1
|
Chen L, Huai C, Song C, Wu S, Xu Y, Yi Z, Tang J, Fan L, Wu X, Ge Z, Liu C, Jiang D, Weng S, Wang G, Zhang X, Zhao X, Shen L, Zhang N, Wu H, Wang Y, Guo Z, Zhang S, Jiang B, Zhou W, Ma J, Li M, Chu Y, Zhou C, Lv Q, Xu Q, Zhu W, Zhang Y, Lian W, Liu S, Li X, Gao S, Liu A, He L, Yang Z, Dai B, Ye J, Lin R, Lu Y, Yan Q, Hu Y, Xing Q, Huang H, Qin S. Refining antipsychotic treatment strategies in schizophrenia: discovery of genetic biomarkers for enhanced drug response prediction. Mol Psychiatry 2025; 30:2362-2371. [PMID: 39562719 DOI: 10.1038/s41380-024-02841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Schizophrenia (SCZ) is a severe mental disorder affecting around 1% of individuals worldwide. The variability in response to antipsychotic drugs (APDs) among SCZ patients presents a significant challenge for clinicians in determining the most effective medication. In this study, we investigated the biological markers and established a predictive model for APD response based on a large-scale genome-wide association study using 3269 Chinese schizophrenia patients. Each participant underwent an 8-week treatment regimen with one of five mono-APDs: olanzapine, risperidone, aripiprazole, quetiapine, or amisulpride. By dividing the response into ordinal groups of "high", "medium", and "low", we mitigated the bias of unclear treatment outcome and identified three novel significantly associated genetic loci in or near CDH12, WDR11, and ELAVL2. Additionally, we developed predictive models of response to each specific APDs, with accuracies ranging from 79.5% to 98.0%. In sum, we established an effective method to predict schizophrenia patients' response to APDs across three categories, integrating novel biomarkers to guide personalized medicine strategies.
Collapse
Affiliation(s)
- Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chuanfu Song
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Shaochang Wu
- The Second People's Hospital of Lishui, Lishui, China
| | - Yong Xu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen City, Guangdong Province, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzi Fan
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Xuming Wu
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Zhenhua Ge
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Chuanxin Liu
- Department of Psychiatry, Jining Medical University School of Mental Health, Jining, China
| | - Deguo Jiang
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Saizheng Weng
- Fuzhou Neuro-psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Guoqiang Wang
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi, China
| | | | - Xudong Zhao
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Na Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Shanghai Jiao Tong University Sichuan Research Institute (SJTUSRI), Chengdu, Sichuan Province, China
| | - Hao Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yongzhi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenglin Guo
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Suli Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Bixuan Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health & Department of Developmental and Behavioural Paediatric & Child Primary Care, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsong Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yunpeng Chu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Chenxi Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Yan Zhang
- The Second People's Hospital of Lishui, Lishui, China
| | - Weibin Lian
- The Second People's Hospital of Lishui, Lishui, China
| | - Sha Liu
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Songyin Gao
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Aihong Liu
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Lei He
- The Affiliated Encephalopathy Hospital of Zhengzhou University, Zhumadian Second People's Hospital, Zhumadian, China
| | - Zhenzhen Yang
- Department of Psychiatry, Jining Medical University School of Mental Health, Jining, China
| | - Bojian Dai
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Jiaen Ye
- Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Ruiqian Lin
- Fuzhou Neuro-psychiatric Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Yana Lu
- Wuxi Mental Health Center Affiliated to Nanjing Medical University, Wuxi, China
| | - Qi Yan
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Yalan Hu
- Jiangsu Nantong Fourth People's Hospital, Nantong, Jiangsu Province, China
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Hailiang Huang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Jiao Tong University Sichuan Research Institute (SJTUSRI), Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Wolfe Z, Liska D, Norris A. Deep transcriptomics reveals cell-specific isoforms of pan-neuronal genes. Nat Commun 2025; 16:4507. [PMID: 40379625 PMCID: PMC12084633 DOI: 10.1038/s41467-025-58296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/18/2025] [Indexed: 05/19/2025] Open
Abstract
Profiling alternative splicing in single neurons using RNA-seq is challenging due to low capture efficiency and sensitivity. We therefore know much less about splicing patterns and regulation across neurons than we do about gene expression. Here we leverage unique attributes of C. elegans to investigate deep neuron-specific transcriptomes with biological replicates generated by the CeNGEN consortium, enabling high-confidence assessment of splicing across neuron types even for lowly-expressed genes. Global splicing maps reveal several striking observations, including pan-neuronal genes harboring cell-specific splice variants, and abundant differential intron retention across neuron types. We develop an algorithm to identify unique cell-specific expression patterns, which reveals both cell-specific isoforms and potential regulatory factors establishing these isoforms. Genetic interrogation of these factors in vivo identifies three distinct splicing factors employed to control splicing in a single neuron. Finally, we develop a user-friendly platform for spatial transcriptomic visualization of these splicing patterns with single-neuron resolution.
Collapse
Affiliation(s)
- Zachery Wolfe
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA
| | - David Liska
- Office of Information Technology, Southern Methodist University, Dallas, TX, USA
| | - Adam Norris
- Department of Biochemistry, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
3
|
Pilaka-Akella P, Sadek NH, Fusca D, Cutter AD, Calarco JA. Neuron-specific repression of alternative splicing by the conserved CELF protein UNC-75 in Caenorhabditis elegans. Genetics 2025; 229:iyaf025. [PMID: 40059624 PMCID: PMC12005262 DOI: 10.1093/genetics/iyaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025] Open
Abstract
Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA-binding proteins (RBPs). Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RBPs are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders. In this study, we sought to characterize specific mechanisms that drive tissue-specific splicing in vivo of a model switch-like exon regulated by the neuronal-enriched CELF ortholog in Caenorhabditis elegans, UNC-75. Using sequence alignments, we identified deeply conserved intronic UNC-75 binding motifs overlapping the 5' splice site and upstream of the 3' splice site, flanking a strongly neural-repressed alternative exon in the Zonula Occludens gene zoo-1. We confirmed that loss of UNC-75 or mutations in either of these cis-elements lead to substantial de-repression of the alternative exon in neurons. Moreover, mis-expression of UNC-75 in muscle cells is sufficient to induce the neuron-like robust skipping of this alternative exon. Lastly, we demonstrate that overlapping an UNC-75 motif within a heterologous 5' splice site leads to increased skipping of the adjacent alternative exon in an unrelated splicing event. Together, we have demonstrated that a specific configuration and combination of cis elements bound by this important family of RBPs can achieve robust splicing outcomes in vivo.
Collapse
Affiliation(s)
- Pallavi Pilaka-Akella
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Nour H Sadek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Daniel Fusca
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
4
|
Ruan X, Hu K, Yang Y, Yang R, Tseng E, Kang B, Kauffman A, Zhong R, Zhang X. Cell-Type-Specific Splicing of Transcription Regulators and Ptbp1 by Rbfox1/2/3 in the Developing Neocortex. J Neurosci 2025; 45:e0822242024. [PMID: 39532536 PMCID: PMC11823335 DOI: 10.1523/jneurosci.0822-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
How master splicing regulators cross talk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq analyses of the developing neocortex uncover variable expression of the Rbfox1/2/3 genes and enriched alternative splicing events in transcription regulators, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glial progenitors induces neuronal splicing events preferentially in transcription regulators such as Meis2 and Tead1 Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in Ptbp1 Simultaneous ablation of Rbfox1/2/3 in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of Meis2 promotes Tgfb3 transcription, while the Meis2 neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex. (The sex has not been reported to affect cortical neurogenesis in mice, and embryos of both sexes were studied without distinguishing one or the other.).
