1
|
Fan Z, Li C, Sun Q, Luo Y, Lin H, Cong B, Huang P. Integrated analysis of restraint stress in rat serum using ATR-FTIR and Raman spectroscopy with Machine learning. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126379. [PMID: 40373552 DOI: 10.1016/j.saa.2025.126379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
In forensic practice, accurately determining whether an individual has been subjected to prolonged restraint or assessing injuries resulting from restraint can be challenging. To address this, we explored a novel approach using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and Raman spectroscopy combined with machine learning to jointly identify restraint stress. We randomly assigned rats into three experimental groups: a restraint stress group (subjected to fasting and water deprivation), a control group (subjected to fasting and water deprivation without restraint), and a normal group. After collecting the serum spectra of the animals, a principal component analysis (PCA) model was established to explore the separation trends among the groups and to identify relevant characteristic peaks. Subsequently, a random forest (RF) model was established to compare the restraint stress group with the other two groups. The analysis identified key substances that indicated the presence of restraint stress: 1161 cm-1, 1167 cm-1 (anti-symmetric C-O-C stretch) and 980 cm-1, 976 cm-1, 974 cm-1 (-N+(CH3)3, antisymmetric stretch). And the RF model was used to compare the restraint stress groups at different time points, revealing substances that may help determine the duration of restraint stress: 1747 cm-1 (ester carbonyl band), 1626 cm-1 (β-pleated sheet), 1211 cm-1 (Amide III, -N+(CH3)3, antisymmetric stretch), 1180 cm-1 (phosphodiester), 1128 cm-1 (-C-C-), 1024 cm-1 (C-O stretching coupled with C-O bending) and 1389 cm-1, 1335 cm-1, 1321 cm-1 (Trp, α helix, phospholipids), 710 cm-1 (Polysaccharides), 1266 cm-1 (Amide Ⅲ), 1015 cm-1 (β-carotene). These findings suggest that ATR-FTIR and Raman spectroscopy together, when combined with machine learning, has significant potential as a powerful tool for analyzing and characterizing restraint stress, offering new insights and directions for future research in this area.
Collapse
Affiliation(s)
- Zehua Fan
- Institute of Forensic Science, Fudan University, Shanghai 200032, People's Republic of China; College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050000, People's Republic of China; Department of Forensic Pathology, Institute of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai 200063, People's Republic of China
| | - Chenyu Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050000, People's Republic of China
| | - Qiran Sun
- Department of Forensic Pathology, Institute of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai 200063, People's Republic of China
| | - Yiwen Luo
- Department of Forensic Pathology, Institute of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai 200063, People's Republic of China
| | - Hancheng Lin
- Institute of Forensic Science, Fudan University, Shanghai 200032, People's Republic of China.
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Hebei Medical University, Shijiazhuang 050000, People's Republic of China.
| | - Ping Huang
- Institute of Forensic Science, Fudan University, Shanghai 200032, People's Republic of China.
| |
Collapse
|
2
|
Meng C, Xie Z, Lu F, Jiang S, Xu L, Zhang W, Luo Y, Mei T. Fiber Vector Light-Field-Based Tip-Enhanced Raman Spectroscopy. NANO LETTERS 2025; 25:2112-2117. [PMID: 39749876 DOI: 10.1021/acs.nanolett.4c04379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Tip-enhanced Raman spectroscopy (TERS) has been extensively employed to investigate the light-matter interaction at the nanoscale. However, the current TERS strategies lack the ability to excite the low-background inhomogeneous electromagnetic field with significant enhancement of electric field, electric field gradient, and optomagnetic field, simultaneously. To overcome this, we developed a fiber vector light-field-based TERS strategy aimed at exploring the multipole Raman scattering processes of molecules. By modulating the excitation power, we have observed for the first time the Stark effect associated with Raman-forbidden transitions, revealing a strong electric-field gradient and optomagnetic effect within the plasmon cavity. Furthermore, by manipulating the plasmon tip to minimize the nanogap, we demonstrate that splitting occurs in the dipole Raman spectrum, indicating that the plasmon cavity enters a strong coupling regime. This fiber vector light-field-based TERS approach offers a unique opportunity to investigate weak matter responses with potential applications in single-molecule spectroscopy, sensors, and catalysis monitoring.
