1
|
Pali E, Masoli S, Di Domenico D, Sorbo T, Prestori F, D'Angelo E. Coincidence detection between apical and basal dendrites drives STDP in cerebellar Golgi cells. Commun Biol 2025; 8:731. [PMID: 40350534 PMCID: PMC12066733 DOI: 10.1038/s42003-025-08153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 05/01/2025] [Indexed: 05/14/2025] Open
Abstract
Cerebellar Golgi cells (GoCs), segregate parallel fiber (pf), and mossy fiber (mf) inputs on apical and basal dendrites. Computational modeling predicted that this anatomical arrangement, coupled with a specific ionic channel localization, could be instrumental to drive STDP at mf-GoC synapses. Here, we test this hypothesis with GoC patch-clamp recordings in acute mouse cerebellar slices. Repeated mf-pf pairing on the theta-band within a ± 50 ms time window induces anti-symmetric Hebbian-STDP, with spike-timing long-term potentiation or depression (st-LTP or st-LTD) occurring when action potentials (APs) elicited by pf stimulation follow or precede the activation of mf synapses, respectively. Mf-GoC STDP induction requires AP backpropagation from apical to basal dendrites, NMDA receptor activation at mf-GoC synapses, and intracellular calcium changes. Importantly, STDP is inverted by inhibitory control. Thus, experimental evidence confirms and extends model predictions suggesting that GoC STDP can bind molecular layer to granular layer activity, regulating cerebellar computation and learning.
Collapse
Affiliation(s)
- Eleonora Pali
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Stefano Masoli
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Danila Di Domenico
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Teresa Sorbo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Francesca Prestori
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
| | - Egidio D'Angelo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.
- Digital Neuroscience Centre, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
2
|
Harris SS, Ellingford R, Hartmann J, Dasgupta D, Kehring M, Rajani RM, Graykowski D, Quittot N, Sivasankaran D, Commins C, Fan Z, Bond SA, Wolf F, Dupret D, Dolan RJ, Konnerth A, Neef A, Hyman BT, Busche MA. Alzheimer's disease patient-derived high-molecular-weight tau impairs bursting in hippocampal neurons. Cell 2025:S0092-8674(25)00408-8. [PMID: 40300603 DOI: 10.1016/j.cell.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/21/2025] [Accepted: 04/03/2025] [Indexed: 05/01/2025]
Abstract
Tau accumulation is closely related to cognitive symptoms in Alzheimer's disease (AD). However, the cellular drivers of tau-dependent decline of memory-based cognition remain elusive. Here, we employed in vivo Neuropixels and patch-clamp recordings in mouse models and demonstrate that tau, independent of β-amyloid, selectively debilitates complex-spike burst firing of CA1 hippocampal neurons, a fundamental cellular mechanism underpinning learning and memory. Impaired bursting was associated with altered hippocampal network activities that are coupled to burst firing patterns (i.e., theta rhythms and high-frequency ripples) and was concurrent with reduced neuronal expression of CaV2.3 calcium channels, which are essential for burst firing in vivo. We subsequently identify soluble high molecular weight (HMW) tau, isolated from human AD brain, as the tau species responsible for suppression of burst firing. These data provide a cellular mechanism for tau-dependent cognitive decline in AD and implicate a rare species of intracellular HMW tau as a therapeutic target.
Collapse
Affiliation(s)
- Samuel S Harris
- UK Dementia Research Institute at University College London, London, UK.
| | - Robert Ellingford
- UK Dementia Research Institute at University College London, London, UK
| | - Jana Hartmann
- UK Dementia Research Institute at University College London, London, UK
| | - Debanjan Dasgupta
- UK Dementia Research Institute at University College London, London, UK
| | - Marten Kehring
- UK Dementia Research Institute at University College London, London, UK
| | - Rikesh M Rajani
- UK Dementia Research Institute at University College London, London, UK; British Heart Foundation - UK Dementia Research Institute Centre for Vascular Dementia Research at The University of Edinburgh, Edinburgh, UK
| | - David Graykowski
- UK Dementia Research Institute at University College London, London, UK
| | - Noé Quittot
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Dhanush Sivasankaran
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Suraya A Bond
- UK Dementia Research Institute at University College London, London, UK
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Andreas Neef
- Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marc Aurel Busche
- UK Dementia Research Institute at University College London, London, UK; Department of Neurodegenerative Diseases, University Hospital of Geriatric Medicine FELIX PLATTER and University of Basel, Basel, Switzerland; Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Mani S, Hurley P, van Schaik A, Monk T. The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes. Neural Comput 2025; 37:926-956. [PMID: 40112139 DOI: 10.1162/neco_a_01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/02/2025] [Indexed: 03/22/2025]
Abstract
Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.
Collapse
Affiliation(s)
- Shivaram Mani
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Paul Hurley
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
4
|
Madar AD, Jiang A, Dong C, Sheffield MEJ. Synaptic plasticity rules driving representational shifting in the hippocampus. Nat Neurosci 2025; 28:848-860. [PMID: 40113934 DOI: 10.1038/s41593-025-01894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/17/2025] [Indexed: 03/22/2025]
Abstract
Synaptic plasticity is widely thought to support memory storage in the brain, but the rules determining impactful synaptic changes in vivo are not known. We considered the trial-by-trial shifting dynamics of hippocampal place fields (PF) as an indicator of ongoing plasticity during memory formation and familiarization. By implementing different plasticity rules in computational models of spiking place cells and comparing them to experimentally measured PFs from mice navigating familiar and new environments, we found that behavioral timescale synaptic plasticity (BTSP), rather than Hebbian spike-timing-dependent plasticity (STDP), best explains PF shifting dynamics. BTSP-triggering events are rare, but more frequent during new experiences. During exploration, their probability is dynamic-it decays after PF onset, but continually drives a population-level representational drift. Additionally, our results show that BTSP occurs in CA3 but is less frequent and phenomenologically different than in CA1. Overall, our study provides a new framework to understand how synaptic plasticity continuously shapes neuronal representations during learning.
Collapse
Affiliation(s)
- Antoine D Madar
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| | - Anqi Jiang
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Can Dong
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark E J Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Chou CYC, Droogers WJ, Lalanne T, Fineberg E, Klimenko T, Owens H, Sjöström PJ. Postsynaptic spiking determines anti-Hebbian LTD in visual cortex basket cells. Front Synaptic Neurosci 2025; 17:1548563. [PMID: 40040787 PMCID: PMC11872923 DOI: 10.3389/fnsyn.2025.1548563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
Long-term plasticity at pyramidal cell to basket cell (PC → BC) synapses is important for the functioning of cortical microcircuits. It is well known that at neocortical PC → PC synapses, dendritic calcium (Ca2+) dynamics signal coincident pre-and postsynaptic spiking which in turn triggers long-term potentiation (LTP). However, the link between dendritic Ca2+ dynamics and long-term plasticity at PC → BC synapses of primary visual cortex (V1) is not as well known. Here, we explored if PC → BC synaptic plasticity in developing V1 is sensitive to postsynaptic spiking. Two-photon (2P) Ca2+ imaging revealed that action potentials (APs) in dendrites of V1 layer-5 (L5) BCs back-propagated decrementally but actively to the location of PC → BC putative synaptic contacts. Pairing excitatory inputs with postsynaptic APs elicited dendritic Ca2+ supralinearities for pre-before-postsynaptic but not post-before-presynaptic temporal ordering, suggesting that APs could impact synaptic plasticity. In agreement, extracellular stimulation as well as high-throughput 2P optogenetic mapping of plasticity both revealed that pre-before-postsynaptic but not post-before-presynaptic pairing resulted in anti-Hebbian long-term depression (LTD). Our results demonstrate that V1 BC dendritic Ca2+ nonlinearities and synaptic plasticity at PC → BC connections are both sensitive to somatic spiking.