Collapse
Affiliation(s)
- Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Kaining Hu
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Yalan Yang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Runwei Yang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | | | - Bowei Kang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Aileen Kauffman
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Rong Zhong
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637
- The Neuroscience Institute, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
5
|
Kubota N, Chen L, Zheng S. Shiba: a versatile computational method for systematic identification of differential RNA splicing across platforms. Nucleic Acids Res 2025; 53:gkaf098. [PMID: 39997221 PMCID: PMC11851117 DOI: 10.1093/nar/gkaf098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative pre-mRNA splicing (AS) is a fundamental regulatory process that generates transcript diversity and cell type variation. We developed Shiba, a comprehensive method that integrates transcript assembly, splicing event identification, read counting, and differential splicing analysis across RNA-seq platforms. Shiba excels in capturing annotated and unannotated AS events with superior accuracy, sensitivity, and reproducibility. It addresses the often-overlooked issue of junction read imbalance, significantly reducing false positives to aid target prioritization and downstream analyses. Unlike other tools that require large numbers of biological replicates or resulting in low sensitivity and high false positives, Shiba's statistics framework is agnostic to sample size, as demonstrated by simulated data and its effective application to real n= 1 RNA-seq datasets. To extend its utility to single-cell RNA-seq, we developed scShiba, which applies Shiba's pseudobulk approach to analyze splicing at the cluster level. scShiba successfully revealed AS regulation in developmental dopaminergic neurons and differences between excitatory and inhibitory neurons. Both Shiba and scShiba are available in Docker/Singularity containers and Snakemake pipelines, ensuring reproducibility. With their comprehensive capabilities, Shiba and scShiba enable systematic quantification of alternative splicing events across various platforms, laying a solid foundation for mechanistic exploration of the functional complexity in RNA splicing.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, United States
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, United States
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, United States
| |
Collapse
|
6
|
Kubota N, Chen L, Zheng S. Shiba: A versatile computational method for systematic identification of differential RNA splicing across platforms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.30.596331. [PMID: 38895326 PMCID: PMC11185541 DOI: 10.1101/2024.05.30.596331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alternative pre-mRNA splicing (AS) is a fundamental regulatory process that generates transcript diversity and cell type variation. We developed Shiba, a comprehensive method that integrates transcript assembly, splicing event identification, read counting, and differential splicing analysis across RNA-seq platforms. Shiba excels in capturing annotated and unannotated AS events with superior accuracy, sensitivity, and reproducibility. It addresses the often-overlooked issue of junction read imbalance, significantly reducing false positives to aid target prioritization and downstream analyses. Unlike other tools that require large numbers of biological replicates or resulting in low sensitivity and high false positives, Shiba's statistics framework is agnostic to sample size, as demonstrated by simulated data and its effective application to real n=1 RNA-seq datasets. To extend its utility to single-cell RNA-seq, we developed scShiba, which applies Shiba's pseudobulk approach to analyze splicing at the cluster level. scShiba successfully revealed AS regulation in developmental dopaminergic neurons and differences between excitatory and inhibitory neurons. Both Shiba and scShiba are available in Docker/Singularity containers and Snakemake pipelines, ensuring reproducibility. With their comprehensive capabilities, Shiba and scShiba enable systematic quantification of alternative splicing events across various platforms, laying a solid foundation for mechanistic exploration of the functional complexity in RNA splicing.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for RNA Biology and Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Shen CL, Tsai YY, Chou SJ, Chang YM, Tarn WY. RBM4-mediated intron excision of Hsf1 induces BDNF for cerebellar foliation. Commun Biol 2024; 7:1712. [PMID: 39738787 DOI: 10.1038/s42003-024-07328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays important roles in brain development and neural function. Constitutive knockout of the splicing regulator RBM4 reduces BDNF expression in the developing brain and causes cerebellar hypoplasia, an autism-like feature. Here, we show that Rbm4 knockout induced intron 6 retention of Hsf1, leading to downregulation of HSF1 protein and its downstream target BDNF. RBM4-mediated Hsf1 intron excision regulated BDNF expression in cultured granule cells. Ectopic expression of HSF1 restored cerebellar foliation and motor learning of Rbm4-knockout mice, indicating a critical role for RBM4-HSF1-BDNF in cerebellar foliation. Moreover, N-methyl-D-aspartate receptor (NMDAR) signaling promoted the expression and nuclear translocation of RBM4, and hence increased the expression of both HSF and BDNF. A short CU-rich motif was responsible for NMDAR- and RBM4-mediated intron excision. Finally, RBM4 and polypyrimidine tract binding (PTB) proteins play antagonistic roles in intron excision, suggesting a role for splicing regulation in BDNF expression.
Collapse
Affiliation(s)
- Chiu-Lun Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Young Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Columbia University in the City of New York, New York, USA
| | - Shen-Ju Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
McKeever PM, Sababi AM, Sharma R, Xu Z, Xiao S, McGoldrick P, Ketela T, Sato C, Moreno D, Visanji N, Kovacs GG, Keith J, Zinman L, Rogaeva E, Goodarzi H, Bader GD, Robertson J. Single-nucleus transcriptome atlas of orbitofrontal cortex in amyotrophic lateral sclerosis with a deep learning-based decoding of alternative polyadenylation mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573083. [PMID: 38187588 PMCID: PMC10769403 DOI: 10.1101/2023.12.22.573083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are two age-related and fatal neurodegenerative disorders that lie on a shared disease spectrum. While both disorders involve complex interactions between neuronal and glial cells, the specific cell-type alterations and their contributions to disease pathophysiology remain incompletely understood. Here, we applied single-nucleus RNA sequencing of the orbitofrontal cortex, a region affected in ALS-FTLD, to map cell-type specific transcriptional signatures in C9orf72-related ALS (with and without FTLD) and sporadic ALS cases. Our findings reveal disease- and cell-type-specific transcriptional changes, with neurons exhibiting the most pronounced alterations, primarily affecting mitochondrial function, protein homeostasis, and chromatin remodeling. A comparison with independent datasets from different cortical regions of C9orf72 and sporadic ALS cases showed concordance in several pathways, with neuronal STMN2 and NEFL showing consistent up-regulation between brain regions and disease subtypes. We also interrogated alternative polyadenylation (APA) as an additional layer of transcriptional regulation, demonstrating that APA events are not correlated with identified gene expression changes. To interpret these events, we developed APA-Net, a deep learning model that integrates transcript sequences with RNA-binding protein expression profiles, revealing cell type-specific patterns of APA regulation. Our atlas illuminates cell type-specific pathomechanisms of ALS/FTLD, providing a valuable resource for further investigation.
Collapse
|
9
|
Hayakawa-Yano Y, Furukawa T, Matsuo T, Ogasawara T, Nogami M, Yokoyama K, Yugami M, Shinozaki M, Nakamoto C, Sakimura K, Koyama A, Ogi K, Onodera O, Takebayashi H, Okano H, Yano M. Qki5 safeguards spinal motor neuron function by defining the motor neuron-specific transcriptome via pre-mRNA processing. Proc Natl Acad Sci U S A 2024; 121:e2401531121. [PMID: 39226364 PMCID: PMC11406248 DOI: 10.1073/pnas.2401531121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.