Collapse
Affiliation(s)
- Chao Meng
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhonglin Xie
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Fanfan Lu
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shenlong Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Lei Xu
- Advanced Optics & Photonics Laboratory, Nottingham Trent University, Nottingham NG11 8NS, U.K
| | - Wending Zhang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Ting Mei
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
3
|
An T, Liang Z, Chen Z, Li G. Recent progress in online detection methods of bioaerosols. FUNDAMENTAL RESEARCH 2024; 4:442-454. [PMID: 38933213 PMCID: PMC10239662 DOI: 10.1016/j.fmre.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 10/29/2023] Open
Abstract
The aerosol transmission of coronavirus disease in 2019, along with the spread of other respiratory diseases, caused significant loss of life and property; it impressed upon us the importance of real-time bioaerosol detection. The complexity, diversity, and large spatiotemporal variability of bioaerosols and their external/internal mixing with abiotic components pose challenges for effective online bioaerosol monitoring. Traditional methods focus on directly capturing bioaerosols before subsequent time-consuming laboratory analysis such as culture-based methods, preventing the high-resolution time-based characteristics necessary for an online approach. Through a comprehensive literature assessment, this review highlights and discusses the most commonly used real-time bioaerosol monitoring techniques and the associated commercially available monitors. Methods applied in online bioaerosol monitoring, including adenosine triphosphate bioluminescence, laser/light-induced fluorescence spectroscopy, Raman spectroscopy, and bioaerosol mass spectrometry are summarized. The working principles, characteristics, sensitivities, and efficiencies of these real-time detection methods are compared to understand their responses to known particle types and to contrast their differences. Approaches developed to analyze the substantial data sets obtained by these instruments and to overcome the limitations of current real-time bioaerosol monitoring technologies are also introduced. Finally, an outlook is proposed for future instrumentation indicating a need for highly revolutionized bioaerosol detection technologies.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Yang RS, Traver M, Barefoot N, Stephens T, Alabanza C, Manzella-Lapeira J, Zou G, Wolff J, Li Y, Resto M, Shadrick W, Yang Y, Ivleva VB, Tsybovsky Y, Carlton K, Brzostowski J, Gall JG, Lei QP. Mosaic quadrivalent influenza vaccine single nanoparticle characterization. Sci Rep 2024; 14:4534. [PMID: 38402303 PMCID: PMC10894272 DOI: 10.1038/s41598-024-54876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.
Collapse
Affiliation(s)
- Rong Sylvie Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Maria Traver
- Twinbrook Imaging Facility, LIG, NIAID, NIH, Gaithersburg, MD, USA
| | - Nathan Barefoot
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Casper Alabanza
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | | | - Guozhang Zou
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Jeremy Wolff
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yile Li
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Melissa Resto
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - William Shadrick
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yanhong Yang
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Vera B Ivleva
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kevin Carlton
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | | | - Jason G Gall
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA
| | - Q Paula Lei
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.
| |
Collapse
|
5
|
Xia Q, Guo Z, Zong H, Seitz S, Yurdakul C, Ünlü MS, Wang L, Connor JH, Cheng JX. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat Commun 2023; 14:6655. [PMID: 37863905 PMCID: PMC10589364 DOI: 10.1038/s41467-023-42439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched β sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.
