1
|
Zhao R, Amstad E. Bio-Informed Porous Mineral-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2401052. [PMID: 39221524 PMCID: PMC11840473 DOI: 10.1002/smll.202401052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Certain biominerals, such as sea sponges and echinoderm skeletons, display a fascinating combination of mechanical properties and adaptability due to the well-defined structures spanning various length scales. These materials often possess high density normalized mechanical properties because they contain well-defined pores. The density-normalized mechanical properties of synthetic minerals are often inferior because the pores are stochastically distributed, resulting in an inhomogeneous stress distribution. The mechanical properties of synthetic materials are limited by the degree of structural and compositional control currently available fabrication methods offer. In the first part of this review, examples of structural elements nature uses to impart exceptional density normalized Young's moduli to its porous biominerals are showcased. The second part highlights recent advancements in the fabrication of bio-informed mineral-based composites possessing pores with diameters that span a wide range of length scales. The influence of the processing of mineral-based composites on their structures and mechanical properties is summarized. Thereby, it is aimed at encouraging further research directed to the sustainable, energy-efficient fabrication of synthetic lightweight yet stiff mineral-based composites.
Collapse
Affiliation(s)
- Ran Zhao
- Soft Materials LaboratoryInstitute of MaterialsÉcole Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Esther Amstad
- Swiss National Center for Competence in Research (NCCR) Bio‐inspired materialsUniversity of FribourgChemin des Verdiers 4Fribourg1700Switzerland
| |
Collapse
|
2
|
Gentili C, Palamà MEF, Sexton G, Maybury S, Shanahan M, Omowunmi-Kayode YY, Martin J, Johnson M, Thompson K, Clarkin O, Coleman CM. Sustainably cultured coral scaffold supports human bone marrow mesenchymal stromal cell osteogenesis. Regen Ther 2024; 26:366-381. [PMID: 39050552 PMCID: PMC11267040 DOI: 10.1016/j.reth.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone. This study investigated the biocompatibility and osteogenic potential of a novel, sustainably grown Pocillopora scaffold with human bone marrow-derived mesenchymal stromal cells (MSCs). The coral-derived scaffold displays a highly textured topography, with concavities of uniform size and a high calcium carbonate content. Large scaffold samples exhibit compressive and diametral tensile strengths in the range of trabecular bone, with strengths likely increasing for smaller particulate samples. Following the in vitro seeding of MSCs adjacent to the scaffold, the MSCs remained viable, continued proliferating and metabolising, demonstrating biocompatibility. The seeded MSCs densely covered the coral scaffold with organized, aligned cultures with a fibroblastic morphology. In vivo coral scaffolds with MSCs supported earlier bone and blood vessel formation as compared to control constructs containing TCP-HA and MSCs. This work characterized a novel, sustainably grown coral scaffold that was biocompatible with MSCs and supports their in vivo osteogenic differentiation, advancing the current repertoire of biomaterials for bone grafting.
Collapse
Affiliation(s)
- Chiara Gentili
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | | | - Gillian Sexton
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sophie Maybury
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Megan Shanahan
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Yeyetunde Yvonne Omowunmi-Kayode
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - James Martin
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
| | - Martin Johnson
- Zoan Nuáil Teoranta T/A Zoan BioMed, The Hatchery Building, Cloonacarton, Recess, Galway, Ireland
- Ecodiversity Ltd, Derryconnell, Schull, Co. Cork, Ireland
| | - Kerry Thompson
- College of Medicine, Nursing and Health Science, School of Medicine, Anatomy Imaging and Microscopy Facility, University of Galway, Galway, Ireland
| | - Owen Clarkin
- DCU Biomaterials Research Group, Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Cynthia M. Coleman
- College of Medicine, Nursing and Health Science, School of Medicine, Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Vaga CF, Seiblitz IGL, Stolarski J, Capel KCC, Quattrini AM, Cairns SD, Huang D, Quek RZB, Kitahara MV. 300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia). INVERTEBR SYST 2024; 38:IS23053. [PMID: 38744500 DOI: 10.1071/is23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.
Collapse
Affiliation(s)
- C F Vaga
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - I G L Seiblitz
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - K C C Capel
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Invertebrate Department, National Museum of Rio de Janeiro, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - D Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Conservatory Drive, Singapore 117377, Singapore; and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - R Z B Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; and Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| | - M V Kitahara
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
4
|
Capel KCC, Zilberberg C, Carpes RM, Morrison CL, Vaga CF, Quattrini AM, Zb Quek R, Huang D, Cairns SD, Kitahara MV. How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia). Mol Phylogenet Evol 2024; 191:107994. [PMID: 38113961 DOI: 10.1016/j.ympev.2023.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.