Collapse
Affiliation(s)
- Yoshika Hayakawa-Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Tsuyoshi Matsuo
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Takahisa Ogasawara
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Nogami
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Yokoyama
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masato Yugami
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Munehisa Shinozaki
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chihiro Nakamoto
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Akihide Koyama
- Division of Legal Medicine, Department of Community Preventive Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Kazuhiro Ogi
- The Shonan Incubation Laboratory, Shonan Research Center, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Chuo-ku, Niigata 951-8585, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
- Keio University Regenerative Medicine Research Center, Kawasaki, Kanagawa 210-0821, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
10
|
Ruan X, Hu K, Yang Y, Yang R, Tseng E, Kang B, Kauffman A, Zhong R, Zhang X. Cell-type-specific splicing of transcription regulators and Ptbp1 by Rbfox1/2/3 in the developing neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612108. [PMID: 39314274 PMCID: PMC11419088 DOI: 10.1101/2024.09.09.612108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
How master splicing regulators crosstalk with each other and to what extent transcription regulators are differentially spliced remain unclear in the developing brain. Here, cell-type-specific RNA-Seq of the developing neocortex uncover that transcription regulators are enriched for differential splicing, altering protein isoforms or inducing nonsense-mediated mRNA decay. Transient expression of Rbfox proteins in radial glia progenitors induces neuronal splicing events preferentially in transcription regulators such as Meis2 and Tead1. Surprisingly, Rbfox proteins promote the inclusion of a mammal-specific alternative exon and a previously undescribed poison exon in Ptbp1. Simultaneous ablation of Rbfox1/2/3 in the neocortex downregulates neuronal isoforms and disrupts radial neuronal migration. Furthermore, the progenitor isoform of Meis2 promotes Tgfb3 transcription, while the Meis2 neuron isoform promotes neuronal differentiation. These observations indicate that transcription regulators are differentially spliced between cell types in the developing neocortex.
Collapse
Affiliation(s)
- Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Equal contributions
| | - Kaining Hu
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Equal contributions
| | - Yalan Yang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Equal contributions
| | - Runwei Yang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | | - Bowei Kang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Aileen Kauffman
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Rong Zhong
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Weißbach S, Milkovits J, Pastore S, Heine M, Gerber S, Todorov H. Cortexa: a comprehensive resource for studying gene expression and alternative splicing in the murine brain. BMC Bioinformatics 2024; 25:293. [PMID: 39237879 PMCID: PMC11378610 DOI: 10.1186/s12859-024-05919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Gene expression and alternative splicing are strictly regulated processes that shape brain development and determine the cellular identity of differentiated neural cell populations. Despite the availability of multiple valuable datasets, many functional implications, especially those related to alternative splicing, remain poorly understood. Moreover, neuroscientists working primarily experimentally often lack the bioinformatics expertise required to process alternative splicing data and produce meaningful and interpretable results. Notably, re-analyzing publicly available datasets and integrating them with in-house data can provide substantial novel insights. However, such analyses necessitate developing harmonized data handling and processing pipelines which in turn require considerable computational resources and in-depth bioinformatics expertise. RESULTS Here, we present Cortexa-a comprehensive web portal that incorporates RNA-sequencing datasets from the mouse cerebral cortex (longitudinal or cell-specific) and the hippocampus. Cortexa facilitates understandable visualization of the expression and alternative splicing patterns of individual genes. Our platform provides SplicePCA-a tool that allows users to integrate their alternative splicing dataset and compare it to cell-specific or developmental neocortical splicing patterns. All standardized gene expression and alternative splicing datasets can be downloaded for further in-depth downstream analysis without the need for extensive preprocessing. CONCLUSIONS Cortexa provides a robust and readily available resource for unraveling the complexity of gene expression and alternative splicing regulatory processes in the mouse brain. The data portal is available at https://cortexa-rna.com/.
Collapse
Affiliation(s)
- Stephan Weißbach
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Jonas Milkovits
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Stefan Pastore
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
12
|
Madrigal A, Lu T, Soto LM, Najafabadi HS. A unified model for interpretable latent embedding of multi-sample, multi-condition single-cell data. Nat Commun 2024; 15:6573. [PMID: 39097589 PMCID: PMC11298001 DOI: 10.1038/s41467-024-50963-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Single-cell analysis across multiple samples and conditions requires quantitative modeling of the interplay between the continuum of cell states and the technical and biological sources of sample-to-sample variability. We introduce GEDI, a generative model that identifies latent space variations in multi-sample, multi-condition single-cell datasets and attributes them to sample-level covariates. GEDI enables cross-sample cell state mapping on par with state-of-the-art integration methods, cluster-free differential gene expression analysis along the continuum of cell states, and machine learning-based prediction of sample characteristics from single-cell data. GEDI can also incorporate gene-level prior knowledge to infer pathway and regulatory network activities in single cells. Finally, GEDI extends all these concepts to previously unexplored modalities that require joint consideration of dual measurements, such as the joint analysis of exon inclusion/exclusion reads to model alternative cassette exon splicing, or spliced/unspliced reads to model the mRNA stability landscapes of single cells.
Collapse
Affiliation(s)
- Ariel Madrigal
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, H3A 0G1, Canada
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Montreal, QC, H3T 1E2, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, 53726, USA
| | - Larisa M Soto
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, H3A 0G1, Canada
| | - Hamed S Najafabadi
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada.
- Victor P. Dahdaleh Institute of Genomic Medicine, Montreal, QC, H3A 0G1, Canada.
- McGill Centre for RNA Sciences, McGill University, Montreal, Canada.
| |
Collapse
|
13
|
Zhang X. Splice-switching antisense oligonucleotides for pediatric neurological disorders. Front Mol Neurosci 2024; 17:1412964. [PMID: 39119251 PMCID: PMC11306167 DOI: 10.3389/fnmol.2024.1412964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Pediatric neurological disorders are frequently devastating and present unmet needs for effective medicine. The successful treatment of spinal muscular atrophy with splice-switching antisense oligonucleotides (SSO) indicates a feasible path to targeting neurological disorders by redirecting pre-mRNA splicing. One direct outcome is the development of SSOs to treat haploinsufficient disorders by targeting naturally occurring non-productive splice isoforms. The development of personalized SSO treatment further inspired the therapeutic exploration of rare diseases. This review will discuss the recent advances that utilize SSOs to treat pediatric neurological disorders.
Collapse
Affiliation(s)
- Xiaochang Zhang
- Department of Human Genetics, The Neuroscience Institute, University of Chicago, Chicago, IL, United States
| |
Collapse
|
14
|
Lause J, Ziegenhain C, Hartmanis L, Berens P, Kobak D. Compound models and Pearson residuals for single-cell RNA-seq data without UMIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.02.551637. [PMID: 37577688 PMCID: PMC10418209 DOI: 10.1101/2023.08.02.551637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Recent work employed Pearson residuals from Poisson or negative binomial models to normalize UMI data. To extend this approach to non-UMI data, we model the additional amplification step with a compound distribution: we assume that sequenced RNA molecules follow a negative binomial distribution, and are then replicated following an amplification distribution. We show how this model leads to compound Pearson residuals, which yield meaningful gene selection and embeddings of Smart-seq2 datasets. Further, we suggest that amplification distributions across several sequencing protocols can be described by a broken power law. The resulting compound model captures previously unexplained overdispersion and zero-inflation patterns in non-UMI data.