Collapse
Affiliation(s)
- Qing Xia
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Zhongyue Guo
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Haonan Zong
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Scott Seitz
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Celalettin Yurdakul
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - M Selim Ünlü
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Le Wang
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - John H Connor
- Department of Microbiology and National Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
6
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
7
|
Deckert V, Shaik T, Deckert-Gaudig T. The "Other" Nanoscale Spectroscopy - Tip Enhanced Raman Scattering. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:630. [PMID: 37613081 DOI: 10.1093/micmic/ozad067.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Volker Deckert
- Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
| | - Tanveer Shaik
- Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
| | - Tanja Deckert-Gaudig
- Friedrich-Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- Leibniz Institute of Photonic Technology, Jena, Germany
| |
Collapse
|
8
|
Wang CF, Mantilla ABC, Gu Y, El-Khoury PZ. Ambient Tip-Enhanced Two Photon Photoluminescence from CdSe/ZnS Quantum Dots. J Phys Chem A 2023; 127:1081-1084. [PMID: 36689268 DOI: 10.1021/acs.jpca.2c07750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nonlinear nano-optical measurements that combine ultrafast spectroscopy with tools of scanning probe microscopy are scarce. This is particularly the case when high spatial resolution on the order of a few nanometers is sought after in experiments performed under ambient laboratory conditions. In this work, we demonstrate the latter through measurements that track two-photon photoluminescence from aggregates of CdSe/ZnS quantum dots with sub-5 nm spatial resolution. Our proof-of-principle measurements that only take advantage of a plasmonic probe (as opposed to a gap mode) pave the way for nonlinear photoluminescence-based spectral nanoimaging of realistic/heterogeneous (bio) molecular and (bio) material systems.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander B C Mantilla
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Yi Gu
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
9
|
Wang CF, El-Khoury PZ. Multimodal (Non)Linear Optical Nanoimaging and Nanospectroscopy. J Phys Chem Lett 2022; 13:7350-7354. [PMID: 35921600 DOI: 10.1021/acs.jpclett.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This Perspective highlights recent advances in linear and nonlinear spectral nanoimaging. The described developments are motivated by the need to characterize molecular and material systems noninvasively with nanometer spatial and femtosecond temporal resolution. Indeed, the ability to image and chemically characterize heterogeneous interfaces with joint nano-femto resolution is a prerequisite to advancing our fundamental understanding of processes as diverse as heterogeneous catalysis, microbial communication, and energy flow in pristine/defect-containing low-dimensional quantum materials, to name a few. We describe pioneering work and recent demonstrations of (non)linear optical nanoimaging and nanospectroscopy, with an emphasis on high spatial resolution measurements conducted under ambient laboratory conditions.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
10
|
Deroubaix A, Kramvis A. Imaging Techniques: Essential Tools for the Study of SARS-CoV-2 Infection. Front Cell Infect Microbiol 2022; 12:794264. [PMID: 35937687 PMCID: PMC9355083 DOI: 10.3389/fcimb.2022.794264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/21/2022] [Indexed: 01/08/2023] Open
Abstract
The world has seen the emergence of a new virus in 2019, SARS-CoV-2, causing the COVID-19 pandemic and millions of deaths worldwide. Microscopy can be much more informative than conventional detection methods such as RT-PCR. This review aims to present the up-to-date microscopy observations in patients, the in vitro studies of the virus and viral proteins and their interaction with their host, discuss the microscopy techniques for detection and study of SARS-CoV-2, and summarize the reagents used for SARS-CoV-2 detection. From basic fluorescence microscopy to high resolution techniques and combined technologies, this article shows the power and the potential of microscopy techniques, especially in the field of virology.
Collapse
Affiliation(s)
- Aurélie Deroubaix
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Life Sciences Imaging Facility, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Pienpinijtham P, Kitahama Y, Ozaki Y. Progress of tip-enhanced Raman scattering for the last two decades and its challenges in very recent years. NANOSCALE 2022; 14:5265-5288. [PMID: 35332899 DOI: 10.1039/d2nr00274d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tip-enhanced Raman scattering (TERS) has recently attracted remarkable attention as a novel nano-spectroscopy technique. TERS, which provides site-specific information, can be performed on any material surface regardless of morphology. Moreover, it can be applied in various environments, such as ambient air, ultrahigh vacuum (UHV), solutions, and electrochemical environments. This review reports on one hand progress of TERS for the last two decades, and on the other hand, its challenges in very recent years. Part of the progress of TERS starts with the prehistory and history of TERS, and then, the characteristics and advantages of TERS are described. Significant emphasis is put on the development of TERS instrumentation and equipment such as ultrahigh vacuum TERS, liquid TERS, electrochemical-TERS, and tip-preparations. Applications of TERS, particularly those with nanocarbons, biological materials, and surface and interface analysis, are mentioned in some detail. In the part on challenges, we focus on the very recent advances in TERS; progress in spatial resolution to the angstrom scale is the hottest topic. Recent TERS studies performed under UHV, for example chemical imaging at the angstrom scale and Raman detection of bond breaking and making of a chemisorbed up-standing single molecules at single-bond level, are reviewed. Of course, there is no clear border between the two parts. In the last part the perspective of TERS is discussed.