Collapse
Affiliation(s)
- Christina Y. C. Chou
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Wouter J. Droogers
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Txomin Lalanne
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
- EphyX Neuroscience, Bordeaux, France
| | - Eric Fineberg
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Tal Klimenko
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - P. Jesper Sjöström
- Centre for Research in Neuroscience, BRaIN Program, Department of Neurology and Neurosurgery, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
6
|
Cheng P, Ding K, Chen D, Yang C, Wang J, Yang S, Chen M, Zhu G. mPFC DCC coupling with CaMKII + neuronal excitation participates in behavioral despair in male mice. Transl Psychiatry 2025; 15:52. [PMID: 39952936 PMCID: PMC11829057 DOI: 10.1038/s41398-025-03266-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
A longed lack of control over harmful stimuli can lead to learned helplessness (LH), a significant factor in depression. However, the cellular and molecular mechanisms underlying LH, and eventually behavioral despair, remain largely unknown. The deleted in colorectal cancer (dcc) gene is associated with the risk of depression. However, the therapeutic potential and regulation mechanism of DCC in behavioral despair are still uncertain. In this study, we showed that depressive stimulators, including LH, lipopolysaccharide, and unpredictable chronic mild stress, triggered an elevation in DCC expression in the medial prefrontal cortex (mPFC). Additionally, elevated DCC expression in the mPFC was crucial in inducing behavioral despair, as evidenced by the induction of behavioral despair in normal mice and exacerbation of behavioral despair in LH mice upon DCC overexpression. By contrast, neutralizing DCC activity ameliorated LH-induced behavioral despair. Importantly, we elucidated that pathological DCC expression was attributable to the excessive excitation of CaMKII+ neurons in a manner dependent on the calpain-mediated degradation of SCOP and aberrant phosphorylation of the ERK signaling pathway. In addition, the increase in DCC expression led to a decreased excitability threshold in CaMKII+ neurons in the mPFC, which was supported by the observation that the ligand netrin 1 increased the frequency of action potential firing and of spontaneous excitatory postsynaptic currents in CaMKII+ neurons. In conclusion, our data indicate that LH triggers the excessive excitation of CaMKII+ neurons and activation of calpain-SCOP/ERK signaling to promote DCC expression, and DCC represents a crucial target for the treatment of LH-induced behavioral despair in male mice.
Collapse
Affiliation(s)
- Ping Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Keke Ding
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Daokang Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Chen Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Juan Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Ming Chen
- MOE Frontier Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Park P, Wong-Campos JD, Itkis DG, Lee BH, Qi Y, Davis HC, Antin B, Pasarkar A, Grimm JB, Plutkis SE, Holland KL, Paninski L, Lavis LD, Cohen AE. Dendritic excitations govern back-propagation via a spike-rate accelerometer. Nat Commun 2025; 16:1333. [PMID: 39905023 PMCID: PMC11794848 DOI: 10.1038/s41467-025-55819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
Dendrites on neurons support electrical excitations, but the computational significance of these events is not well understood. We developed molecular, optical, and computational tools for all-optical electrophysiology in dendrites. We mapped sub-millisecond voltage dynamics throughout the dendritic trees of CA1 pyramidal neurons under diverse optogenetic and synaptic stimulus patterns, in acute brain slices. Our data show history-dependent spike back-propagation in distal dendrites, driven by locally generated Na+ spikes (dSpikes). Dendritic depolarization created a transient window for dSpike propagation, opened by A-type KV channel inactivation, and closed by slow NaV inactivation. Collisions of dSpikes with synaptic inputs triggered calcium channel and N-methyl-D-aspartate receptor (NMDAR)-dependent dendritic plateau potentials and accompanying complex spikes at the soma. This hierarchical ion channel network acts as a spike-rate accelerometer, providing an intuitive picture connecting dendritic biophysics to associative plasticity rules.
Collapse
Affiliation(s)
- Pojeong Park
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - J David Wong-Campos
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel G Itkis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Byung Hun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yitong Qi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hunter C Davis
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Benjamin Antin
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Amol Pasarkar
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sarah E Plutkis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Katie L Holland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liam Paninski
- Departments of Statistics and Neuroscience, Columbia University, New York, NY, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
8
|
Martínez-Gallego I, Rodríguez-Moreno A. Adenosine and Cortical Plasticity. Neuroscientist 2025; 31:47-64. [PMID: 38497585 DOI: 10.1177/10738584241236773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Brain plasticity is the ability of the nervous system to change its structure and functioning in response to experiences. These changes occur mainly at synaptic connections, and this plasticity is named synaptic plasticity. During postnatal development, environmental influences trigger changes in synaptic plasticity that will play a crucial role in the formation and refinement of brain circuits and their functions in adulthood. One of the greatest challenges of present neuroscience is to try to explain how synaptic connections change and cortical maps are formed and modified to generate the most suitable adaptive behavior after different external stimuli. Adenosine is emerging as a key player in these plastic changes at different brain areas. Here, we review the current knowledge of the mechanisms responsible for the induction and duration of synaptic plasticity at different postnatal brain development stages in which adenosine, probably released by astrocytes, directly participates in the induction of long-term synaptic plasticity and in the control of the duration of plasticity windows at different cortical synapses. In addition, we comment on the role of the different adenosine receptors in brain diseases and on the potential therapeutic effects of acting via adenosine receptors.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| |
Collapse
|
9
|
Li X, Wang X, Hu X, Tang P, Chen C, He L, Chen M, Bello ST, Chen T, Wang X, Wong YT, Sun W, Chen X, Qu J, He J. Cortical HFS-Induced Neo-Hebbian Local Plasticity Enhances Efferent Output Signal and Strengthens Afferent Input Connectivity. eNeuro 2025; 12:ENEURO.0045-24.2024. [PMID: 39809536 PMCID: PMC11810566 DOI: 10.1523/eneuro.0045-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/17/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
High-frequency stimulation (HFS)-induced long-term potentiation (LTP) is generally regarded as a homosynaptic Hebbian-type LTP, where synaptic changes are thought to occur at the synapses that project from the stimulation site and terminate onto the neurons at the recording site. In this study, we first investigated HFS-induced LTP on urethane-anesthetized rats and found that cortical HFS enhances neural responses at the recording site through the strengthening of local connectivity with nearby neurons at the stimulation site rather than through synaptic strengthening at the recording site. This enhanced local connectivity at the stimulation site leads to increased output propagation, resulting in signal potentiation at the recording site. Additionally, we discovered that HFS can also nonspecifically strengthen distant afferent synapses at the HFS site, thereby expanding its impact beyond local neural connections. This form of plasticity exhibits a neo-Hebbian characteristic as it exclusively manifests in the presence of cholecystokinin release, induced by HFS. The cortical HFS-induced local LTP was further supported by a behavioral task, providing additional evidence. Our results unveil a previously overlooked mechanism underlying cortical plasticity: synaptic plasticity is more likely to occur around the soma site of strongly activated cortical neurons rather than solely at their projection terminals.
Collapse
Affiliation(s)
- Xiao Li
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xue Wang
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiaohan Hu
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Peng Tang
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Congping Chen
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Ling He
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Mengying Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Stephen Temitayo Bello
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Tao Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| | - Xiaoyu Wang
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Yin Ting Wong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Wenjian Sun
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Xi Chen
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
| | - Jianan Qu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jufang He
- Departments of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
- Research Centre for Treatments of Brain Disorders, City University of Hong Kong, Kowloon, Hong Kong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Center of Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Shatin, Hong Kong
| |
Collapse
|
10
|
Forsberg M, Zhou D, Jalali S, Faravelli G, Seth H, Björefeldt A, Hanse E. Evaluation of mechanisms involved in regulation of intrinsic excitability by extracellular calcium in CA1 pyramidal neurons of rat. J Neurochem 2025; 169:e16209. [PMID: 39164935 PMCID: PMC11657917 DOI: 10.1111/jnc.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/12/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
It is well recognized that changes in the extracellular concentration of calcium ions influence the excitability of neurons, yet what mechanism(s) mediate these effects is still a matter of debate. Using patch-clamp recordings from rat hippocampal CA1 pyramidal neurons, we examined the contribution of G-proteins and intracellular calcium-dependent signaling mechanisms to changes in intrinsic excitability evoked by altering the extracellular calcium concentration from physiological (1.2 mM) to a commonly used experimental (2 mM) level. We find that the inhibitory effect on intrinsic excitability of calcium ions is mainly expressed as an increased threshold for action potential firing (with no significant effect on resting membrane potential) that is not blocked by either the G-protein inhibitor GDPβS or the calcium chelator BAPTA. Our results therefore argue that in the concentration range studied, G-protein coupled calcium-sensing receptors, non-selective cation conductances, and intracellular calcium signaling pathways are not involved in mediating the effect of extracellular calcium ions on intrinsic excitability. Analysis of the derivative of the action potential, dV/dt versus membrane potential, indicates a current shift towards more depolarized membrane potentials at the higher calcium concentration. Our results are thus consistent with a mechanism in which extracellular calcium ions act directly on the voltage-gated sodium channels by neutralizing negative charges on the extracellular surface of these channels to modulate the threshold for action potential activation.