Collapse
|
15
|
Tilliole P, Fix S, Godin JD. hnRNPs: roles in neurodevelopment and implication for brain disorders. Front Mol Neurosci 2024; 17:1411639. [PMID: 39086926 PMCID: PMC11288931 DOI: 10.3389/fnmol.2024.1411639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute a family of multifunctional RNA-binding proteins able to process nuclear pre-mRNAs into mature mRNAs and regulate gene expression in multiple ways. They comprise at least 20 different members in mammals, named from A (HNRNP A1) to U (HNRNP U). Many of these proteins are components of the spliceosome complex and can modulate alternative splicing in a tissue-specific manner. Notably, while genes encoding hnRNPs exhibit ubiquitous expression, increasing evidence associate these proteins to various neurodevelopmental and neurodegenerative disorders, such as intellectual disability, epilepsy, microcephaly, amyotrophic lateral sclerosis, or dementias, highlighting their crucial role in the central nervous system. This review explores the evolution of the hnRNPs family, highlighting the emergence of numerous new members within this family, and sheds light on their implications for brain development.
Collapse
Affiliation(s)
- Pierre Tilliole
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Simon Fix
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Juliette D. Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Wang J, Wen S, Chen M, Xie J, Lou X, Zhao H, Chen Y, Zhao M, Shi G. Regulation of endocrine cell alternative splicing revealed by single-cell RNA sequencing in type 2 diabetes pathogenesis. Commun Biol 2024; 7:778. [PMID: 38937540 PMCID: PMC11211498 DOI: 10.1038/s42003-024-06475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
The prevalent RNA alternative splicing (AS) contributes to molecular diversity, which has been demonstrated in cellular function regulation and disease pathogenesis. However, the contribution of AS in pancreatic islets during diabetes progression remains unclear. Here, we reanalyze the full-length single-cell RNA sequencing data from the deposited database to investigate AS regulation across human pancreatic endocrine cell types in non-diabetic (ND) and type 2 diabetic (T2D) individuals. Our analysis demonstrates the significant association between transcriptomic AS profiles and cell-type-specificity, which could be applied to distinguish the clustering of major endocrine cell types. Moreover, AS profiles are enabled to clearly define the mature subset of β-cells in healthy controls, which is completely lost in T2D. Further analysis reveals that RNA-binding proteins (RBPs), heterogeneous nuclear ribonucleoproteins (hnRNPs) and FXR1 family proteins are predicted to induce the functional impairment of β-cells through regulating AS profiles. Finally, trajectory analysis of endocrine cells suggests the β-cell identity shift through dedifferentiation and transdifferentiation of β-cells during the progression of T2D. Together, our study provides a mechanism for regulating β-cell functions and suggests the significant contribution of AS program during diabetes pathogenesis.
Collapse
Affiliation(s)
- Jin Wang
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Shiyi Wen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minqi Chen
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jiayi Xie
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Xinhua Lou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haihan Zhao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanming Chen
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng Zhao
- Key Laboratory of Stem Cells and Tissue Engineering, Zhongshan School of Medicine, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Guojun Shi
- Department of Endocrinology & Metabolism, Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Diabetology & Guangzhou Municipal Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Recinos Y, Bao S, Wang X, Phillips BL, Yeh YT, Weyn-Vanhentenryck SM, Swanson MS, Zhang C. Lineage-specific splicing regulation of MAPT gene in the primate brain. CELL GENOMICS 2024; 4:100563. [PMID: 38772368 PMCID: PMC11228892 DOI: 10.1016/j.xgen.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Divergence of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is widespread in mammals, including primates, but the underlying mechanisms and functional impact are poorly understood. Here, we modeled cassette exon inclusion in primate brains as a quantitative trait and identified 1,170 (∼3%) exons with lineage-specific splicing shifts under stabilizing selection. Among them, microtubule-associated protein tau (MAPT) exons 2 and 10 underwent anticorrelated, two-step evolutionary shifts in the catarrhine and hominoid lineages, leading to their present inclusion levels in humans. The developmental-stage-specific divergence of exon 10 splicing, whose dysregulation can cause frontotemporal lobar degeneration (FTLD), is mediated by divergent distal intronic MBNL-binding sites. Competitive binding of these sites by CRISPR-dCas13d/gRNAs effectively reduces exon 10 inclusion, potentially providing a therapeutically compatible approach to modulate tau isoform expression. Our data suggest adaptation of MAPT function and, more generally, a role for AS in the evolutionary expansion of the primate brain.
Collapse
Affiliation(s)
- Yocelyn Recinos
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Suying Bao
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Xiaojian Wang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Brittany L Phillips
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yow-Tyng Yeh
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sebastien M Weyn-Vanhentenryck
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL 32610, USA; Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
18
|
Mazuecos L, Artigas-Jerónimo S, Pintado C, Gómez O, Rubio B, Arribas C, Andrés A, Villar M, Gallardo N. Central leptin signaling deficiency induced by leptin receptor antagonist leads to hypothalamic proteomic remodeling. Life Sci 2024; 346:122649. [PMID: 38626868 DOI: 10.1016/j.lfs.2024.122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
AIMS Leptin irresponsiveness, which is often associated with obesity, can have significant impacts on the hypothalamic proteome of individuals, including those who are lean. While mounting evidence on leptin irresponsiveness has focused on obese individuals, understanding the early molecular and proteomic changes associated with deficient hypothalamic leptin signaling in lean individuals is essential for early intervention and prevention of metabolic disorders. Leptin receptor antagonists block the binding of leptin to its receptors, potentially reducing its effects and used in cases where excessive leptin activity might be harmful. MATERIALS AND METHODS In this work, we blocked the central actions of leptin in lean male adult Wistar rat by chronically administering intracerebroventricularly the superactive leptin receptor antagonist (SLA) (D23L/L39A/D40A/F41A) and investigated its impact on the hypothalamic proteome using label-free sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) for quantitative proteomics. KEY FINDINGS Our results show an accumulation of proteins involved in mRNA processing, mRNA stability, and translation in the hypothalamus of SLA-treated rats. Conversely, hypothalamic leptin signaling deficiency reduces the representation of proteins implicated in energy metabolism, neural circuitry, and neurotransmitter release. SIGNIFICANCE The alterations in the adult rat hypothalamic proteome contribute to dysregulate appetite, metabolism, and energy balance, which are key factors in the development and progression of obesity and related metabolic disorders. Additionally, using bioinformatic analysis, we identified a series of transcription factors that are potentially involved in the upstream regulatory mechanisms responsible for the observed signature.
Collapse
Affiliation(s)
- Lorena Mazuecos
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Sara Artigas-Jerónimo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Cristina Pintado
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Oscar Gómez
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Blanca Rubio
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Carmen Arribas
- Biochemistry Section, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III s/n, 45071 Toledo, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Antonio Andrés
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain
| | - Margarita Villar
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
| | - Nilda Gallardo
- Biochemistry Section, Faculty of Sciences and Chemical Technologies, University of Castilla-La Mancha, Avda. Camilo Jose Cela 10, 13071 Ciudad Real, Spain; DOE, Regional Center for Biomedical Research (CRIB), Castilla-La Mancha, Spain.
| |
Collapse
|
19
|
Wolfe Z, Liska D, Norris A. Deep Transcriptomics Reveals Cell-Specific Isoforms of Pan-Neuronal Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594572. [PMID: 38826410 PMCID: PMC11142100 DOI: 10.1101/2024.05.16.594572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Profiling gene expression in single neurons using single-cell RNA-Seq is a powerful method for understanding the molecular diversity of the nervous system. Profiling alternative splicing in single neurons using these methods is more challenging, however, due to low capture efficiency and sensitivity. As a result, we know much less about splicing patterns and regulation across neurons than we do about gene expression. Here we leverage unique attributes of the C. elegans nervous system to investigate deep cell-specific transcriptomes complete with biological replicates generated by the CeNGEN consortium, enabling high-confidence assessment of splicing across neuron types even for lowly-expressed genes. Global splicing maps reveal several striking observations, including pan-neuronal genes that harbor cell-specific splice variants, abundant differential intron retention across neuron types, and a single neuron highly enriched for upstream alternative 3' splice sites. We develop an algorithm to identify unique cell-specific expression patterns and use it to discover both cell-specific isoforms and potential regulatory RNA binding proteins that establish these isoforms. Genetic interrogation of these RNA binding proteins in vivo identifies three distinct regulatory factors employed to establish unique splicing patterns in a single neuron. Finally, we develop a user-friendly platform for spatial transcriptomic visualization of these splicing patterns with single-neuron resolution.
