers B, Voz MM, Manfroid I. Negative cell cycle regulation by calcineurin is necessary for proper beta cell regeneration in zebrafish. eLife 2024; 12:RP88813. [PMID: 39383064 PMCID: PMC11464004 DOI: 10.7554/elife.88813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.
Collapse
Affiliation(s)
- Laura Massoz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - David Bergemann
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Arnaud Lavergne
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
- GIGA-Genomics Core Facility, GIGA, University of LiègLiègeBelgium
| | - Célia Reynders
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Caroline Désiront
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Chiara Goossens
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Lydie Flasse
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Bernard Peers
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Marianne M Voz
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| | - Isabelle Manfroid
- Zebrafish Development and Disease Models Laboratory, GIGA-Stem Cells, University of LiègeLiègeBelgium
| |
Collapse
|
6
|
Ortega Granillo A, Zamora D, Schnittker RR, Scott AR, Spluga A, Russell J, Brewster CE, Ross EJ, Acheampong DA, Zhang N, Ferro K, Morrison JA, Rubinstein BY, Perera AG, Wang W, Sánchez Alvarado A. Positional information modulates transient regeneration-activated cell states during vertebrate appendage regeneration. iScience 2024; 27:110737. [PMID: 39286507 PMCID: PMC11404194 DOI: 10.1016/j.isci.2024.110737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Injury is common in the life of organisms. Because the extent of damage cannot be predicted, injured organisms must determine how much tissue needs to be restored. Although it is known that amputation position affects the regeneration speed of appendages, mechanisms conveying positional information remain unclear. We investigated tissue dynamics in regenerating caudal fins of the African killifish (Nothobranchius furzeri) and found position-specific, differential spatial distribution modulation, persistence, and magnitude of proliferation. Single-cell RNA sequencing revealed a transient regeneration-activated cell state (TRACS) in the basal epidermis that is amplified to match a given amputation position and expresses components and modifiers of the extracellular matrix (ECM). Notably, CRISPR-Cas9-mediated deletion of the ECM modifier sequestosome 1 (sqstm1) increased the regenerative capacity of distal injuries, suggesting that regeneration growth rate can be uncoupled from amputation position. We propose that basal epidermis TRACS transduce positional information to the regenerating blastema by remodeling the ECM.
Collapse
Affiliation(s)
| | - Daniel Zamora
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Robert R Schnittker
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alessia Spluga
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jonathon Russell
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Carolyn E Brewster
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Daniel A Acheampong
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Ning Zhang
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Kevin Ferro
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Anoja G Perera
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Wei Wang
- National Institute of Biological Sciences, 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | | |
Collapse
|
7
|
Jiang X, Zhao K, Sun Y, Song X, Yi C, Xiong T, Wang S, Yu Y, Chen X, Liu R, Yan X, Antos CL. The scale of zebrafish pectoral fin buds is determined by intercellular K+ levels and consequent Ca2+-mediated signaling via retinoic acid regulation of Rcan2 and Kcnk5b. PLoS Biol 2024; 22:e3002565. [PMID: 38527087 PMCID: PMC11018282 DOI: 10.1371/journal.pbio.3002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/15/2024] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
K+ channels regulate morphogens to scale adult fins, but little is known about what regulates the channels and how they control morphogen expression. Using the zebrafish pectoral fin bud as a model for early vertebrate fin/limb development, we found that K+ channels also scale this anatomical structure, and we determined how one K+-leak channel, Kcnk5b, integrates into its developmental program. From FLIM measurements of a Förster Resonance Energy Transfer (FRET)-based K+ sensor, we observed coordinated decreases in intracellular K+ levels during bud growth, and overexpression of K+-leak channels in vivo coordinately increased bud proportions. Retinoic acid, which can enhance fin/limb bud growth, decreased K+ in bud tissues and up-regulated regulator of calcineurin (rcan2). rcan2 overexpression increased bud growth and decreased K+, while CRISPR-Cas9 targeting of rcan2 decreased growth and increased K+. We observed similar results in the adult caudal fins. Moreover, CRISPR targeting of Kcnk5b revealed that Rcan2-mediated growth was dependent on the Kcnk5b. We also found that Kcnk5b enhanced depolarization in fin bud cells via Na+ channels and that this enhanced depolarization was required for Kcnk5b-enhanced growth. Lastly, Kcnk5b-induced shha transcription and bud growth required IP3R-mediated Ca2+ release and CaMKK activity. Thus, we provide a mechanism for how retinoic acid via rcan2 can regulate K+-channel activity to scale a vertebrate appendage via intercellular Ca2+ signaling.