Collapse
Affiliation(s)
- My Forsberg
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Dinna Zhou
- Department of Clinical NeuroscienceInstitute of Physiology and Neuroscience, Sahlgrenska Academy, University of Gothenburg, GothenburgGothenburgSweden
- Region Västra GötalandDepartment of Ophthalmology, Sahlgrenska University HospitalMölndalSweden
| | - Shadi Jalali
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Giorgia Faravelli
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Henrik Seth
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Andreas Björefeldt
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eric Hanse
- Department of PhysiologyThe Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Mittermaier FX, Kalbhenn T, Xu R, Onken J, Faust K, Sauvigny T, Thomale UW, Kaindl AM, Holtkamp M, Grosser S, Fidzinski P, Simon M, Alle H, Geiger JRP. Membrane potential states gate synaptic consolidation in human neocortical tissue. Nat Commun 2024; 15:10340. [PMID: 39668146 PMCID: PMC11638263 DOI: 10.1038/s41467-024-53901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/22/2024] [Indexed: 12/14/2024] Open
Abstract
Synaptic mechanisms that contribute to human memory consolidation remain largely unexplored. Consolidation critically relies on sleep. During slow wave sleep, neurons exhibit characteristic membrane potential oscillations known as UP and DOWN states. Coupling of memory reactivation to these slow oscillations promotes consolidation, though the underlying mechanisms remain elusive. Here, we performed axonal and multineuron patch-clamp recordings in acute human brain slices, obtained from neurosurgeries, to show that sleep-like UP and DOWN states modulate axonal action potentials and temporarily enhance synaptic transmission between neocortical pyramidal neurons. Synaptic enhancement by UP and DOWN state sequences facilitates recruitment of postsynaptic action potentials, which in turn results in long-term stabilization of synaptic strength. In contrast, synapses undergo lasting depression if presynaptic neurons fail to recruit postsynaptic action potentials. Our study offers a mechanistic explanation for how coupling of neural activity to slow waves can cause synaptic consolidation, with potential implications for brain stimulation strategies targeting memory performance.
Collapse
Affiliation(s)
- Franz X Mittermaier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Thilo Kalbhenn
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Ran Xu
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich W Thomale
- Pediatric Neurosurgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sabine Grosser
- Institute for Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Matthias Simon
- Department of Neurosurgery (Evangelisches Klinikum Bethel), University of Bielefeld Medical Center OWL, Bielefeld, Germany
| | - Henrik Alle
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany
| | - Jörg R P Geiger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Berlin, Germany.
| |
Collapse
|
12
|
Köksal-Ersöz E, Benquet P, Wendling F. Expansion of epileptogenic networks via neuroplasticity in neural mass models. PLoS Comput Biol 2024; 20:e1012666. [PMID: 39625956 PMCID: PMC11642990 DOI: 10.1371/journal.pcbi.1012666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/13/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Neuroplasticity refers to functional and structural changes in brain regions in response to healthy and pathological activity. Activity dependent plasticity induced by epileptic activity can involve healthy brain regions into the epileptogenic network by perturbing their excitation/inhibition balance. In this article, we present a new neural mass model, which accounts for neuroplasticity, for investigating the possible mechanisms underlying the epileptogenic network expansion. Our multiple-timescale model is inspired by physiological calcium-mediated synaptic plasticity and pathological extrasynaptic N-methyl-D-aspartate (NMDA) dependent plasticity dynamics. The model highlights that synaptic plasticity at excitatory connections and structural changes in the inhibitory system can transform a healthy region into a secondary epileptic focus under recurrent seizures and interictal activity occurring in the primary focus. Our results suggest that the latent period of this transformation can provide a window of opportunity to prevent the expansion of epileptogenic networks, formation of an epileptic focus, or other comorbidities associated with epileptic activity.
Collapse
|
13
|
Matin MH, Xiao S, Jayant K. Mild focal cooling selectively impacts computations in dendritic trees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621672. [PMID: 39553978 PMCID: PMC11565978 DOI: 10.1101/2024.11.02.621672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Focal cooling is a powerful technique to temporally scale neural dynamics. However, the underlying cellular mechanisms causing this scaling remain unresolved. Here, using targeted focal cooling (with a spatial resolution of 100 micrometers), dual somato-dendritic patch clamp recordings, two-photon calcium imaging, transmitter uncaging, and modeling we reveal that a 5°C drop can enhance synaptic transmission, plasticity, and input-output transformations in the distal apical tuft, but not in the basal dendrites of intrinsically bursting L5 pyramidal neurons. This enhancement depends on N-methyl-D-aspartate (NMDA) and Kv4.2, suggesting electrical structure modulation. Paradoxically, and despite the increase in tuft excitability, we observe a reduced rate of recovery from inactivation for apical Na+ channels, thereby regulating back-propagating action potential invasion, coincidence detection, and overall burst probability, resulting in an "apparent" slowing of somatic spike output. Our findings reveal a differential temperature sensitivity along the basal-tuft axis of L5 neurons analog modulates cortical output.
Collapse
|
14
|
Sanz-Gálvez R, Falardeau D, Kolta A, Inglebert Y. The role of astrocytes from synaptic to non-synaptic plasticity. Front Cell Neurosci 2024; 18:1477985. [PMID: 39493508 PMCID: PMC11527691 DOI: 10.3389/fncel.2024.1477985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Information storage and transfer in the brain require a high computational power. Neuronal network display various local or global mechanisms to allow information storage and transfer in the brain. From synaptic to intrinsic plasticity, the rules of input-output function modulation have been well characterized in neurons. In the past years, astrocytes have been suggested to increase the computational power of the brain and we are only just starting to uncover their role in information processing. Astrocytes maintain a close bidirectional communication with neurons to modify neuronal network excitability, transmission, axonal conduction, and plasticity through various mechanisms including the release of gliotransmitters or local ion homeostasis. Astrocytes have been significantly studied in the context of long-term or short-term synaptic plasticity, but this is not the only mechanism involved in memory formation. Plasticity of intrinsic neuronal excitability also participates in memory storage through regulation of voltage-gated ion channels or axonal morphological changes. Yet, the contribution of astrocytes to these other forms of non-synaptic plasticity remains to be investigated. In this review, we summarized the recent advances on the role of astrocytes in different forms of plasticity and discuss new directions and ideas to be explored regarding astrocytes-neuronal communication and regulation of plasticity.
Collapse
Affiliation(s)
- Rafael Sanz-Gálvez
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Dominic Falardeau
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| | - Arlette Kolta
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Yanis Inglebert
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montréal, QC, Canada
| |
Collapse
|
15
|
Chater TE, Eggl MF, Goda Y, Tchumatchenko T. Competitive processes shape multi-synapse plasticity along dendritic segments. Nat Commun 2024; 15:7572. [PMID: 39217140 PMCID: PMC11365941 DOI: 10.1038/s41467-024-51919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Neurons receive thousands of inputs onto their dendritic arbour, where individual synapses undergo activity-dependent plasticity. Long-lasting changes in postsynaptic strengths correlate with changes in spine head volume. The magnitude and direction of such structural plasticity - potentiation (sLTP) and depression (sLTD) - depend upon the number and spatial distribution of stimulated synapses. However, how neurons allocate resources to implement synaptic strength changes across space and time amongst neighbouring synapses remains unclear. Here we combined experimental and modelling approaches to explore the elementary processes underlying multi-spine plasticity. We used glutamate uncaging to induce sLTP at varying number of synapses sharing the same dendritic branch, and we built a model incorporating a dual role Ca2+-dependent component that induces spine growth or shrinkage. Our results suggest that competition among spines for molecular resources is a key driver of multi-spine plasticity and that spatial distance between simultaneously stimulated spines impacts the resulting spine dynamics.
Collapse
Affiliation(s)
- Thomas E Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Maximilian F Eggl
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany
- Institute of Neuroscience, CSIC-UMH, Alicante, Spain
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- Synapse Biology Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan.