Collapse
Affiliation(s)
- Zachery Wolfe
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75205, United States
| | - David Liska
- Office of Information Technology, Southern Methodist University, Dallas, TX 75205, United States
| | - Adam Norris
- Department of Biochemistry, University of California, Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA, 92521, United States
| |
Collapse
|
20
|
Ciampi L, Serrano L, Irimia M. Unique transcriptomes of sensory and non-sensory neurons: insights from Splicing Regulatory States. Mol Syst Biol 2024; 20:296-310. [PMID: 38438733 PMCID: PMC10987577 DOI: 10.1038/s44320-024-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 03/06/2024] Open
Abstract
Alternative Splicing (AS) programs serve as instructive signals of cell type specificity, particularly within the brain, which comprises dozens of molecularly and functionally distinct cell types. Among them, retinal photoreceptors stand out due to their unique transcriptome, making them a particularly well-suited system for studying how AS shapes cell type-specific molecular functions. Here, we use the Splicing Regulatory State (SRS) as a novel framework to discuss the splicing factors governing the unique AS pattern of photoreceptors, and how this pattern may aid in the specification of their highly specialized sensory cilia. In addition, we discuss how other sensory cells with ciliated structures, for which data is much scarcer, also rely on specific SRSs to implement a proteome specialized in the detection of sensory stimuli. By reviewing the general rules of cell type- and tissue-specific AS programs, firstly in the brain and subsequently in specialized sensory neurons, we propose a novel paradigm on how SRSs are established and how they can diversify. Finally, we illustrate how SRSs shape the outcome of mutations in splicing factors to produce cell type-specific phenotypes that can lead to various human diseases.
Collapse
Affiliation(s)
- Ludovica Ciampi
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Luis Serrano
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| | - Manuel Irimia
- Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
21
|
Qin WJ, Shi JJ, Chen RY, Li CY, Liu YJ, Lu JF, Yang GJ, Cao JF, Chen J. Curriculum vitae of CUG binding protein 1 (CELF1) in homeostasis and diseases: a systematic review. Cell Mol Biol Lett 2024; 29:32. [PMID: 38443798 PMCID: PMC10916161 DOI: 10.1186/s11658-024-00556-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
RNA-binding proteins (RBPs) are kinds of proteins with either singular or multiple RNA-binding domains (RBDs), and they can assembly into ribonucleic acid-protein complexes, which mediate transportation, editing, splicing, stabilization, translational efficiency, or epigenetic modifications of their binding RNA partners, and thereby modulate various physiological and pathological processes. CUG-BP, Elav-like family 1 (CELF1) is a member of the CELF family of RBPs with high affinity to the GU-rich elements in mRNA, and thus exerting control over critical processes including mRNA splicing, translation, and decay. Mounting studies support that CELF1 is correlated with occurrence, genesis and development and represents a potential therapeutical target for these malignant diseases. Herein, we present the structure and function of CELF1, outline its role and regulatory mechanisms in varieties of homeostasis and diseases, summarize the identified CELF1 regulators and their structure-activity relationships, and prospect the current challenges and their solutions during studies on CELF1 functions and corresponding drug discovery, which will facilitate the establishment of a targeted regulatory network for CELF1 in diseases and advance CELF1 as a potential drug target for disease therapy.
Collapse
Affiliation(s)
- Wan-Jia Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Schilling K. Revisiting the development of cerebellar inhibitory interneurons in the light of single-cell genetic analyses. Histochem Cell Biol 2024; 161:5-27. [PMID: 37940705 PMCID: PMC10794478 DOI: 10.1007/s00418-023-02251-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
The present review aims to provide a short update of our understanding of the inhibitory interneurons of the cerebellum. While these cells constitute but a minority of all cerebellar neurons, their functional significance is increasingly being recognized. For one, inhibitory interneurons of the cerebellar cortex are now known to constitute a clearly more diverse group than their traditional grouping as stellate, basket, and Golgi cells suggests, and this diversity is now substantiated by single-cell genetic data. The past decade or so has also provided important information about interneurons in cerebellar nuclei. Significantly, developmental studies have revealed that the specification and formation of cerebellar inhibitory interneurons fundamentally differ from, say, the cortical interneurons, and define a mode of diversification critically dependent on spatiotemporally patterned external signals. Last, but not least, in the past years, dysfunction of cerebellar inhibitory interneurons could also be linked with clinically defined deficits. I hope that this review, however fragmentary, may stimulate interest and help focus research towards understanding the cerebellum.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut - Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, 53115, Bonn, Germany.
| |
Collapse
|
23
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
24
|
Yang Y, Yang R, Kang B, Qian S, He X, Zhang X. Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons. Cell Rep 2023; 42:113335. [PMID: 37889749 PMCID: PMC10842930 DOI: 10.1016/j.celrep.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.
Collapse
Affiliation(s)
- Yalan Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Runwei Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bowei Kang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Sheng Qian
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xin He
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaochang Zhang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Zhu B, Fisher E, Li L, Zhong P, Yan Z, Feng J. PTBP2 attenuation facilitates fibroblast to neuron conversion by promoting alternative splicing of neuronal genes. Stem Cell Reports 2023; 18:2268-2282. [PMID: 37832540 PMCID: PMC10679656 DOI: 10.1016/j.stemcr.2023.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The direct conversion of human skin fibroblasts to neurons has a low efficiency and unclear mechanism. Here, we show that the knockdown of PTBP2 significantly enhanced the transdifferentiation induced by ASCL1, MIR9/9∗-124, and p53 shRNA (AMp) to generate mostly GABAergic neurons. Longitudinal RNA sequencing analyses identified the continuous induction of many RNA splicing regulators. Among these, the knockdown of RBFOX3 (NeuN), significantly abrogated the transdifferentiation. Overexpression of RBFOX3 significantly enhanced the conversion induced by AMp; the enhancement was occluded by PTBP2 knockdown. We found that PTBP2 attenuation significantly favored neuron-specific alternative splicing (AS) of many genes involved in synaptic transmission, signal transduction, and axon formation. RBFOX3 knockdown significantly reversed the effect, while RBFOX3 overexpression occluded the enhancement. The study reveals the critical role of neuron-specific AS in the direct conversion of human skin fibroblasts to neurons by showing that PTBP2 attenuation enhances this mechanism in concert with RBFOX3.