Collapse
Affiliation(s)
- Xiaowen Jiang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Kun Zhao
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xinyue Song
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Chao Yi
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Tianlong Xiong
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Yi Yu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Center for Quantitative Biology, Peking University, Beijing, People’s Republic of China
| | - Xiduo Chen
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Run Liu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Christopher L. Antos
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
- Institut für Pharmakologie und Toxikologie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Clevenger T, Paz J, Stafford A, Amos D, Hayes AW. An Evaluation of Zebrafish, an Emerging Model Analyzing the Effects of Toxicants on Cognitive and Neuromuscular Function. Int J Toxicol 2024; 43:46-62. [PMID: 37903286 DOI: 10.1177/10915818231207966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
An emerging alternative to conventional animal models in toxicology research is the zebrafish. Their accelerated development, regenerative capacity, transparent physical appearance, ability to be genetically manipulated, and ease of housing and care make them feasible and efficient experimental models. Nonetheless, their most esteemed asset is their 70% (+) genetic similarity with the human genome, which allows the model to be used in a variety of clinically relevant studies. With these attributes, we propose the zebrafish is an excellent model for analyzing cognitive and neuromuscular responses when exposed to toxicants. Neurocognition can be readily analyzed using visual discrimination, memory and learning, and social behavior testing. Neuromuscular function can be analyzed using techniques such as the startle response, assessment of activity level, and evaluation of critical swimming speed. Furthermore, selectively mutated zebrafish is another novel application of this species in behavioral and pharmacological studies, which can be exploited in toxicological studies. There is a critical need in biomedical research to discover ethical and cost-effective methods to develop new products, including drugs. Through mutagenesis, zebrafish models have become key in meeting this need by advancing the field in numerous areas of biomedical research.
Collapse
Affiliation(s)
| | - Jakob Paz
- Florida College, Temple Terrace, FL, USA
| | | | | | - A Wallace Hayes
- College of Public Health, University of South Florida, Temple Terrace, FL, USA
| |
Collapse
|
9
|
Sun W, Ye B, Chen S, Zeng L, Lu H, Wan Y, Gao Q, Chen K, Qu Y, Wu B, Lv X, Guo X. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res 2023; 11:65. [PMID: 38123549 PMCID: PMC10733346 DOI: 10.1038/s41413-023-00302-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023] Open
Abstract
The skeleton is a highly innervated organ in which nerve fibers interact with various skeletal cells. Peripheral nerve endings release neurogenic factors and sense skeletal signals, which mediate bone metabolism and skeletal pain. In recent years, bone tissue engineering has increasingly focused on the effects of the nervous system on bone regeneration. Simultaneous regeneration of bone and nerves through the use of materials or by the enhancement of endogenous neurogenic repair signals has been proven to promote functional bone regeneration. Additionally, emerging information on the mechanisms of skeletal interoception and the central nervous system regulation of bone homeostasis provide an opportunity for advancing biomaterials. However, comprehensive reviews of this topic are lacking. Therefore, this review provides an overview of the relationship between nerves and bone regeneration, focusing on tissue engineering applications. We discuss novel regulatory mechanisms and explore innovative approaches based on nerve-bone interactions for bone regeneration. Finally, the challenges and future prospects of this field are briefly discussed.