Collapse
Affiliation(s)
- Prompong Pienpinijtham
- Sensor Research Unit (SRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
- National Nanotechnology Center of Advanced Structural and Functional Nanomaterials, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Yasutaka Kitahama
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan.
- Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
12
|
Bonhommeau S, Cooney GS, Huang Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem Soc Rev 2022; 51:2416-2430. [PMID: 35275147 DOI: 10.1039/d1cs01039e] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nanoscale chemical and structural characterization of single biomolecules and assemblies is of paramount importance for applications in biology and medicine. It aims to describe the molecular structure of biomolecules and their interaction with unprecedented spatial resolution to better comprehend underlying molecular mechanisms of biological processes involved in cell activity and diseases. Tip-enhanced Raman scattering (TERS) spectroscopy appears particularly appealing to reach these objectives. This state-of-the-art TERS technique is as versatile as it is ultrasensitive. To perform a successful TERS experiment, special care and a thorough methodology for the preparation of the TERS system, the TERS probe tip, and sample are needed. Intense efforts have been deployed to characterize nucleic acids, proteins and peptides, lipid membranes, and more complex systems such as cells and viruses using TERS. Although the vast majority of studies have first been performed in dry conditions, they have allowed for several scientific breakthroughs. These include DNA and RNA sequencing, and the determination of relationships between protein structure and biological function by the use of increasingly exploitative chemometric tools for spectral data analysis. The nanoscale determination of the secondary structure of amyloid fibrils, protofibrils and oligomers implicated in neurodegenerative diseases could, for instance, be connected with the toxicity of these species, amyloid formation pathways, and their interaction with phospholipids. Single particles of different viral strains could be distinguished from one another by comparison of their protein and lipid contents. In addition, TERS has allowed for the evermore accurate description of the molecular organization of lipid membranes. Very recent advances also demonstrated the possibility to carry out TERS in aqueous medium, which opens thrilling perspectives for the TERS technique in biological, biomedical, and potential clinical applications.
Collapse
Affiliation(s)
| | - Gary S Cooney
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| | - Yuhan Huang
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
| |
Collapse
|
13
|
Ramoji A, Pahlow S, Pistiki A, Rueger J, Shaik TA, Shen H, Wichmann C, Krafft C, Popp J. Understanding Viruses and Viral Infections by Biophotonic Methods. TRANSLATIONAL BIOPHOTONICS 2022. [DOI: 10.1002/tbio.202100008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Anuradha Ramoji
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
| | - Susanne Pahlow
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Aikaterini Pistiki
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Jan Rueger
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Haodong Shen
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christina Wichmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
| | - Juergen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4 Jena Germany
- Leibniz Institute of Photonic Technology Jena (a member of Leibniz Health Technologies) , Albert‐Einstein Str. 9 Jena Germany
- Center for Sepsis Control and Care Jena University Hospital, Am Klinikum 1, 07747 Jena Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, 07743 Jena Germany
| |
Collapse
|
14
|
Yakubovskaya E, Zaliznyak T, Martínez JM, Taylor GT. Raman Microspectroscopy Goes Viral: Infection Dynamics in the Cosmopolitan Microalga, Emiliania huxleyi. Front Microbiol 2021; 12:686287. [PMID: 34795644 PMCID: PMC8593419 DOI: 10.3389/fmicb.2021.686287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Emiliania huxleyi is a cosmopolitan member of the marine phytoplankton. This species’ capacities for carbon sequestration and sulfur mobilization make it a key player in oceanic biogeochemical cycles that influence climate on a planetary scale. Seasonal E. huxleyi blooms are abruptly terminated by viral epidemics caused by a clade of large DNA viruses collectively known as coccolithoviruses (EhVs). EhVs thereby mediate a significant part of material and energy fluxes associated with E. huxleyi population dynamics. In this study, we use spontaneous Raman microspectroscopy to perform label-free and non-invasive measurements of the macromolecular composition of individual virions and E. huxleyi host cells. Our novel autofluorescence suppression protocol enabled spectroscopic