Collapse
Affiliation(s)
- Binglin Zhu
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Li Li
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
26
|
Chari T, Gorin G, Pachter L. Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558131. [PMID: 37745403 PMCID: PMC10516047 DOI: 10.1101/2023.09.17.558131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Multimodal, single-cell genomics technologies enable simultaneous capture of multiple facets of DNA and RNA processing in the cell. This creates opportunities for transcriptome-wide, mechanistic studies of cellular processing in heterogeneous cell types, with applications ranging from inferring kinetic differences between cells, to the role of stochasticity in driving heterogeneity. However, current methods for determining cell types or 'clusters' present in multimodal data often rely on ad hoc or independent treatment of modalities, and assumptions ignoring inherent properties of the count data. To enable interpretable and consistent cell cluster determination from multimodal data, we present meK-Means (mechanistic K-Means) which integrates modalities and learns underlying, shared biophysical states through a unifying model of transcription. In particular, we demonstrate how meK-Means can be used to cluster cells from unspliced and spliced mRNA count modalities. By utilizing the causal, physical relationships underlying these modalities, we identify shared transcriptional kinetics across cells, which induce the observed gene expression profiles, and provide an alternative definition for 'clusters' through the governing parameters of cellular processes.
Collapse
Affiliation(s)
- Tara Chari
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Gennady Gorin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California
| |
Collapse
|
27
|
Shen X, Li M, Shao K, Li Y, Ge Z. Post-ischemic inflammatory response in the brain: Targeting immune cell in ischemic stroke therapy. Front Mol Neurosci 2023; 16:1076016. [PMID: 37078089 PMCID: PMC10106693 DOI: 10.3389/fnmol.2023.1076016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/13/2023] [Indexed: 04/05/2023] Open
Abstract
An ischemic stroke occurs when the blood supply is obstructed to the vascular basin, causing the death of nerve cells and forming the ischemic core. Subsequently, the brain enters the stage of reconstruction and repair. The whole process includes cellular brain damage, inflammatory reaction, blood–brain barrier destruction, and nerve repair. During this process, the proportion and function of neurons, immune cells, glial cells, endothelial cells, and other cells change. Identifying potential differences in gene expression between cell types or heterogeneity between cells of the same type helps to understand the cellular changes that occur in the brain and the context of disease. The recent emergence of single-cell sequencing technology has promoted the exploration of single-cell diversity and the elucidation of the molecular mechanism of ischemic stroke, thus providing new ideas and directions for the diagnosis and clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xueyang Shen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Mingming Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Kangmei Shao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Yongnan Li,
| | - Zhaoming Ge
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
- Gansu Provincial Neurology Clinical Medical Research Center, The Second Hospital of Lanzhou University, Lanzhou, China
- Expert Workstation of Academician Wang Longde, The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Zhaoming Ge,
| |
Collapse
|
28
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
29
|
Traunmüller L, Schulz J, Ortiz R, Feng H, Furlanis E, Gomez AM, Schreiner D, Bischofberger J, Zhang C, Scheiffele P. A cell-type-specific alternative splicing regulator shapes synapse properties in a trans-synaptic manner. Cell Rep 2023; 42:112173. [PMID: 36862556 PMCID: PMC10066595 DOI: 10.1016/j.celrep.2023.112173] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 02/12/2023] [Indexed: 03/03/2023] Open
Abstract
The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.
Collapse
Affiliation(s)
| | - Jan Schulz
- Department of Biomedicine, University of Basel, 4056 Basel, Switzerland
| | - Raul Ortiz
- Biozentrum of the University of Basel, 4056 Basel, Switzerland
| | - Huijuan Feng
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | | | - Andrea M Gomez
- Biozentrum of the University of Basel, 4056 Basel, Switzerland
| | | | | | - Chaolin Zhang
- Department of Systems Biology, Department of Biochemistry and Molecular Biophysics, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Salmen F, De Jonghe J, Kaminski TS, Alemany A, Parada GE, Verity-Legg J, Yanagida A, Kohler TN, Battich N, van den Brekel F, Ellermann AL, Arias AM, Nichols J, Hemberg M, Hollfelder F, van Oudenaarden A. High-throughput total RNA sequencing in single cells using VASA-seq. Nat Biotechnol 2022; 40:1780-1793. [PMID: 35760914 PMCID: PMC9750877 DOI: 10.1038/s41587-022-01361-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 05/13/2022] [Indexed: 01/14/2023]
Abstract
Most methods for single-cell transcriptome sequencing amplify the termini of polyadenylated transcripts, capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts and hinders alternative splicing analysis. We, therefore, developed VASA-seq to detect the total transcriptome in single cells, which is enabled by fragmenting and tailing all RNA molecules subsequent to cell lysis. The method is compatible with both plate-based formats and droplet microfluidics. We applied VASA-seq to more than 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. Analyzing the dynamics of the total single-cell transcriptome, we discovered cell type markers, many based on non-coding RNA, and performed in vivo cell cycle analysis via detection of non-polyadenylated histone genes. RNA velocity characterization was improved, accurately retracing blood maturation trajectories. Moreover, our VASA-seq data provide a comprehensive analysis of alternative splicing during mammalian development, which highlighted substantial rearrangements during blood development and heart morphogenesis.
Collapse
Affiliation(s)
- Fredrik Salmen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Joachim De Jonghe
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Francis Crick Institute, London, UK
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Alemany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | | | - Joe Verity-Legg
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Ayaka Yanagida
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Nicholas Battich
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Floris van den Brekel
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Anna L Ellermann
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader 88 ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, Spain
| | - Jennifer Nichols
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | | | - Alexander van Oudenaarden
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
31
|
Lee S, Chen YC, Gillen AE, Taliaferro JM, Deplancke B, Li H, Lai EC. Diverse cell-specific patterns of alternative polyadenylation in Drosophila. Nat Commun 2022; 13:5372. [PMID: 36100597 PMCID: PMC9470587 DOI: 10.1038/s41467-022-32305-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most genes in higher eukaryotes express isoforms with distinct 3' untranslated regions (3' UTRs), generated by alternative polyadenylation (APA). Since 3' UTRs are predominant locations of post-transcriptional regulation, APA can render such programs conditional, and can also alter protein sequences via alternative last exon (ALE) isoforms. We previously used 3'-sequencing from diverse Drosophila samples to define multiple tissue-specific APA landscapes. Here, we exploit comprehensive single nucleus RNA-sequencing data (Fly Cell Atlas) to elucidate cell-type expression of 3' UTRs across >250 adult Drosophila cell types. We reveal the cellular bases of multiple tissue-specific APA/ALE programs, such as 3' UTR lengthening in differentiated neurons and 3' UTR shortening in spermatocytes and spermatids. We trace dynamic 3' UTR patterns across cell lineages, including in the male germline, and discover new APA patterns in the intestinal stem cell lineage. Finally, we correlate expression of RNA binding proteins (RBPs), miRNAs and global levels of cleavage and polyadenylation (CPA) factors in several cell types that exhibit characteristic APA landscapes, yielding candidate regulators of transcriptome complexity. These analyses provide a comprehensive foundation for future investigations of mechanisms and biological impacts of alternative 3' isoforms across the major cell types of this widely-studied model organism.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, 10013, USA
| | | | - Austin E Gillen
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Rocky Mountain Regional VA Medical Center, Aurora, CO, USA.,RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Matthew Taliaferro
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bio-engineering & Global Health Institute, School of Life Sciences, EPFL, CH-1015, Lausanne, Switzerland
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
32
|
Han H, Best AJ, Braunschweig U, Mikolajewicz N, Li JD, Roth J, Chowdhury F, Mantica F, Nabeel-Shah S, Parada G, Brown KR, O'Hanlon D, Wei J, Yao Y, Zid AA, Comsa LC, Jen M, Wang J, Datti A, Gonatopoulos-Pournatzis T, Weatheritt RJ, Greenblatt JF, Wrana JL, Irimia M, Gingras AC, Moffat J, Blencowe BJ. Systematic exploration of dynamic splicing networks reveals conserved multistage regulators of neurogenesis. Mol Cell 2022; 82:2982-2999.e14. [PMID: 35914530 PMCID: PMC10686216 DOI: 10.1016/j.molcel.2022.06.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/16/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.