Collapse
Affiliation(s)
- Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Siyue Chen
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lian Zeng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongwei Lu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanzhen Qu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Bin Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiao Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
10
|
Zhang M, Liu C, Zhao L, Zhang X, Su Y. The Emerging Role of Protein Phosphatase in Regeneration. Life (Basel) 2023; 13:life13051216. [PMID: 37240861 DOI: 10.3390/life13051216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Maintaining normal cellular behavior is essential for the survival of organisms. One of the main mechanisms to control cellular behavior is protein phosphorylation. The process of protein phosphorylation is reversible under the regulation of protein kinases and protein phosphatases. The importance of kinases in numerous cellular processes has been well recognized. In recent years, protein phosphatases have also been demonstrated to function actively and specifically in various cellular processes and thus have gained more and more attention from researchers. In the animal kingdom, regeneration frequently occurs to replace or repair damaged or missing tissues. Emerging evidence has revealed that protein phosphatases are crucial for organ regeneration. In this review, after providing a brief overview of the classification of protein phosphatases and their functions in several representative developmental processes, we highlight the critical roles that protein phosphatases play in organ regeneration by summarizing the most recent research on the function and underlying mechanism of protein phosphatase in the regeneration of the liver, bone, neuron, and heart in vertebrates.
Collapse
Affiliation(s)
- Meiling Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenglin Liu
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Long Zhao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Xuejiao Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Su
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Li X, Liao X, Chen C, Zhang L, Sun S, Wan M, Liu J, Huang L, Yang D, Hu H, Ma X, Zhong Z, Liu F, Xiong G, Lu H, Chen J, Cao Z. Propranolol hydrochloride induces neurodevelopmental toxicity and locomotor disorders in zebrafish larvae. Neurotoxicology 2022; 93:337-347. [DOI: 10.1016/j.neuro.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
12
|
Cao Z, Guo C, Chen G, Liu J, Ni H, Liu F, Xiong G, Liao X, Lu H. Shikonin Inhibits Fin Regeneration in Zebrafish Larvae. Cells 2022; 11:cells11203187. [PMID: 36291055 PMCID: PMC9601185 DOI: 10.3390/cells11203187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Shikonin is a naphthoquinone compound extracted from Chinese comfrey for treating cancer. However, there are few reports on its research on vertebrate tissue regeneration. Zebrafish is an ideal model for studying organ regeneration. In this study, we found that 3-dpf of zebrafish larvae exposed to shikonin at concentrations of 0.2, 0.3, and 0.4 mg/L showed increasingly inhibited regeneration of the tail fin. Immunohistochemical staining showed that shikonin exposure from 6 to 12 hpa increased the number of apoptotic cells in the caudal fin wound of larvae and decreased the number of proliferating cells. Shikonin exposure was found to up-regulate oxidative stress, increase ROS levels, and reduce neutrophil recruitment in the early stage of wound repair. Moreover, shikonin exposure caused disordered expression of fin regeneration blastemal-related genes. The use of astaxanthin to down-regulate oxidative stress was found to significantly reduce the inhibition of caudal fin regeneration. Mixed exposure of AMPK inhibitors or fullerenes (C60) with shikonin also showed the similar rescue effect. Collectively, our study showed that shikonin inhibited fin regeneration in zebrafish larvae by the upregulation of oxidative stress level and AMPK signaling pathway. This research provides valuable information on the mechanism of action of shikonin for its safe application.
Collapse
Affiliation(s)
- Zigang Cao
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| | | | | | | | | | | | | | | | - Huiqiang Lu
- Correspondence: (Z.C.); (H.L.); Tel./Fax: +86-796-8116182 (Z.C.)