Collapse
Affiliation(s)
- Kátia C C Capel
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil.
| | - Carla Zilberberg
- Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Raphael M Carpes
- Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cheryl L Morrison
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, Kearneysville, United States
| | - Claudia F Vaga
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Randolph Zb Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Stephen D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Marcelo V Kitahara
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States.
| |
Collapse
|
5
|
Conci N, Griesshaber E, Rivera-Vicéns RE, Schmahl WW, Vargas S, Wörheide G. Molecular and mineral responses of corals grown under artificial Calcite Sea conditions. GEOBIOLOGY 2024; 22:e12586. [PMID: 38385602 DOI: 10.1111/gbi.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions-primarily in the molar ratio of magnesium and calcium during so-called 'Calcite' (mMg:mCa below 2) or 'Aragonite' seas (mMg:mCa above 2)-have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Mineralogische Staatssammlung, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
6
|
Milita S, Zaquin T, Fermani S, Montroni D, Pinkas I, Barba L, Falini G, Mass T. Assembly of the Intraskeletal Coral Organic Matrix during Calcium Carbonate Formation. CRYSTAL GROWTH & DESIGN 2023; 23:5801-5811. [PMID: 37547884 PMCID: PMC10401569 DOI: 10.1021/acs.cgd.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/01/2023] [Indexed: 08/08/2023]
Abstract
Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention. In this research, we study the deposition of calcium carbonate on a model substrate, silicon, in the presence of SOM extracted from the skeleton of two coral species representative of different living habitats and colonization strategies, which we previously characterized. The study is performed mainly by grazing incidence X-ray diffraction with the support of Raman spectroscopy and electron and optical microscopies. The results show that SOM macromolecules once adsorbed on the substrate self-assembled in a layered structure and induced the oriented growth of calcite, inhibiting the formation of vaterite. Differently, when SOM macromolecules were dispersed in solution, they induced the deposition of amorphous calcium carbonate (ACC), still preserving a layered structure. The entity of these effects was species-dependent, in agreement with previous studies. In conclusion, we observed that in the setup required by the experimental procedure, the SOM from corals appears to present a 2D lamellar structure. This structure is preserved when the SOM interacts with ACC but is lost when the interaction occurs with calcite. This knowledge not only is completely new for coral biomineralization but also has strong relevance in the study of biomineralization on other organisms.
Collapse
Affiliation(s)
- Silvia Milita
- CNR—Institute
for Microelectronic and Microsystems, via Gobetti 101, Bologna 40129, Italy
| | - Tal Zaquin
- Department
of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Simona Fermani
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
- Interdepartmental
Centre for Industrial Research Health Sciences & Technologie, University of Bologna, Bologna 40064, Italy
| | - Devis Montroni
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
| | - Iddo Pinkas
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Luisa Barba
- CNR
-Institute
of Crystallography, Elettra Synchrotron, Trieste I-34100, Italy
| | - Giuseppe Falini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna, via Selmi 2, Bologna 40126, Italy
- CNR,
Institute for Nanostructured
Materials, via Gobetti
101, Bologna 40129, Italy
| | - Tali Mass
- Department
of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| |
Collapse
|
7
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
8
|
Quattrini AM, Snyder KE, Purow-Ruderman R, Seiblitz IGL, Hoang J, Floerke N, Ramos NI, Wirshing HH, Rodriguez E, McFadden CS. Mito-nuclear discordance within Anthozoa, with notes on unique properties of their mitochondrial genomes. Sci Rep 2023; 13:7443. [PMID: 37156831 PMCID: PMC10167242 DOI: 10.1038/s41598-023-34059-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Whole mitochondrial genomes are often used in phylogenetic reconstruction. However, discordant patterns in species relationships between mitochondrial and nuclear phylogenies are commonly observed. Within Anthozoa (Phylum Cnidaria), mitochondrial (mt)-nuclear discordance has not yet been examined using a large and comparable dataset. Here, we used data obtained from target-capture enrichment sequencing to assemble and annotate mt genomes and reconstruct phylogenies for comparisons to phylogenies inferred from hundreds of nuclear loci obtained from the same samples. The datasets comprised 108 hexacorals and 94 octocorals representing all orders and > 50% of extant families. Results indicated rampant discordance between datasets at every taxonomic level. This discordance is not attributable to substitution saturation, but rather likely caused by introgressive hybridization and unique properties of mt genomes, including slow rates of evolution driven by strong purifying selection and substitution rate variation. Strong purifying selection across the mt genomes caution their use in analyses that rely on assumptions of neutrality. Furthermore, unique properties of the mt genomes were noted, including genome rearrangements and the presence of nad5 introns. Specifically, we note the presence of the homing endonuclease in ceriantharians. This large dataset of mitochondrial genomes further demonstrates the utility of off-target reads generated from target-capture data for mt genome assembly and adds to the growing knowledge of anthozoan evolution.
Collapse
Affiliation(s)
- Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA.
| | - Karen E Snyder
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | | | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, São Sebastião, 11612-109, Brazil
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-900, Brazil
| | - Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Natasha Floerke
- Department of Biology, Harvey Mudd College, Claremont, CA, 91711, USA
| | - Nina I Ramos
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Herman H Wirshing
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St. & Constitution Ave. NW, Washington, DC, 20560, USA
| | - Estefanía Rodriguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | | |
Collapse
|
9
|
Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV. Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 2022; 175:107565. [PMID: 35787457 DOI: 10.1016/j.ympev.2022.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 10/17/2022]
Abstract
Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.