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
16
|
Gillett M, Brunel N. Dynamic control of sequential retrieval speed in networks with heterogeneous learning rules. eLife 2024; 12:RP88805. [PMID: 39197099 PMCID: PMC11357343 DOI: 10.7554/elife.88805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Temporal rescaling of sequential neural activity has been observed in multiple brain areas during behaviors involving time estimation and motor execution at variable speeds. Temporally asymmetric Hebbian rules have been used in network models to learn and retrieve sequential activity, with characteristics that are qualitatively consistent with experimental observations. However, in these models sequential activity is retrieved at a fixed speed. Here, we investigate the effects of a heterogeneity of plasticity rules on network dynamics. In a model in which neurons differ by the degree of temporal symmetry of their plasticity rule, we find that retrieval speed can be controlled by varying external inputs to the network. Neurons with temporally symmetric plasticity rules act as brakes and tend to slow down the dynamics, while neurons with temporally asymmetric rules act as accelerators of the dynamics. We also find that such networks can naturally generate separate 'preparatory' and 'execution' activity patterns with appropriate external inputs.
Collapse
Affiliation(s)
- Maxwell Gillett
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Nicolas Brunel
- Department of Neurobiology, Duke UniversityDurhamUnited States
- Department of Physics, Duke UniversityDurhamUnited States
| |
Collapse
|
17
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Yang X, La Camera G. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits. PLoS Comput Biol 2024; 20:e1012220. [PMID: 38950068 PMCID: PMC11244818 DOI: 10.1371/journal.pcbi.1012220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/12/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024] Open
Abstract
Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Graduate Program in Physics and Astronomy, Stony Brook University, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York, United States of America
| | - Giancarlo La Camera
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
- Center for Neural Circuit Dynamics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
19
|
Yang X, La Camera G. Co-existence of synaptic plasticity and metastable dynamics in a spiking model of cortical circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570692. [PMID: 38106233 PMCID: PMC10723399 DOI: 10.1101/2023.12.07.570692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Graduate Program in Physics and Astronomy, Stony Brook University
- Department of Neurobiology & Behavior, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| | - Giancarlo La Camera
- Department of Neurobiology & Behavior, Stony Brook University
- Center for Neural Circuit Dynamics, Stony Brook University
| |
Collapse
|
20
|
Mahapatra S, Takahashi T. Physiological roles of endocytosis and presynaptic scaffold in vesicle replenishment at fast and slow central synapses. eLife 2024; 12:RP90497. [PMID: 38829367 PMCID: PMC11147502 DOI: 10.7554/elife.90497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
After exocytosis, release sites are cleared of vesicular residues to replenish with transmitter-filled vesicles. Endocytic and scaffold proteins are thought to underlie this site-clearance mechanism. However, the physiological significance of this mechanism at diverse mammalian central synapses remains unknown. Here, we tested this in a physiologically optimized condition using action potential evoked EPSCs at fast calyx synapse and relatively slow hippocampal CA1 synapse, in post-hearing mice brain slices at 37°C and in 1.3 mM [Ca2+]. Pharmacological block of endocytosis enhanced synaptic depression at the calyx synapse, whereas it attenuated synaptic facilitation at the hippocampal synapse. Block of scaffold protein activity likewise enhanced synaptic depression at the calyx but had no effect at the hippocampal synapse. At the fast calyx synapse, block of endocytosis or scaffold protein activity significantly enhanced synaptic depression as early as 10 ms after the stimulation onset. Unlike previous reports, neither endocytic blockers nor scaffold protein inhibitors prolonged the recovery from short-term depression. We conclude that the release-site clearance by endocytosis can be a universal phenomenon supporting vesicle replenishment at both fast and slow synapses, whereas the presynaptic scaffold mechanism likely plays a specialized role in vesicle replenishment predominantly at fast synapses.
Collapse
Affiliation(s)
- Satyajit Mahapatra
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate UniversityOkinawaJapan
| | - Tomoyuki Takahashi
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology - Graduate UniversityOkinawaJapan
| |
Collapse
|
21
|
Inglebert Y, Wu PY, Tourbina-Kolomiets J, Dang CL, McKinney RA. Synaptopodin is required for long-term depression at Schaffer collateral-CA1 synapses. Mol Brain 2024; 17:17. [PMID: 38566234 PMCID: PMC10988887 DOI: 10.1186/s13041-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Synaptopodin (SP), an actin-associated protein found in telencephalic neurons, affects activity-dependant synaptic plasticity and dynamic changes of dendritic spines. While being required for long-term depression (LTD) mediated by metabotropic glutamate receptor (mGluR-LTD), little is known about its role in other forms of LTD induced by low frequency stimulation (LFS-LTD) or spike-timing dependent plasticity (STDP). Using electrophysiology in ex vivo hippocampal slices from SP-deficient mice (SPKO), we show that absence of SP is associated with a deficit of LTD at Sc-CA1 synapses induced by LFS-LTD and STDP. As LTD is known to require AMPA- receptors internalization and IP3-receptors calcium signaling, we tested by western blotting and immunochemistry if there were changes in their expression which we found to be reduced. While we were not able to induce LTD, long-term potentiation (LTP), albeit diminished in SPKO, can be recovered by using a stronger stimulation protocol. In SPKO we found no differences in NMDAR, which are the primary site of calcium signalling to induce LTP. Our study shows, for the first time, the key role of the requirement of SP to allow induction of activity-dependant LTD at Sc-CA1 synapses.
Collapse
Affiliation(s)
- Yanis Inglebert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
- Current address Department of Neurosciences, Montreal University, Montreal, Canada.
| | - Pei You Wu
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Cong Loc Dang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
22
|
Beninger J, Rossbroich J, Tóth K, Naud R. Functional subtypes of synaptic dynamics in mouse and human. Cell Rep 2024; 43:113785. [PMID: 38363673 DOI: 10.1016/j.celrep.2024.113785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
Synapses preferentially respond to particular temporal patterns of activity with a large degree of heterogeneity that is informally or tacitly separated into classes. Yet, the precise number and properties of such classes are unclear. Do they exist on a continuum and, if so, when is it appropriate to divide that continuum into functional regions? In a large dataset of glutamatergic cortical connections, we perform model-based characterization to infer the number and characteristics of functionally distinct subtypes of synaptic dynamics. In rodent data, we find five clusters that partially converge with transgenic-associated subtypes. Strikingly, the application of the same clustering method in human data infers a highly similar number of clusters, supportive of stable clustering. This nuanced dictionary of functional subtypes shapes the heterogeneity of cortical synaptic dynamics and provides a lens into the basic motifs of information transmission in the brain.
Collapse
Affiliation(s)
- John Beninger
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Science, University of Basel, Basel, Switzerland
| | - Katalin Tóth
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Richard Naud
- Center for Neural Dynamics and Artificial Intelligence, University of Ottawa, Ottawa, ON K1H 8M5, Canada; uOttawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Physics, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
23
|
Li G, McLaughlin DW, Peskin CS. A biochemical description of postsynaptic plasticity-with timescales ranging from milliseconds to seconds. Proc Natl Acad Sci U S A 2024; 121:e2311709121. [PMID: 38324573 PMCID: PMC10873618 DOI: 10.1073/pnas.2311709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024] Open
Abstract
Synaptic plasticity [long-term potentiation/depression (LTP/D)], is a cellular mechanism underlying learning. Two distinct types of early LTP/D (E-LTP/D), acting on very different time scales, have been observed experimentally-spike timing dependent plasticity (STDP), on time scales of tens of ms; and behavioral time scale synaptic plasticity (BTSP), on time scales of seconds. BTSP is a candidate for a mechanism underlying rapid learning of spatial location by place cells. Here, a computational model of the induction of E-LTP/D at a spine head of a synapse of a hippocampal pyramidal neuron is developed. The single-compartment model represents two interacting biochemical pathways for the activation (phosphorylation) of the kinase (CaMKII) with a phosphatase, with ion inflow through channels (NMDAR, CaV1,Na). The biochemical reactions are represented by a deterministic system of differential equations, with a detailed description of the activation of CaMKII that includes the opening of the compact state of CaMKII. This single model captures realistic responses (temporal profiles with the differing timescales) of STDP and BTSP and their asymmetries. The simulations distinguish several mechanisms underlying STDP vs. BTSP, including i) the flow of [Formula: see text] through NMDAR vs. CaV1 channels, and ii) the origin of several time scales in the activation of CaMKII. The model also realizes a priming mechanism for E-LTP that is induced by [Formula: see text] flow through CaV1.3 channels. Once in the spine head, this small additional [Formula: see text] opens the compact state of CaMKII, placing CaMKII ready for subsequent induction of LTP.