| |
Collapse
|
13
|
Cao J, Zhang Y, Zhang P, Zhang Z, Zhang B, Feng Y, Li Z, Yang Y, Meng Q, He L, Cai Y, Wang Z, Li J, Chen X, Liu H, Hong A, Zheng W, Chen X. Turning gray selenium into a nanoaccelerator of tissue regeneration by PEG modification. Bioact Mater 2022; 15:131-144. [PMID: 35386336 PMCID: PMC8940942 DOI: 10.1016/j.bioactmat.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in nearly all human physiological processes but suffers from a narrow margin between benefit and toxicity. The nanoform of selenium has been proven shown to be more bioavailable and less toxic, yet significant challenges remain regarding the efficient and feasible synthesis of biologically active nanoselenium. In addition, although nanoselenium has shown a variety of biological activities, more interesting nanoselenium features are expected. In this work, hydrosoluble nanoselenium termed Nano-Se in the zero oxidation state was synthesized between gray Se and PEG. A zebrafish screen was carried out in zebrafish larvae cocultured with Nano-Se. Excitingly, Nano-Se promoted the action of the FGFR, Wnt, and VEGF signaling pathways, which play crucial roles in tissue regeneration. As expected, Nano-Se not only achieved the regeneration of zebrafish tail fins and mouse skin but also promoted the repair of skin in diabetic mice while maintaining a profitable safe profile. In brief, the Nano-Se reported here provided an efficient and feasible method for bioactive nanoselenium synthesis and not only expanded the application of nanoselenium to regenerative medicine but also likely reinvigorated efforts for discovering more peculiarunique biofunctions of nanoselenium in a great variety of human diseases. It was found that selenium nanoparticles through FGFR、Wnt、VEGFR signal pathway to promote tissue regeneration; Development a new water-soluble, bio-compatible, zero oxidation state Nano-Se; Development a new efficient and safe nano-biologic agent for promoting tissue regeneration.
Collapse
Affiliation(s)
- Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zilei Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yanxian Feng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Zhixin Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Qilin Meng
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Liu He
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Yulin Cai
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Zhenyu Wang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Jie Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Xue Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Corresponding author.
| | - Wenjie Zheng
- Department of Chemistry, Jinan University, Guangzhou, China
- Corresponding author.
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
- Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510240, China
- Corresponding author. Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial biotechnology drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Li J, Wen W, Zhang S, Zhou C, Feng Y, Li X. The Expression and Function of lincRNA-154324 and the Adjoining Protein-Coding Gene vmp1 in the Caudal Fin Regeneration of Zebrafish. Int J Mol Sci 2022; 23:ijms23168944. [PMID: 36012210 PMCID: PMC9409064 DOI: 10.3390/ijms23168944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Caudal fin regeneration is regulated by a variety of mechanisms, but the role of long non-coding RNA (lncRNA) has rarely been studied. The present study aimed to describe the landscape of lncRNAs during caudal fin regeneration using whole transcriptome sequencing, and then to conduct a functional study on the target lncRNAs using real-time fluorescent quantitative PCR (RT-qPCR), in situ hybridization, and the CRISPR/Cas9 method for lncRNA gene knockout. The results of the transcriptome sequencing showed that a total of 381 lncRNAs were differentially expressed, among which ENSDART00000154324 (lincRNA-154324) was found to be highly related to caudal fin regeneration, and thus it was chosen as the target lncRNA for the subsequent functional study. The results regarding the temporal and spatial expression of lincRNA-154324 and the gene knockout results from CRISPR/Cas9 indicated that lincRNA-154324 is involved in the caudal fin regeneration of zebrafish. Importantly, we serendipitously discovered that the cis correlation coefficient between lincRNA-154324 and its neighboring gene vacuole membrane protein 1 (vmp1) is extremely high, and they are essential for the process of caudal fin regeneration. Moreover, studies have found that vmp1 plays an important role in protein secretion, organelle formation, multicellular development, and autophagy. Collectively, our result may provide a framework for the identification and analysis of lncRNAs involved in the regeneration of the zebrafish caudal fin.
Collapse
Affiliation(s)
- Jing Li
- The School of Medical Humanities, Xinxiang Medical University, Xinxiang 453003, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wenjun Wen
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Shuqiang Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chune Zhou
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yiyi Feng
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: or
| |
Collapse
|
15
|
Osorio-Méndez D, Miller A, Begeman IJ, Kurth A, Hagle R, Rolph D, Dickson AL, Chen CH, Halloran M, Poss KD, Kang J. Voltage-gated sodium channel scn8a is required for innervation and regeneration of amputated adult zebrafish fins. Proc Natl Acad Sci U S A 2022; 119:e2200342119. [PMID: 35867745 PMCID: PMC9282381 DOI: 10.1073/pnas.2200342119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Teleost fishes and urodele amphibians can regenerate amputated appendages, whereas this ability is restricted to digit tips in adult mammals. One key component of appendage regeneration is reinnervation of the wound area. However, how innervation is regulated in injured appendages of adult vertebrates has seen limited research attention. From a forward genetics screen for temperature-sensitive defects in zebrafish fin regeneration, we identified a mutation that disrupted regeneration while also inducing paralysis at the restrictive temperature. Genetic mapping and complementation tests identify a mutation in the major neuronal voltage-gated sodium channel (VGSC) gene scn8ab. Conditional disruption of scn8ab impairs early regenerative events, including blastema formation, but does not affect morphogenesis of established regenerates. Whereas scn8ab mutations reduced neural activity as expected, they also disrupted axon regrowth and patterning in fin regenerates, resulting in hypoinnervation. Our findings indicate that the activity of VGSCs plays a proregenerative role by promoting innervation of appendage stumps.