Collapse
Affiliation(s)
- Hong Han
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Andrew J Best
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Jack Daiyang Li
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fuad Chowdhury
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Syed Nabeel-Shah
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Guillermo Parada
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kevin R Brown
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Dave O'Hanlon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jiarun Wei
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yuxi Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Abdelrahman Abou Zid
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Lim Caden Comsa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mark Jen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jenny Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Alessandro Datti
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Thomas Gonatopoulos-Pournatzis
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Center for Cancer Research National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert J Weatheritt
- EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Jack F Greenblatt
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader, 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ICREA, Barcelona, Spain
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Benjamin J Blencowe
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
33
|
Ma J, Wu JY, Zhu L. Detection of orthologous exons and isoforms using EGIO. Bioinformatics 2022; 38:4474-4480. [PMID: 35946527 PMCID: PMC9525004 DOI: 10.1093/bioinformatics/btac548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Alternative splicing is an important mechanism to generate transcriptomic and phenotypic diversity. Existing methods have limited power to detect orthologous isoforms. RESULTS We develop a new method, EGIO, to detect orthologous exons and orthologous isoforms from two species. EGIO uses unique exonic regions to construct exon groups, in which process dynamic programming strategy is used to do exon alignment. EGIO could cover all the coding exons within orthologous genes. A comparison between EGIO and ExTraMapper shows that EGIO could detect more orthologous isoforms with conserved sequence and exon structures. We apply EGIO to compare human and chimpanzee protein-coding isoforms expressed in the frontal cortex and identify 6912 genes that express human unique isoforms. Unexpectedly, more human unique isoforms are detected than those conserved between humans and chimpanzees. AVAILABILITY AND IMPLEMENTATION Source code and test data of EGIO are available at https://github.com/wu-lab-egio/EGIO. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinfa Ma
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jane Y Wu
- To whom correspondence should be addressed. or
| | - Li Zhu
- To whom correspondence should be addressed. or
| |
Collapse
|
34
|
Buen Abad Najar CF, Burra P, Yosef N, Lareau LF. Identifying cell state-associated alternative splicing events and their coregulation. Genome Res 2022; 32:1385-1397. [PMID: 35858747 PMCID: PMC9341514 DOI: 10.1101/gr.276109.121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Alternative splicing shapes the transcriptome and contributes to each cell's unique identity, but single-cell RNA sequencing (scRNA-seq) has struggled to capture the impact of alternative splicing. We previously showed that low recovery of mRNAs from single cells led to erroneous conclusions about the cell-to-cell variability of alternative splicing. Here, we present a method, Psix, to confidently identify splicing that changes across a landscape of single cells, using a probabilistic model that is robust against the data limitations of scRNA-seq. Its autocorrelation-inspired approach finds patterns of alternative splicing that correspond to patterns of cell identity, such as cell type or developmental stage, without the need for explicit cell clustering, labeling, or trajectory inference. Applying Psix to data that follow the trajectory of mouse brain development, we identify exons whose alternative splicing patterns cluster into modules of coregulation. We show that the exons in these modules are enriched for binding by distinct neuronal splicing factors and that their changes in splicing correspond to changes in expression of these splicing factors. Thus, Psix reveals cell type-dependent splicing patterns and the wiring of the splicing regulatory networks that control them. Our new method will enable scRNA-seq analysis to go beyond transcription to understand the roles of post-transcriptional regulation in determining cell identity.
Collapse
Affiliation(s)
| | - Prakruthi Burra
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts 02139, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Liana F Lareau
- Center for Computational Biology, University of California, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
35
|
Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, Bischofberger J, Scheiffele P. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron 2022; 110:2094-2109.e10. [PMID: 35550065 PMCID: PMC9275415 DOI: 10.1016/j.neuron.2022.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/05/2022] [Accepted: 04/15/2022] [Indexed: 12/21/2022]
Abstract
The diversification of cell adhesion molecules by alternative splicing is proposed to underlie molecular codes for neuronal wiring. Transcriptomic approaches mapped detailed cell-type-specific mRNA splicing programs. However, it has been hard to probe the synapse-specific localization and function of the resulting protein splice isoforms, or “proteoforms,” in vivo. We here apply a proteoform-centric workflow in mice to test the synapse-specific functions of the splice isoforms of the synaptic adhesion molecule Neurexin-3 (NRXN3). We uncover a major proteoform, NRXN3 AS5, that is highly expressed in GABAergic interneurons and at dendrite-targeting GABAergic terminals. NRXN3 AS5 abundance significantly diverges from Nrxn3 mRNA distribution and is gated by translation-repressive elements. Nrxn3 AS5 isoform deletion results in a selective impairment of dendrite-targeting interneuron synapses in the dentate gyrus without affecting somatic inhibition or glutamatergic perforant-path synapses. This work establishes cell- and synapse-specific functions of a specific neurexin proteoform and highlights the importance of alternative splicing regulation for synapse specification. Translational regulation guides alternative Neurexin proteoform expression NRXN3 AS5 proteoforms are concentrated at dendrite-targeting interneuron synapses A proteome-centric workflow uncovers NRXN3 AS5 interactors in vivo Loss of NRXN3 AS5 leads to selective impairments in dendritic inhibition
Collapse
Affiliation(s)
- David Hauser
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katharina Behr
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Josef Bischofberger
- Department of Biomedicine, University of Basel, Pestalozzistrasse 20, 4056 Basel, Switzerland
| | - Peter Scheiffele
- Biozentrum of the University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.
| |
Collapse
|
36
|
Arzalluz-Luque A, Salguero P, Tarazona S, Conesa A. acorde unravels functionally interpretable networks of isoform co-usage from single cell data. Nat Commun 2022; 13:1828. [PMID: 35383181 PMCID: PMC8983708 DOI: 10.1038/s41467-022-29497-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Alternative splicing (AS) is a highly-regulated post-transcriptional mechanism known to modulate isoform expression within genes and contribute to cell-type identity. However, the extent to which alternative isoforms establish co-expression networks that may be relevant in cellular function has not been explored yet. Here, we present acorde, a pipeline that successfully leverages bulk long reads and single-cell data to confidently detect alternative isoform co-expression relationships. To achieve this, we develop and validate percentile correlations, an innovative approach that overcomes data sparsity and yields accurate co-expression estimates from single-cell data. Next, acorde uses correlations to cluster co-expressed isoforms into a network, unraveling cell type-specific alternative isoform usage patterns. By selecting same-gene isoforms between these clusters, we subsequently detect and characterize genes with co-differential isoform usage (coDIU) across cell types. Finally, we predict functional elements from long read-defined isoforms and provide insight into biological processes, motifs, and domains potentially controlled by the coordination of post-transcriptional regulation. The code for acorde is available at https://github.com/ConesaLab/acorde .
Collapse
Affiliation(s)
- Angeles Arzalluz-Luque
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain
| | - Pedro Salguero
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain.
| | - Ana Conesa
- Institute for Integrative Systems Biology (CSIC-UV), Spanish National Research Council, Paterna, Valencia, Spain.