Collapse
Affiliation(s)
- Guanchun Li
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
| | - David W. McLaughlin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
- Institute of Mathematical Science, Mathematics Department, New York University-Shanghai, Shanghai200122, China
- Neuroscience Institute of New York University Langone Health, New York University, New York, NY10016
| | - Charles S. Peskin
- Courant Institute and Center for Neural Science, Department of Mathematics, New York University, New York, NY10012
- Center for Neural Science, Department of Neural Science, New York University, New York, NY10012
| |
Collapse
|
24
|
Piette C, Gervasi N, Venance L. Synaptic plasticity through a naturalistic lens. Front Synaptic Neurosci 2023; 15:1250753. [PMID: 38145207 PMCID: PMC10744866 DOI: 10.3389/fnsyn.2023.1250753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
From the myriad of studies on neuronal plasticity, investigating its underlying molecular mechanisms up to its behavioral relevance, a very complex landscape has emerged. Recent efforts have been achieved toward more naturalistic investigations as an attempt to better capture the synaptic plasticity underpinning of learning and memory, which has been fostered by the development of in vivo electrophysiological and imaging tools. In this review, we examine these naturalistic investigations, by devoting a first part to synaptic plasticity rules issued from naturalistic in vivo-like activity patterns. We next give an overview of the novel tools, which enable an increased spatio-temporal specificity for detecting and manipulating plasticity expressed at individual spines up to neuronal circuit level during behavior. Finally, we put particular emphasis on works considering brain-body communication loops and macroscale contributors to synaptic plasticity, such as body internal states and brain energy metabolism.
Collapse
Affiliation(s)
- Charlotte Piette
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | | | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
25
|
Jędrzejewska-Szmek J, Dorman DB, Blackwell KT. Making time and space for calcium control of neuron activity. Curr Opin Neurobiol 2023; 83:102804. [PMID: 37913687 PMCID: PMC10842147 DOI: 10.1016/j.conb.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Calcium directly controls or indirectly regulates numerous functions that are critical for neuronal network activity. Intracellular calcium concentration is tightly regulated by numerous molecular mechanisms because spatial domains and temporal dynamics (not just peak amplitude) are critical for calcium control of synaptic plasticity and ion channel activation, which in turn determine neuron spiking activity. The computational models investigating calcium control are valuable because experiments achieving high spatial and temporal resolution simultaneously are technically unfeasible. Simulations of calcium nanodomains reveal that specific calcium sources can couple to specific calcium targets, providing a mechanism to determine the direction of synaptic plasticity. Cooperativity of calcium domains opposes specificity, suggesting that the dendritic branch might be the preferred computational unit of the neuron.
Collapse
Affiliation(s)
- Joanna Jędrzejewska-Szmek
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Science, 3 Pasteur Street, Warsaw, 02-093, Poland.
| | - Daniel B Dorman
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, 21218, MD, USA
| | - Kim T Blackwell
- Bioengineering Department and Interdisciplinary Program in Neuroscience, George Mason University, 4400 University Drive, Fairfax, 22031, VA, USA
| |
Collapse
|
26
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
27
|
Friedenberger Z, Harkin E, Tóth K, Naud R. Silences, spikes and bursts: Three-part knot of the neural code. J Physiol 2023; 601:5165-5193. [PMID: 37889516 DOI: 10.1113/jp281510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
When a neuron breaks silence, it can emit action potentials in a number of patterns. Some responses are so sudden and intense that electrophysiologists felt the need to single them out, labelling action potentials emitted at a particularly high frequency with a metonym - bursts. Is there more to bursts than a figure of speech? After all, sudden bouts of high-frequency firing are expected to occur whenever inputs surge. The burst coding hypothesis advances that the neural code has three syllables: silences, spikes and bursts. We review evidence supporting this ternary code in terms of devoted mechanisms for burst generation, synaptic transmission and synaptic plasticity. We also review the learning and attention theories for which such a triad is beneficial.
Collapse
Affiliation(s)
- Zachary Friedenberger
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| | - Emerson Harkin
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katalin Tóth
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Richard Naud
- Brain and Mind Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Centre for Neural Dynamics and Artifical Intelligence, Department of Physics, University of Ottawa, Ottawa, Ontario, Ottawa
| |
Collapse
|
28
|
Halvagal MS, Zenke F. The combination of Hebbian and predictive plasticity learns invariant object representations in deep sensory networks. Nat Neurosci 2023; 26:1906-1915. [PMID: 37828226 PMCID: PMC10620089 DOI: 10.1038/s41593-023-01460-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
Recognition of objects from sensory stimuli is essential for survival. To that end, sensory networks in the brain must form object representations invariant to stimulus changes, such as size, orientation and context. Although Hebbian plasticity is known to shape sensory networks, it fails to create invariant object representations in computational models, raising the question of how the brain achieves such processing. In the present study, we show that combining Hebbian plasticity with a predictive form of plasticity leads to invariant representations in deep neural network models. We derive a local learning rule that generalizes to spiking neural networks and naturally accounts for several experimentally observed properties of synaptic plasticity, including metaplasticity and spike-timing-dependent plasticity. Finally, our model accurately captures neuronal selectivity changes observed in the primate inferotemporal cortex in response to altered visual experience. Thus, we provide a plausible normative theory emphasizing the importance of predictive plasticity mechanisms for successful representational learning.
Collapse
Affiliation(s)
- Manu Srinath Halvagal
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Friedemann Zenke
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
29
|
Madar A, Dong C, Sheffield M. BTSP, not STDP, Drives Shifts in Hippocampal Representations During Familiarization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562791. [PMID: 37904999 PMCID: PMC10614909 DOI: 10.1101/2023.10.17.562791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Synaptic plasticity is widely thought to support memory storage in the brain, but the rules determining impactful synaptic changes in-vivo are not known. We considered the trial-by-trial shifting dynamics of hippocampal place fields (PFs) as an indicator of ongoing plasticity during memory formation. By implementing different plasticity rules in computational models of spiking place cells and comparing to experimentally measured PFs from mice navigating familiar and novel environments, we found that Behavioral-Timescale-Synaptic-Plasticity (BTSP), rather than Hebbian Spike-Timing-Dependent-Plasticity, is the principal mechanism governing PF shifting dynamics. BTSP-triggering events are rare, but more frequent during novel experiences. During exploration, their probability is dynamic: it decays after PF onset, but continually drives a population-level representational drift. Finally, our results show that BTSP occurs in CA3 but is less frequent and phenomenologically different than in CA1. Overall, our study provides a new framework to understand how synaptic plasticity shapes neuronal representations during learning.
Collapse
Affiliation(s)
- A.D. Madar
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| | - C. Dong
- Department of Neurobiology, Neuroscience Institute, University of Chicago
- current affiliation: Department of Neurobiology, Stanford University School of Medicine
| | - M.E.J. Sheffield
- Department of Neurobiology, Neuroscience Institute, University of Chicago
| |
Collapse
|
30
|
Yamamoto H, Spitzner FP, Takemuro T, Buendía V, Murota H, Morante C, Konno T, Sato S, Hirano-Iwata A, Levina A, Priesemann V, Muñoz MA, Zierenberg J, Soriano J. Modular architecture facilitates noise-driven control of synchrony in neuronal networks. SCIENCE ADVANCES 2023; 9:eade1755. [PMID: 37624893 PMCID: PMC10456864 DOI: 10.1126/sciadv.ade1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
High-level information processing in the mammalian cortex requires both segregated processing in specialized circuits and integration across multiple circuits. One possible way to implement these seemingly opposing demands is by flexibly switching between states with different levels of synchrony. However, the mechanisms behind the control of complex synchronization patterns in neuronal networks remain elusive. Here, we use precision neuroengineering to manipulate and stimulate networks of cortical neurons in vitro, in combination with an in silico model of spiking neurons and a mesoscopic model of stochastically coupled modules to show that (i) a modular architecture enhances the sensitivity of the network to noise delivered as external asynchronous stimulation and that (ii) the persistent depletion of synaptic resources in stimulated neurons is the underlying mechanism for this effect. Together, our results demonstrate that the inherent dynamical state in structured networks of excitable units is determined by both its modular architecture and the properties of the external inputs.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Taiki Takemuro
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Victor Buendía
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
| | - Hakuba Murota
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Carla Morante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| | - Tomohiro Konno
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeo Sato
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan
- Graduate School of Engineering, Tohoku University, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Anna Levina
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, University of Göttingen, Göttingen, Germany
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | | | - Jordi Soriano
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain
| |
Collapse
|
31
|
Zhang T, Cheng X, Jia S, Li CT, Poo MM, Xu B. A brain-inspired algorithm that mitigates catastrophic forgetting of artificial and spiking neural networks with low computational cost. SCIENCE ADVANCES 2023; 9:eadi2947. [PMID: 37624895 PMCID: PMC10456855 DOI: 10.1126/sciadv.adi2947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Neuromodulators in the brain act globally at many forms of synaptic plasticity, represented as metaplasticity, which is rarely considered by existing spiking (SNNs) and nonspiking artificial neural networks (ANNs). Here, we report an efficient brain-inspired computing algorithm for SNNs and ANNs, referred to here as neuromodulation-assisted credit assignment (NACA), which uses expectation signals to induce defined levels of neuromodulators to selective synapses, whereby the long-term synaptic potentiation and depression are modified in a nonlinear manner depending on the neuromodulator level. The NACA algorithm achieved high recognition accuracy with substantially reduced computational cost in learning spatial and temporal classification tasks. Notably, NACA was also verified as efficient for learning five different class continuous learning tasks with varying degrees of complexity, exhibiting a markedly mitigated catastrophic forgetting at low computational cost. Mapping synaptic weight changes showed that these benefits could be explained by the sparse and targeted synaptic modifications attributed to expectation-based global neuromodulation.