visualization of evolving macromolecular redistributions in individual E. huxleyi cells at different stages of EhV infection. Material transfer from E. huxleyi hosts to single EhV-163 virions was confirmed by combining stable isotope probing (SIP) experiments with Raman microspectroscopy. Inheritance of the host cells’ 13C-enriched isotopic signature was quantified based on red shifts of Raman peaks characteristic of phenylalanine’s phenyl ring. Two-dimensional Raman mapping of EhV-infected E. huxleyi cells revealed that the compact region producing an intense Raman DNA signal (i.e., the nucleus) in healthy E. huxleyi cells becomes diffuse during the first hours of infection. Raman DNA emissions integrated throughout individual cells decreased during the infection cycle. Our observations are consistent with EhV-163 degrading the host’s nuclear DNA, scavenging released nucleotides for its own genome replication, and shedding newly-produced virions prior to host lysis via budding.
Collapse
Affiliation(s)
- Elena Yakubovskaya
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Tatiana Zaliznyak
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | | | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
15
|
Cui L, Li HZ, Yang K, Zhu LJ, Xu F, Zhu YG. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Mir JM, Khan MW, Shalla AH, Maurya RC. A Nonclinical Spectroscopic Approach for Diagnosing Covid-19: A Concise Perspective. JOURNAL OF APPLIED SPECTROSCOPY 2021; 88:765-771. [PMID: 34538886 PMCID: PMC8435118 DOI: 10.1007/s10812-021-01238-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Indexed: 05/08/2023]
Abstract
With the COVID-19 outbreak, many challenges are posed before the scientific world to curb this pandemic. The diagnostic testing, treatment, and vaccine development for this infection caught the scientific community's immediate attention. Currently, despite the global proliferation of COVID-19 vaccination, the specific treatment for this disease is yet unknown. Meanwhile, COVID-19 detection or diagnosis using polymerase chain reaction (PCR)-based me hods is expensive and less reliable. Moreover, this technique needs much time to furnish the results. Thus, the elaboration of a highly sensitive and fast method of COVID-19 diagnostics is of great importance. The spectroscopic approach is herein suggested as an efficient detection methodology for COVID-19 diagnosis, particularly Raman spectroscopy, infrared spectroscopy, and mass spectrometry.
Collapse
Affiliation(s)
- J. M. Mir
- Department of Chemistry, Islamic University of Science and Technology-Awantipora, J&K, Awantipora, 192122 India
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| | - M. W. Khan
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| | - A. H. Shalla
- Department of Chemistry, Islamic University of Science and Technology-Awantipora, J&K, Awantipora, 192122 India
| | - R. C. Maurya
- Coordination, Metallopharmaceutical and Computational Chemistry Laboratory, Department of PG Studies and Research in Chemistry and Pharmacy, RD University, Jabalpur, MP India
| |
Collapse
|
17
|
Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021. [PMID: 34205401 DOI: 10.3390/diagnostics11061119.(] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
|
18
|
Taha BA, Al Mashhadany Y, Bachok NN, Ashrif A Bakar A, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. Detection of COVID-19 Virus on Surfaces Using Photonics: Challenges and Perspectives. Diagnostics (Basel) 2021; 11:1119. [PMID: 34205401 PMCID: PMC8234865 DOI: 10.3390/diagnostics11061119] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Nur Nadia Bachok
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Ahmad Ashrif A Bakar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Malaysia; (B.A.T.); (N.N.B.); (A.A.A.B.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|
19
|
Wang CF, El-Khoury PZ. Imaging Plasmons with Sub-2 nm Spatial Resolution via Tip-Enhanced Four-Wave Mixing. J Phys Chem Lett 2021; 12:3535-3539. [PMID: 33797918 DOI: 10.1021/acs.jpclett.1c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four-wave mixing at plasmonic tip-sample nanojunctions may be used to visualize plasmonic fields with sub-2 nm spatial resolution under ambient laboratory conditions. We illustrate the latter using a gold-coated atomic force microscopy probe irradiated with a pair of near-infrared femtosecond laser pulses and used to image plasmonic gold nanoplates and silver nanocubes. Through diagnostic polarization-dependent tip-only measurements, we illustrate that the four-wave mixing signal is localized to the tip apex. The apex-bound signal is further enhanced when the tip is located at specific locations near plasmonic nanoparticles. Overall, this work paves the way for visualizing chemical transformations as well as coherent electronic and vibrational dynamics with joint femtosecond temporal and few-nanometer spatial resolution under ambient conditions.