Collapse
Affiliation(s)
- Daniel Osorio-Méndez
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Andrew Kurth
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Ryan Hagle
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Daniela Rolph
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| | - Amy L. Dickson
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mary Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705
| | - Kenneth D. Poss
- Duke Regeneration Center, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI 53705
| |
Collapse
|
16
|
Sehring IM, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 2022; 11:77614. [PMID: 35748539 PMCID: PMC9259016 DOI: 10.7554/elife.77614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.
Collapse
Affiliation(s)
| | | | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
17
|
Regenerative Polarity of the Fin Ray in Zebrafish Caudal Fin and Related Tissue Formation on the Cut Surface. J Dev Biol 2021; 9:jdb9040050. [PMID: 34842743 PMCID: PMC8629015 DOI: 10.3390/jdb9040050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/23/2023] Open
Abstract
Zebrafish caudal fin rays are used as a model system for regeneration because of their high regenerative ability, but studies on the regeneration polarity of the fin ray are limited. To investigate this regeneration polarity, we made a hole to excise part of the fin ray and analyzed the regeneration process. We confirmed that the fin rays always regenerated from the proximal margin toward the distal margin, as previously reported; however, regeneration-related genes were expressed at both the proximal and distal edges of the hole in the early stage of regeneration, suggesting that the regenerative response also occurs at the distal edge. One difference between the proximal and distal margins is a sheet-like tissue that is formed on the apical side of the regenerated tissue at the proximal margin. This sheet-like tissue was not observed at the distal edge. To investigate whether the distal margin was also capable of forming this sheet-like tissue and subsequent regeneration, we kept the distal margin separated from the proximal margin by manipulation. Consequently, the sheet-like tissue was formed at the distal margin and regeneration of the fin ray was also induced. The regenerated fin rays from the distal margin protruded laterally from the caudal fin and then bent distally, and their ends showed the same characteristics as those of the normal fin rays. These results suggest that fin rays have an ability to regenerate in both directions; however, under normal conditions, regeneration is restricted to the proximal margin because the sheet-like tissue is preferentially formed on the apical side of the regenerating tissue from the proximal margin.
Collapse
|
18
|
Cao Z, Yang Q, Luo L. Zebrafish as a Model for Germ Cell Regeneration. Front Cell Dev Biol 2021; 9:685001. [PMID: 34368134 PMCID: PMC8339553 DOI: 10.3389/fcell.2021.685001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
Germ cell acts as a link between transfer of genetic information and process of species evolution. Defects or malformations of germ cells can lead to infertility or tumors. Germ cell regeneration is one of the effective ways to treat the infertility. Therefore, it is of great scientific and clinical interests to dissect the cellular and molecular mechanisms underlying germ cell regeneration. Progress have already been achieved in germ cell regeneration using model organisms for decades. However, key open issues regarding the underpinning mechanisms still remain poorly understood. Zebrafish is well known for its powerful regenerative capacity to regenerate various tissues and organs. Recently, advances in genomics, genetics, microscopy, and single cell technologies have made zebrafish an attractive model to study germ cell development and regeneration. Here we review recent technologies for the study of germ cell regeneration in zebrafish, highlight the potential of germline stem cells (GSCs) in the contribution to reproductive system regeneration, and discuss the nanos. Wnt signaling and germ cell-specific factors involved in the regulation of germ cell regeneration.