Collapse
Affiliation(s)
- Tielin Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai 200031, China
| | - Xiang Cheng
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuncheng Jia
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengyu T Li
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mu-ming Poo
- Shanghai Center for Brain Science and Brain-inspired Technology, Lingang Laboratory, Shanghai 200031, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Xu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Rodrigues YE, Tigaret CM, Marie H, O'Donnell C, Veltz R. A stochastic model of hippocampal synaptic plasticity with geometrical readout of enzyme dynamics. eLife 2023; 12:e80152. [PMID: 37589251 PMCID: PMC10435238 DOI: 10.7554/elife.80152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/22/2023] [Indexed: 08/18/2023] Open
Abstract
Discovering the rules of synaptic plasticity is an important step for understanding brain learning. Existing plasticity models are either (1) top-down and interpretable, but not flexible enough to account for experimental data, or (2) bottom-up and biologically realistic, but too intricate to interpret and hard to fit to data. To avoid the shortcomings of these approaches, we present a new plasticity rule based on a geometrical readout mechanism that flexibly maps synaptic enzyme dynamics to predict plasticity outcomes. We apply this readout to a multi-timescale model of hippocampal synaptic plasticity induction that includes electrical dynamics, calcium, CaMKII and calcineurin, and accurate representation of intrinsic noise sources. Using a single set of model parameters, we demonstrate the robustness of this plasticity rule by reproducing nine published ex vivo experiments covering various spike-timing and frequency-dependent plasticity induction protocols, animal ages, and experimental conditions. Our model also predicts that in vivo-like spike timing irregularity strongly shapes plasticity outcome. This geometrical readout modelling approach can be readily applied to other excitatory or inhibitory synapses to discover their synaptic plasticity rules.
Collapse
Affiliation(s)
- Yuri Elias Rodrigues
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| | - Cezar M Tigaret
- Neuroscience and Mental Health Research Innovation Institute, Division of Psychological Medicine and Clinical Neurosciences,School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Hélène Marie
- Université Côte d’AzurNiceFrance
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRSValbonneFrance
| | - Cian O'Donnell
- School of Computing, Engineering, and Intelligent Systems, Magee Campus, Ulster UniversityLondonderryUnited Kingdom
- School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of BristolBristolUnited Kingdom
| | - Romain Veltz
- Inria Center of University Côte d’Azur (Inria)Sophia AntipolisFrance
| |
Collapse
|
33
|
Aceituno PV, Farinha MT, Loidl R, Grewe BF. Learning cortical hierarchies with temporal Hebbian updates. Front Comput Neurosci 2023; 17:1136010. [PMID: 37293353 PMCID: PMC10244748 DOI: 10.3389/fncom.2023.1136010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
A key driver of mammalian intelligence is the ability to represent incoming sensory information across multiple abstraction levels. For example, in the visual ventral stream, incoming signals are first represented as low-level edge filters and then transformed into high-level object representations. Similar hierarchical structures routinely emerge in artificial neural networks (ANNs) trained for object recognition tasks, suggesting that similar structures may underlie biological neural networks. However, the classical ANN training algorithm, backpropagation, is considered biologically implausible, and thus alternative biologically plausible training methods have been developed such as Equilibrium Propagation, Deep Feedback Control, Supervised Predictive Coding, and Dendritic Error Backpropagation. Several of those models propose that local errors are calculated for each neuron by comparing apical and somatic activities. Notwithstanding, from a neuroscience perspective, it is not clear how a neuron could compare compartmental signals. Here, we propose a solution to this problem in that we let the apical feedback signal change the postsynaptic firing rate and combine this with a differential Hebbian update, a rate-based version of classical spiking time-dependent plasticity (STDP). We prove that weight updates of this form minimize two alternative loss functions that we prove to be equivalent to the error-based losses used in machine learning: the inference latency and the amount of top-down feedback necessary. Moreover, we show that the use of differential Hebbian updates works similarly well in other feedback-based deep learning frameworks such as Predictive Coding or Equilibrium Propagation. Finally, our work removes a key requirement of biologically plausible models for deep learning and proposes a learning mechanism that would explain how temporal Hebbian learning rules can implement supervised hierarchical learning.
Collapse
Affiliation(s)
- Pau Vilimelis Aceituno
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
| | | | - Reinhard Loidl
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Benjamin F. Grewe
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Kim J, Choi P, Park YT, Kim T, Ham J, Kim JC. The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer’s Disease-like Mouse Model. Int J Mol Sci 2023; 24:ijms24076827. [PMID: 37047798 PMCID: PMC10095267 DOI: 10.3390/ijms24076827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Most studies related to hemp are focused on Cannabidiol (CBD) and Tetrahydrocannabinol (THC); however, up to 120 types of phytocannabinoids are present in hemp. Hemp leaves contain large amounts of Cannabidiolic acid (CBDA) and Tetrahydrocannabinolic acid (THCA), which are acidic variants of CBD and THC and account for the largest proportion of CBDA. In recent studies, CBDA exhibited anti-hyperalgesia and anti-inflammatory effects. THCA also showed anti-inflammatory and neuroprotective effects that may be beneficial for treating neurodegenerative diseases. CBDA and THCA can penetrate the blood–brain barrier (BBB) and affect the central nervous system. The purpose of this study was to determine whether CBDA and THCA ameliorate Alzheimer’s disease (AD)-like features in vitro and in vivo. The effect of CBDA and THCA was evaluated in the Aβ1–42-treated mouse model. We observed that Aβ1–42-treated mice had more hippocampal Aβ and p-tau levels, pathological markers of AD, and loss of cognitive function compared with PBS-treated mice. However, CBDA- and THCA-treated mice showed decreased hippocampal Aβ and p-tau and superior cognitive function compared with Aβ1–42-treated mice. In addition, CBDA and THCA lowered Aβ and p-tau levels, alleviated calcium dyshomeostasis, and exhibited neuroprotective effects in primary neurons. Our results suggest that CBDA and THCA have anti-AD effects and mitigate memory loss and resilience to increased hippocampal Ca2+, Aβ, and p-tau levels. Together, CBDA and THCA may be useful therapeutic agents for treating AD.
Collapse
Affiliation(s)
- Juyong Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Pilju Choi
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Young-Tae Park
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Taejung Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jungyeob Ham
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
- NeoCannBio Co., Ltd., Gangneung 02792, Republic of Korea
| | - Jin-Chul Kim
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
35
|
Dainauskas JJ, Marie H, Migliore M, Saudargiene A. GluN2B-NMDAR subunit contribution on synaptic plasticity: A phenomenological model for CA3-CA1 synapses. Front Synaptic Neurosci 2023; 15:1113957. [PMID: 37008680 PMCID: PMC10050887 DOI: 10.3389/fnsyn.2023.1113957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Synaptic plasticity is believed to be a key mechanism underlying learning and memory. We developed a phenomenological N-methyl-D-aspartate (NMDA) receptor-based voltage-dependent synaptic plasticity model for synaptic modifications at hippocampal CA3-CA1 synapses on a hippocampal CA1 pyramidal neuron. The model incorporates the GluN2A-NMDA and GluN2B-NMDA receptor subunit-based functions and accounts for the synaptic strength dependence on the postsynaptic NMDA receptor composition and functioning without explicitly modeling the NMDA receptor-mediated intracellular calcium, a local trigger of synaptic plasticity. We embedded the model into a two-compartmental model of a hippocampal CA1 pyramidal cell and validated it against experimental data of spike-timing-dependent synaptic plasticity (STDP), high and low-frequency stimulation. The developed model predicts altered learning rules in synapses formed on the apical dendrites of the detailed compartmental model of CA1 pyramidal neuron in the presence of the GluN2B-NMDA receptor hypofunction and can be used in hippocampal networks to model learning in health and disease.