Collapse
Affiliation(s)
- Chih-Feng Wang
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Patrick Z El-Khoury
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
20
|
Saviñon-Flores F, Méndez E, López-Castaños M, Carabarin-Lima A, López-Castaños KA, González-Fuentes MA, Méndez-Albores A. A Review on SERS-Based Detection of Human Virus Infections: Influenza and Coronavirus. BIOSENSORS 2021; 11:66. [PMID: 33670852 PMCID: PMC7997427 DOI: 10.3390/bios11030066] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 05/05/2023]
Abstract
The diagnosis of respiratory viruses of zoonotic origin (RVsZO) such as influenza and coronaviruses in humans is crucial, because their spread and pandemic threat are the highest. Surface-enhanced Raman spectroscopy (SERS) is an analytical technique with promising impact for the point-of-care diagnosis of viruses. It has been applied to a variety of influenza A virus subtypes, such as the H1N1 and the novel coronavirus SARS-CoV-2. In this work, a review of the strategies used for the detection of RVsZO by SERS is presented. In addition, relevant information about the SERS technique, anthropozoonosis, and RVsZO is provided for a better understanding of the theme. The direct identification is based on trapping the viruses within the interstices of plasmonic nanoparticles and recording the SERS signal from gene fragments or membrane proteins. Quantitative mono- and multiplexed assays have been achieved following an indirect format through a SERS-based sandwich immunoassay. Based on this review, the development of multiplex assays that incorporate the detection of RVsZO together with their specific biomarkers and/or secondary disease biomarkers resulting from the infection progress would be desirable. These configurations could be used as a double confirmation or to evaluate the health condition of the patient.
Collapse
Affiliation(s)
- Fernanda Saviñon-Flores
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Erika Méndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Mónica López-Castaños
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Karen A. López-Castaños
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| | - Miguel A. González-Fuentes
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico; (F.S.-F.); (E.M.); (M.A.G.-F.)
| | - Alia Méndez-Albores
- Centro de Química-ICUAP-Posgrado en Ciencias Ambientales, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico;
| |
Collapse
|
21
|
Koteswara Rao V. Point of Care Diagnostic Devices for Rapid Detection of Novel Coronavirus (SARS-nCoV19) Pandemic: A Review. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.593619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Coronaviruses are recognized as causative agents of human diseases worldwide. In Wuhan, China, an outbreak of Severe acute respiratory syndrome novel Coronavirus (SARS-nCoV-2) was reported at the end of December 2019, causing 63 million COVID cases and 1.3 million deaths globally by 2 December, 2020. The transmission risk forecasts and the SARS-nCoV-2 epidemic pattern are progressive. Unfortunately, there is no specific FDA approved drugs or vaccines available currently to treat SARS-nCoV-2. In response to nCoV-2 spread, the rapid detection is crucial for estimating the severity of the disease and treatment of patients. Currently, there are several RT-PCR based diagnostic kits available for SARS-nCoV-2 detection, which are time-consuming, expensive, need advanced equipment facilities and trained personnel. The cost of diagnosis and the unavailability of sufficient test kits may prevent to check community transmission. Furthermore, expanding the testing facilities in asymptomatic cases in hotspots require more Point of Care (PoC) devices. Therefore, fast, inexpensive, and reliable methods of detection of SARS-nCoV-2 virus infection in humans is urgently required. The rapid and easy-to-use devices will facilitate onsite testing. In this review, nucleic acid assays, serological assays, multiplex assays, and PoC devices are discussed to understand various diagnostic approaches to reduce the spread and mortality rate in the future. Aptamer based detection is most specific, inexpensive and rapid detection of SARS-nCoV-2 without laboratory tools. To the best of our knowledge more than 900 SARS-nCoV-2 test kits are in pipeline, among 395 test kits are molecular bested test kits and only few test kits are developed using Aptamer technology https://www.finddx.org/covid-19/pipeline/.
