1
|
Eccleston RC, Manko E, Campino S, Clark TG, Furnham N. A computational method for predicting the most likely evolutionary trajectories in the stepwise accumulation of resistance mutations. eLife 2023; 12:e84756. [PMID: 38132182 PMCID: PMC10807863 DOI: 10.7554/elife.84756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.
Collapse
Affiliation(s)
- Ruth Charlotte Eccleston
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Emilia Manko
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Susana Campino
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Taane G Clark
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| |
Collapse
|
2
|
Braberg H, Echeverria I, Kaake RM, Sali A, Krogan NJ. From systems to structure - using genetic data to model protein structures. Nat Rev Genet 2022; 23:342-354. [PMID: 35013567 PMCID: PMC8744059 DOI: 10.1038/s41576-021-00441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Collapse
Affiliation(s)
- Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, CA, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|