- Microbiology and Cell Sciences Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
37
|
Benegas G, Fischer J, Song YS. Robust and annotation-free analysis of alternative splicing across diverse cell types in mice. eLife 2022; 11:73520. [PMID: 35229721 PMCID: PMC8975553 DOI: 10.7554/elife.73520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although alternative splicing is a fundamental and pervasive aspect of gene expression in higher eukaryotes, it is often omitted from single-cell studies due to quantification challenges inherent to commonly used short-read sequencing technologies. Here, we undertake the analysis of alternative splicing across numerous diverse murine cell types from two large-scale single-cell datasets-the Tabula Muris and BRAIN Initiative Cell Census Network-while accounting for understudied technical artifacts and unannotated events. We find strong and general cell-type-specific alternative splicing, complementary to total gene expression but of similar discriminatory value, and identify a large volume of novel splicing events. We specifically highlight splicing variation across different cell types in primary motor cortex neurons, bone marrow B cells, and various epithelial cells, and we show that the implicated transcripts include many genes which do not display total expression differences. To elucidate the regulation of alternative splicing, we build a custom predictive model based on splicing factor activity, recovering several known interactions while generating new hypotheses, including potential regulatory roles for novel alternative splicing events in critical genes like Khdrbs3 and Rbfox1. We make our results available using public interactive browsers to spur further exploration by the community.
Collapse
Affiliation(s)
- Gonzalo Benegas
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Jonathan Fischer
- Department of Biostatistics, University of Florida, Gainesville, United States
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
38
|
Salamon I, Rasin MR. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022; 15:803107. [PMID: 35082597 PMCID: PMC8784817 DOI: 10.3389/fnins.2021.803107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
The human neocortex is undoubtedly considered a supreme accomplishment in mammalian evolution. It features a prenatally established six-layered structure which remains plastic to the myriad of changes throughout an organism’s lifetime. A fundamental feature of neocortical evolution and development is the abundance and diversity of the progenitor cell population and their neuronal and glial progeny. These evolutionary upgrades are partially enabled due to the progenitors’ higher proliferative capacity, compartmentalization of proliferative regions, and specification of neuronal temporal identities. The driving force of these processes may be explained by temporal molecular patterning, by which progenitors have intrinsic capacity to change their competence as neocortical neurogenesis proceeds. Thus, neurogenesis can be conceptualized along two timescales of progenitors’ capacity to (1) self-renew or differentiate into basal progenitors (BPs) or neurons or (2) specify their fate into distinct neuronal and glial subtypes which participate in the formation of six-layers. Neocortical development then proceeds through sequential phases of proliferation, differentiation, neuronal migration, and maturation. Temporal molecular patterning, therefore, relies on the precise regulation of spatiotemporal gene expression. An extensive transcriptional regulatory network is accompanied by post-transcriptional regulation that is frequently mediated by the regulatory interplay between RNA-binding proteins (RBPs). RBPs exhibit important roles in every step of mRNA life cycle in any system, from splicing, polyadenylation, editing, transport, stability, localization, to translation (protein synthesis). Here, we underscore the importance of RBP functions at multiple time-restricted steps of early neurogenesis, starting from the cell fate transition of transcriptionally primed cortical progenitors. A particular emphasis will be placed on RBPs with mostly conserved but also divergent evolutionary functions in neural progenitors across different species. RBPs, when considered in the context of the fascinating process of neocortical development, deserve to be main protagonists in the story of the evolution and development of the neocortex.
Collapse
|
39
|
Auerbach BJ, Hu J, Reilly MP, Li M. Applications of single-cell genomics and computational strategies to study common disease and population-level variation. Genome Res 2021; 31:1728-1741. [PMID: 34599006 PMCID: PMC8494214 DOI: 10.1101/gr.275430.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent and rapid development of single-cell technologies have made it possible to study cellular heterogeneity at an unprecedented resolution and scale. Cellular heterogeneity underlies phenotypic differences among individuals, and studying cellular heterogeneity is an important step toward our understanding of the disease molecular mechanism. Single-cell technologies offer opportunities to characterize cellular heterogeneity from different angles, but how to link cellular heterogeneity with disease phenotypes requires careful computational analysis. In this article, we will review the current applications of single-cell methods in human disease studies and describe what we have learned so far from existing studies about human genetic variation. As single-cell technologies are becoming widely applicable in human disease studies, population-level studies have become a reality. We will describe how we should go about pursuing and designing these studies, particularly how to select study subjects, how to determine the number of cells to sequence per subject, and the needed sequencing depth per cell. We also discuss computational strategies for the analysis of single-cell data and describe how single-cell data can be integrated with bulk tissue data and data generated from genome-wide association studies. Finally, we point out open problems and future research directions.
Collapse
Affiliation(s)
- Benjamin J Auerbach
- Graduate Group in Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
The RNA-binding protein Musashi controls axon compartment-specific synaptic connectivity through ptp69D mRNA poly(A)-tailing. Cell Rep 2021; 36:109713. [PMID: 34525368 DOI: 10.1016/j.celrep.2021.109713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
Synaptic targeting with subcellular specificity is essential for neural circuit assembly. Developing neurons use mechanisms to curb promiscuous synaptic connections and to direct synapse formation to defined subcellular compartments. How this selectivity is achieved molecularly remains enigmatic. Here, we discover a link between mRNA poly(A)-tailing and axon collateral branch-specific synaptic connectivity within the CNS. We reveal that the RNA-binding protein Musashi binds to the mRNA encoding the receptor protein tyrosine phosphatase Ptp69D, thereby increasing poly(A) tail length and Ptp69D protein levels. This regulation specifically promotes synaptic connectivity in one axon collateral characterized by a high degree of arborization and strong synaptogenic potential. In a different compartment of the same axon, Musashi prevents ectopic synaptogenesis, revealing antagonistic, compartment-specific functions. Moreover, Musashi-dependent Ptp69D regulation controls synaptic connectivity in the olfactory circuit. Thus, Musashi differentially shapes synaptic connectivity at the level of individual subcellular compartments and within different developmental and neuron type-specific contexts.
Collapse
|
41
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
42
|
Distinct Expression of SLM2 Underlies Splicing-Dependent Trans-Synaptic Signaling of Neurexin Across GABAergic Neuron Subtypes. Neurochem Res 2021; 47:2591-2601. [PMID: 34196888 DOI: 10.1007/s11064-021-03384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
The mammalian brain contains multiple types of neuronal cells with complex assemblies and distinct structural and functional properties encoded by divergent gene programs. There is increasing evidence that alternative splicing (AS) plays fundamental roles in transcriptomic diversity and specifying synaptic properties of each neuronal cell type. However, the mechanisms underlying AS regulation and whether it controls synapse formation across GABAergic interneurons have not been fully elucidated. Here we show the differential expression levels of Sam68-like molecule 2 (SLM2), a major splicing regulator of neurexin (NRX), in GABAergic neuronal subtypes and its contribution to GABAergic synapse specification. Cortical SLM2 is strongly expressed not only in excitatory neurons but also in a subpopulation of GABAergic interneurons, especially in VIP-positive neurons that are originated from late-born caudal ganglionic eminence (GE)- derived cells. Using artificial synapse formation assay, we found that GE containing cortices form a strong synapse with LRRTM2, a trans-synaptic receptor of the alternatively spliced segment 4 (AS4)(-) of NRX. SLM2 knock-down reduced the NRX AS4(-) isoform expression and hence weaken LRRTM2-induced synapse formation. The addition of NRX AS4(-) was sufficient to rescue the synaptic formation by LRRTM2 in SLM2 knock-down neurons. Thus, our findings suggest a novel function of SLM2 in modifying network formation of a specific population of GABAergic interneurons and contribute to a better understanding of the roles AS plays in regulating synapse specificity and neuronal molecular diversity.
Collapse
|