Collapse
Affiliation(s)
- Justinas J. Dainauskas
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Informatics, Vytautas Magnus University, Kaunas, Lithuania
| | - Hélène Marie
- Université Côte d'Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Ausra Saudargiene
- Laboratory of Biophysics and Bioinformatics, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
- *Correspondence: Ausra Saudargiene
| |
Collapse
|
36
|
Spike timing-dependent plasticity and memory. Curr Opin Neurobiol 2023; 80:102707. [PMID: 36924615 DOI: 10.1016/j.conb.2023.102707] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Spike timing-dependent plasticity (STDP) is a bidirectional form of synaptic plasticity discovered about 30 years ago and based on the relative timing of pre- and post-synaptic spiking activity with a millisecond precision. STDP is thought to be involved in the formation of memory but the millisecond-precision spike-timing required for STDP is difficult to reconcile with the much slower timescales of behavioral learning. This review therefore aims to expose and discuss recent findings about i) the multiple STDP learning rules at both excitatory and inhibitory synapses in vitro, ii) the contribution of STDP-like synaptic plasticity in the formation of memory in vivo and iii) the implementation of STDP rules in artificial neural networks and memristive devices.
Collapse
|
37
|
2-AG-Mediated Control of GABAergic Signaling Is Impaired in a Model of Epilepsy. J Neurosci 2023; 43:571-583. [PMID: 36460464 PMCID: PMC9888507 DOI: 10.1523/jneurosci.0541-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/21/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Repeated seizures result in a persistent maladaptation of endocannabinoid (eCB) signaling, mediated part by anandamide signaling deficiency in the basolateral amygdala (BLA) that manifests as aberrant synaptic function and altered emotional behavior. Here, we determined the effect of repeated seizures (kindling) on 2-arachidonoylglycerol (2-AG) signaling on GABA transmission by directly measuring tonic and phasic eCB-mediated retrograde signaling in an in vitro BLA slice preparation from male rats. We report that both activity-dependent and muscarinic acetylcholine receptor (mAChR)-mediated depression of GABA synaptic transmission was reduced following repeated seizure activity. These effects were recapitulated in sham rats by preincubating slices with the 2-AG synthesizing enzyme inhibitor DO34. Conversely, preincubating slices with the 2-AG degrading enzyme inhibitor KML29 rescued activity-dependent 2-AG signaling, but not mAChR-mediated synaptic depression, over GABA transmission in kindled rats. These effects were not attributable to a change in cannabinoid type 1 (CB1) receptor sensitivity or altered 2-AG tonic signaling since the application of the highly selective CB1 receptor agonist CP55,940 provoked a similar reduction in GABA synaptic activity in both sham and kindled rats, while no effect of either DO34 or of the CB1 inverse agonist AM251 was observed on frequency and amplitude of spontaneous IPSCs in either sham or kindled rats. Collectively, these data provide evidence that repeated amygdala seizures persistently alter phasic 2-AG-mediated retrograde signaling at BLA GABAergic synapses, probably by impairing stimulus-dependent 2-AG synthesis/release, which contributes to the enduring aberrant synaptic plasticity associated with seizure activity.SIGNIFICANCE STATEMENT The plastic reorganization of endocannabinoid (eCB) signaling after seizures and during epileptogenesis may contribute to the negative neurobiological consequences associated with seizure activity. Therefore, a deeper understanding of the molecular basis underlying the pathologic long-term eCB signaling remodeling following seizure activity will be crucial to the development of novel therapies for epilepsy that not only target seizure activity, but, most importantly, the epileptogenesis and the comorbid conditions associated with epilepsy.
Collapse
|
38
|
Wu YK, Miehl C, Gjorgjieva J. Regulation of circuit organization and function through inhibitory synaptic plasticity. Trends Neurosci 2022; 45:884-898. [PMID: 36404455 DOI: 10.1016/j.tins.2022.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/15/2022]
Abstract
Diverse inhibitory neurons in the mammalian brain shape circuit connectivity and dynamics through mechanisms of synaptic plasticity. Inhibitory plasticity can establish excitation/inhibition (E/I) balance, control neuronal firing, and affect local calcium concentration, hence regulating neuronal activity at the network, single neuron, and dendritic level. Computational models can synthesize multiple experimental results and provide insight into how inhibitory plasticity controls circuit dynamics and sculpts connectivity by identifying phenomenological learning rules amenable to mathematical analysis. We highlight recent studies on the role of inhibitory plasticity in modulating excitatory plasticity, forming structured networks underlying memory formation and recall, and implementing adaptive phenomena and novelty detection. We conclude with experimental and modeling progress on the role of interneuron-specific plasticity in circuit computation and context-dependent learning.
Collapse
Affiliation(s)
- Yue Kris Wu
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Christoph Miehl
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, Freising, Germany; Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
39
|
Sun W, Chen X, Mei Y, Li X, Yang Y, An L. Co-exposure of melamine and cyanuric acid as a risk factor for oxidative stress and energy metabolism: Adverse effects on hippocampal neuronal and synaptic function induced by excessive ROS production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114230. [PMID: 36306617 DOI: 10.1016/j.ecoenv.2022.114230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Melamine (MEL) and cyanuric acid (CA) alone have relatively low toxicity, but together they may cause serious damage to multiple organs, including the central nervous system, however, the underlying mechanism is unknown. This study aimed to determine and compare the neurotoxic effects of MEL (20 μg/mL), CA (20 μg/mL) and their combination (10 μg/mL MEL and 10 μg/mL CA) on cultured hippocampal neurons. The cell viability, apoptosis, anti-oxidative and energy metabolic indices were detected following 24 h of incubations. The miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and synaptic plasticity in the hippocampal CA1 neurons were recorded. Moreover, ROS scavenger NAC was co-infused to investigate the potential mechanism. We found the complex of MEL and CA but not their alone caused severe cell death and disturbed energy production through activation caspase-3-mediated apoptosis. Meanwhile, the combination significantly reduced the amplitude, decay time and frequency of mEPSCs but not mIPSCs, indicating the pre- and post-synaptic inhibitory actions on neuronal activity. Paired-pulsed ratio (PPR) and long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses were critically depressed. However, the co-application of NAC could effectively mitigate the cellular apoptosis, energy metabolism dysfunction and the impairments in neuronal and synaptic function. Our findings provide the first evidence that the combination of MEL and CA can exert more prominently neurotoxic effects than their alone and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the ROS-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
40
|
Theta patterns of stimulation induce synaptic and intrinsic potentiation in O-LM interneurons. Proc Natl Acad Sci U S A 2022; 119:e2205264119. [PMID: 36282913 PMCID: PMC9636972 DOI: 10.1073/pnas.2205264119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain oscillations have long-lasting effects on synaptic and cellular properties. For instance, synaptic stimulation at theta (θ) frequency induces persistent depression of both excitatory synaptic transmission and intrinsic excitability in CA1 principal neurons. However, the incidence of θ activity on synaptic transmission and intrinsic excitability in hippocampal GABAergic interneurons is unclear. We report here the induction of both synaptic and intrinsic potentiation in oriens-lacunosum moleculare (O-LM) interneurons following stimulation of afferent glutamatergic inputs in the θ frequency range (∼5 Hz). Long-term synaptic potentiation (LTP) is induced by synaptic activation of calcium-permeable AMPA receptors (CP-AMPAR), whereas long-term potentiation of intrinsic excitability (LTP-IE) results from the mGluR1-dependent down-regulation of Kv7 voltage-dependent potassium channel and hyperpolarization activated and cyclic nucleotide-gated (HCN) channel through the depletion of phosphatidylinositol-4,5-biphosphate (PIP2). LTP and LTP-IE are reversible, demonstrating that both synaptic and intrinsic changes are bidirectional in O-LM cells. We conclude that synaptic activity at θ frequency induces both synaptic and intrinsic potentiation in O-LM interneurons, i.e., the opposite of what is typically seen in glutamatergic neurons.