Collapse
Affiliation(s)
- I G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil.
| | - C F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - K C C Capel
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, PL-00-818 Warsaw, Poland
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163 United States of America
| | - M V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Marine Science, Federal University of São Paulo, 11070-100 Santos, Brazil.
| |
Collapse
|
10
|
Drake JL, Benayahu Y, Polishchuk I, Pokroy B, Pinkas I, Mass T. Sclerites of the soft coral Ovabunda macrospiculata (Xeniidae) are predominantly the metastable CaCO 3 polymorph vaterite. Acta Biomater 2021; 135:663-670. [PMID: 34492373 DOI: 10.1016/j.actbio.2021.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium carbonate previously shown to be composed of calcite, the most stable calcium carbonate polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their mineralogy. We show that this species' sclerites are comprised predominantly of the less stable calcium carbonate polymorph vaterite (> 95%), with much smaller components of aragonite and calcite. Use of this mineral, which is typically considered to be metastable, by these soft corals has implications for how it is formed as well as how it will persist during the anticipated anthropogenic climate change in the coming decades. This first documentation of vaterite dominating the mineral composition of O. macrospiculata sclerites is likely just the beginning of establishing its presence in other soft corals. STATEMENT OF SIGNIFICANCE: Vaterite is typically considered to be a metastable polymorph of calcium carbonate. While calcium carbonate structures formed within the tissues of octocorals (phylum Cnidaria), have previously been reported to be composed of the more stable polymorphs aragonite and calcite, we observed that vaterite dominates the mineralogy of sclerites of Ovabunda macrospiculata from the Red Sea. Based on electron microscopy, Raman spectroscopy, and X-ray diffraction analysis, vaterite appears to be the dominant polymorph in sclerites both in the tissue and after extraction and preservation. Although this is the first documentation of vaterite in soft coral sclerites, it likely will be found in sclerites of other related taxa as well.
Collapse
|
11
|
McFadden CS, Quattrini AM, Brugler MR, Cowman PF, Dueñas LF, Kitahara MV, Paz-García DA, Reimer JD, Rodríguez E. Phylogenomics, Origin, and Diversification of Anthozoans (Phylum Cnidaria). Syst Biol 2021; 70:635-647. [PMID: 33507310 DOI: 10.1093/sysbio/syaa103] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 01/19/2023] Open
Abstract
Anthozoan cnidarians (corals and sea anemones) include some of the world's most important foundation species, capable of building massive reef complexes that support entire ecosystems. Although previous molecular phylogenetic analyses have revealed widespread homoplasy of the morphological characters traditionally used to define orders and families of anthozoans, analyses using mitochondrial genes or rDNA have failed to resolve many key nodes in the phylogeny. With a fully resolved, time-calibrated phylogeny for 234 species constructed from hundreds of ultraconserved elements and exon loci, we explore the evolutionary origins of the major clades of Anthozoa and some of their salient morphological features. The phylogeny supports reciprocally monophyletic Hexacorallia and Octocorallia, with Ceriantharia as the earliest diverging hexacorals; two reciprocally monophyletic clades of Octocorallia; and monophyly of all hexacoral orders with the exception of the enigmatic sea anemone Relicanthus daphneae. Divergence dating analyses place Anthozoa in the Cryogenian to Tonian periods (648-894 Ma), older than has been suggested by previous studies. Ancestral state reconstructions indicate that the ancestral anthozoan was a solitary polyp that had bilateral symmetry and lacked a skeleton. Colonial growth forms and the ability to precipitate calcium carbonate evolved in the Ediacaran (578 Ma) and Cambrian (503 Ma) respectively; these hallmarks of reef-building species have subsequently arisen multiple times independently in different orders. Anthozoans formed associations with photosymbionts by the Devonian (383 Ma), and photosymbioses have been gained and lost repeatedly in all orders. Together, these results have profound implications for the interpretation of the Precambrian environment and the early evolution of metazoans.[Bilateral symmetry; coloniality; coral; early metazoans; exon capture; Hexacorallia; Octocorallia photosymbiosis; sea anemone; ultraconserved elements.].
Collapse
Affiliation(s)
- Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711 USA.,Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.,Biological Sciences Department, NYC College of Technology, City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA.,Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902, USA
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.,Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD 4810, Australia
| | - Luisa F Dueñas
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Carrera 30 No.45-03 Edificio 421, Bogotá, D.C., Colombia
| | - Marcelo V Kitahara
- Department of Marine Science, Federal University of São Paulo, Santos, SP 11070-100 Brazil.,Centre for Marine Biology, University of São Paulo, São Sebastião, SP 11612-109 Brazil
| | - David A Paz-García
- CONACyT-Centro de Investigaciones Biológicas del Noroeste (CIBNOR). Laboratorio de Necton y Ecología de Arrecifes. Calle IPN 195, Col. Playa Palo de Santa Rita Sur, 23096 La Paz, B.C.S., México
| | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Department of Marine Science, Chemistry, and Biology, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.,Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| |
Collapse
|