Collapse
|
22
|
Taha BA, Al Mashhadany Y, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, Arsad N. An Analysis Review of Detection Coronavirus Disease 2019 (COVID-19) Based on Biosensor Application. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6764. [PMID: 33256085 PMCID: PMC7729752 DOI: 10.3390/s20236764] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023]
Abstract
Timely detection and diagnosis are essentially needed to guide outbreak measures and infection control. It is vital to improve healthcare quality in public places, markets, schools and airports and provide useful insights into the technological environment and help researchers acknowledge the choices and gaps available in this field. In this narrative review, the detection of coronavirus disease 2019 (COVID-19) technologies is summarized and discussed with a comparison between them from several aspects to arrive at an accurate decision on the feasibility of applying the best of these techniques in the biosensors that operate using laser detection technology. The collection of data in this analysis was done by using six reliable academic databases, namely, Science Direct, IEEE Xplore, Scopus, Web of Science, Google Scholar and PubMed. This review includes an analysis review of three highlights: evaluating the hazard of pandemic COVID-19 transmission styles and comparing them with Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) to identify the main causes of the virus spreading, a critical analysis to diagnose coronavirus disease 2019 (COVID-19) based on artificial intelligence using CT scans and CXR images and types of biosensors. Finally, we select the best methods that can potentially stop the propagation of the coronavirus pandemic.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar 00964, Iraq;
| | - Mohd Hadri Hafiz Mokhtar
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| | - Norhana Arsad
- UKM—Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (B.A.T.); (M.H.H.M.); (M.S.D.B.Z.)
| |
Collapse
|
23
|
Tabish TA, Narayan RJ, Edirisinghe M. Rapid and label-free detection of COVID-19 using coherent anti-Stokes Raman scattering microscopy. MRS COMMUNICATIONS 2020; 10:566-572. [PMID: 33398237 PMCID: PMC7773019 DOI: 10.1557/mrc.2020.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/26/2020] [Indexed: 05/18/2023]
Abstract
From the 1918 influenza pandemic (H1N1) until the recent 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, no efficient diagnostic tools have been developed for sensitive identification of viral pathogens. Rigorous, early, and accurate detection of viral pathogens is not only linked to preventing transmission but also to timely treatment and monitoring of drug resistance. Reverse transcription-polymerase chain reaction (RT-PCR), the gold standard method for microbiology and virology testing, suffers from both false-negative and false-positive results arising from the detection limit, contamination of samples/templates, exponential DNA amplification, and variation of viral ribonucleic acid sequences within a single individual during the course of the infection. Rapid, sensitive, and label-free detection of SARS-CoV-2 can provide a first line of defense against the current pandemic. A promising technique is non-linear coherent anti-Stokes Raman scattering (CARS) microscopy, which has the ability to capture rich spatiotemporal structural and functional information at a high acquisition speed in a label-free manner from a biological system. Raman scattering is a process in which the distinctive spectral signatures associated with light-sample interaction provide information on the chemical composition of the sample. In this prospective, we briefly discuss the development and future prospects of CARS for real-time multiplexed label-free detection of SARS-CoV-2 pathogens.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- UCL Cancer Institute, University College London, London, Bloomsbury, WC1E 6DD UK
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27599-7115 USA
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| |
Collapse
|