Collapse
Affiliation(s)
- Zigang Cao
- Jiangxi Key Laboratory of Organ Developmental Biology, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Stewart S, Le Bleu HK, Yette GA, Henner AL, Robbins AE, Braunstein JA, Stankunas K. longfin causes cis-ectopic expression of the kcnh2a ether-a-go-go K+ channel to autonomously prolong fin outgrowth. Development 2021; 148:dev199384. [PMID: 34061172 PMCID: PMC8217709 DOI: 10.1242/dev.199384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Organs stop growing to achieve a characteristic size and shape in scale with the body of an animal. Likewise, regenerating organs sense injury extents to instruct appropriate replacement growth. Fish fins exemplify both phenomena through their tremendous diversity of form and remarkably robust regeneration. The classic zebrafish mutant longfint2 develops and regenerates dramatically elongated fins and underlying ray skeleton. We show longfint2 chromosome 2 overexpresses the ether-a-go-go-related voltage-gated potassium channel kcnh2a. Genetic disruption of kcnh2a in cis rescues longfint2, indicating longfint2 is a regulatory kcnh2a allele. We find longfint2 fin overgrowth originates from prolonged outgrowth periods by showing Kcnh2a chemical inhibition during late stage regeneration fully suppresses overgrowth. Cell transplantations demonstrate longfint2-ectopic kcnh2a acts tissue autonomously within the fin intra-ray mesenchymal lineage. Temporal inhibition of the Ca2+-dependent phosphatase calcineurin indicates it likewise entirely acts late in regeneration to attenuate fin outgrowth. Epistasis experiments suggest longfint2-expressed Kcnh2a inhibits calcineurin output to supersede growth cessation signals. We conclude ion signaling within the growth-determining mesenchyme lineage controls fin size by tuning outgrowth periods rather than altering positional information or cell-level growth potency.
Collapse
Affiliation(s)
- Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Heather K. Le Bleu
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Gabriel A. Yette
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Astra L. Henner
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Amy E. Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| | - Joshua A. Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR 97403-1229, USA
- Department of Biology, University of Oregon, 77 Klamath Hall, Eugene, OR 97403-1210, USA
| |
Collapse
|
20
|
Yi C, Spitters TWGM, Al-Far EADA, Wang S, Xiong T, Cai S, Yan X, Guan K, Wagner M, El-Armouche A, Antos CL. A calcineurin-mediated scaling mechanism that controls a K +-leak channel to regulate morphogen and growth factor transcription. eLife 2021; 10:e60691. [PMID: 33830014 PMCID: PMC8110307 DOI: 10.7554/elife.60691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 04/07/2021] [Indexed: 01/10/2023] Open
Abstract
The increase in activity of the two-pore potassium-leak channel Kcnk5b maintains allometric juvenile growth of adult zebrafish appendages. However, it remains unknown how this channel maintains allometric growth and how its bioelectric activity is regulated to scale these anatomical structures. We show the activation of Kcnk5b is sufficient to activate several genes that are part of important development programs. We provide in vivo transplantation evidence that the activation of gene transcription is cell autonomous. We also show that Kcnk5b will induce the expression of different subsets of the tested developmental genes in different cultured mammalian cell lines, which may explain how one electrophysiological stimulus can coordinately regulate the allometric growth of diverse populations of cells in the fin that use different developmental signals. We also provide evidence that the post-translational modification of serine 345 in Kcnk5b by calcineurin regulates channel activity to scale the fin. Thus, we show how an endogenous bioelectric mechanism can be regulated to promote coordinated developmental signaling to generate and scale a vertebrate appendage.
Collapse
Affiliation(s)
- Chao Yi
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Tim WGM Spitters
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | | | - Sen Wang
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - TianLong Xiong
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Simian Cai
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Xin Yan
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
| | - Kaomei Guan
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Michael Wagner
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
- Klinik für Innere Medizin und Kardiologie, Herzzentrum Dresden, Technische Universität DresdenDresdenGermany
| | - Ali El-Armouche
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| | - Christopher L Antos
- School of Life Sciences and Technology, ShanghaiTech UniversityShanghaiChina
- Institut für Pharmakologie und Toxikologie, Technische Universität DresdenDresdenGermany
| |
Collapse
|