Collapse
|
41
|
van den Hurk M, Lau S, Marchetto MC, Mertens J, Stern S, Corti O, Brice A, Winner B, Winkler J, Gage FH, Bardy C. Druggable transcriptomic pathways revealed in Parkinson's patient-derived midbrain neurons. NPJ Parkinsons Dis 2022; 8:134. [PMID: 36258029 PMCID: PMC9579158 DOI: 10.1038/s41531-022-00400-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson’s disease (PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort’s transcriptome is enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity. Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD. Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of reprogrammed patient neurons.
Collapse
Affiliation(s)
- Mark van den Hurk
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia
| | - Shong Lau
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Maria C. Marchetto
- grid.266100.30000 0001 2107 4242Department of Anthropology, University of California San Diego, La Jolla, CA USA
| | - Jerome Mertens
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.5771.40000 0001 2151 8122Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Tyrol Austria
| | - Shani Stern
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA ,grid.18098.380000 0004 1937 0562Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Olga Corti
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Alexis Brice
- grid.425274.20000 0004 0620 5939Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, DMU BioGeM, Paris, France
| | - Beate Winner
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- grid.411668.c0000 0000 9935 6525Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany ,grid.411668.c0000 0000 9935 6525Department of Molecular Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fred H. Gage
- grid.250671.70000 0001 0662 7144Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA USA
| | - Cedric Bardy
- grid.430453.50000 0004 0565 2606South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA Australia ,grid.1014.40000 0004 0367 2697Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA Australia
| |
Collapse
|
42
|
Fuchsberger T, Clopath C, Jarzebowski P, Brzosko Z, Wang H, Paulsen O. Postsynaptic burst reactivation of hippocampal neurons enables associative plasticity of temporally discontiguous inputs. eLife 2022; 11:e81071. [PMID: 36226826 PMCID: PMC9612916 DOI: 10.7554/elife.81071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/09/2022] [Indexed: 11/20/2022] Open
Abstract
A fundamental unresolved problem in neuroscience is how the brain associates in memory events that are separated in time. Here, we propose that reactivation-induced synaptic plasticity can solve this problem. Previously, we reported that the reinforcement signal dopamine converts hippocampal spike timing-dependent depression into potentiation during continued synaptic activity (Brzosko et al., 2015). Here, we report that postsynaptic bursts in the presence of dopamine produce input-specific LTP in mouse hippocampal synapses 10 min after they were primed with coincident pre- and post-synaptic activity (post-before-pre pairing; Δt = -20 ms). This priming activity induces synaptic depression and sets an NMDA receptor-dependent silent eligibility trace which, through the cAMP-PKA cascade, is rapidly converted into protein synthesis-dependent synaptic potentiation, mediated by a signaling pathway distinct from that of conventional LTP. This synaptic learning rule was incorporated into a computational model, and we found that it adds specificity to reinforcement learning by controlling memory allocation and enabling both 'instructive' and 'supervised' reinforcement learning. We predicted that this mechanism would make reactivated neurons activate more strongly and carry more spatial information than non-reactivated cells, which was confirmed in freely moving mice performing a reward-based navigation task.
Collapse
Affiliation(s)
- Tanja Fuchsberger
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Claudia Clopath
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| | - Przemyslaw Jarzebowski
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Zuzanna Brzosko
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| | - Hongbing Wang
- Department of Physiology, Michigan State UniversityEast LansingUnited States
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
43
|
Plasticity in the Olfactory Cortex Is Enabled by Disinhibition of Pyramidal Neuron Apical Dendrites. J Neurosci 2022; 42:6484-6486. [PMID: 36002284 PMCID: PMC9410746 DOI: 10.1523/jneurosci.0892-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
|
44
|
Wang B, Aljadeff J. Multiplicative Shot-Noise: A New Route to Stability of Plastic Networks. PHYSICAL REVIEW LETTERS 2022; 129:068101. [PMID: 36018633 DOI: 10.1103/physrevlett.129.068101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Fluctuations of synaptic weights, among many other physical, biological, and ecological quantities, are driven by coincident events of two "parent" processes. We propose a multiplicative shot-noise model that can capture the behaviors of a broad range of such natural phenomena, and analytically derive an approximation that accurately predicts its statistics. We apply our results to study the effects of a multiplicative synaptic plasticity rule that was recently extracted from measurements in physiological conditions. Using mean-field theory analysis and network simulations, we investigate how this rule shapes the connectivity and dynamics of recurrent spiking neural networks. The multiplicative plasticity rule is shown to support efficient learning of input stimuli, and it gives a stable, unimodal synaptic-weight distribution with a large fraction of strong synapses. The strong synapses remain stable over long times but do not "run away." Our results suggest that the multiplicative shot-noise offers a new route to understand the tradeoff between flexibility and stability in neural circuits and other dynamic networks.
Collapse
Affiliation(s)
- Bin Wang
- Department of Physics, University of California San Diego, La Jolla, California 92093, USA
| | - Johnatan Aljadeff
- Department of Neurobiology, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
45
|
Martínez-Gallego I, Pérez-Rodríguez M, Coatl-Cuaya H, Flores G, Rodríguez-Moreno A. Adenosine and Astrocytes Determine the Developmental Dynamics of Spike Timing-Dependent Plasticity in the Somatosensory Cortex. J Neurosci 2022; 42:6038-6052. [PMID: 35768208 PMCID: PMC9351642 DOI: 10.1523/jneurosci.0115-22.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
During development, critical periods of synaptic plasticity facilitate the reordering and refinement of neural connections, allowing the definitive synaptic circuits responsible for correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex (S1) exhibit a presynaptic form of spike timing-dependent long-term depression (t-LTD) that probably fulfills a role in synaptic refinement. This t-LTD persists until the fourth postnatal week in mice, disappearing thereafter. When we investigated the mechanisms underlying this maturation-related loss of t-LTD in either sex mouse slices, we found that it could be completely recovered by antagonizing adenosine type 1 receptors. By contrast, an agonist of A1R impeded the induction of t-LTD at P13-27. Furthermore, we found that the adenosine that mediated the loss of t-LTD at the end of the fourth week of development is most probably supplied by astrocytes. At more mature stages (P38-60), we found that the protocol used to induce t-LTD provokes t-LTP. We characterized the mechanisms underlying the induction of this form of LTP, and we found it to be expressed presynaptically, as witnessed by paired-pulse and coefficient of variation analysis. In addition, this form of presynaptic t-LTP requires the activation of NMDARs and mGlu1Rs, and the entry of Ca2+ into the postsynaptic neuron through L-type voltage-dependent Ca2+ channels. Nitric oxide is also required for t-LTP as a messenger in the postsynaptic neuron as are the adenosine and glutamate that are released in association with astrocyte signaling. These results provide direct evidence of the mechanisms that close the window of plasticity associated with t-LTD and that drive the switch in synaptic transmission from t-LTD to t-LTP at L4-L2/3 synapses, in which astrocytes play a central role.SIGNIFICANCE STATEMENT During development, critical periods of plasticity facilitate the reordering and refining of neural connections, allowing correct adult physiology to be established. The L4-L2/3 synapses in the somatosensory cortex exhibit a presynaptic form plasticity (LTD) that probably fulfills a role in synaptic refinement. It is present until the fourth postnatal week in mice, disappearing thereafter. The mechanisms that are responsible for this loss of plasticity are not clear. We describe here these mechanisms and those involved in the switch from LTD to LTP observed as the brain matures. Defining these events responsible for closing (and opening) plasticity windows may be important for brain repair, sensorial recovery, the treatment of neurodevelopmental disorders, and for educational policy.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| |
Collapse
|
46
|
Chiu DN, Carter BC. Synaptic NMDA receptor activity at resting membrane potentials. Front Cell Neurosci 2022; 16:916626. [PMID: 35928574 PMCID: PMC9345169 DOI: 10.3389/fncel.2022.916626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
NMDA receptors (NMDARs) are crucial for glutamatergic synaptic signaling in the mammalian central nervous system. When activated by glutamate and glycine/D-serine, the NMDAR ion channel can open, but current flux is further regulated by voltage-dependent block conferred by extracellular Mg2+ ions. The unique biophysical property of ligand- and voltage-dependence positions NMDARs as synaptic coincidence detectors, controlling a major source of synaptic Ca2+ influx. We measured synaptic currents in layer 2/3 neurons after stimulation in layer 4 of somatosensory cortex and found measurable NMDAR currents at all voltages tested. This NMDAR current did not require concurrent AMPAR depolarization. In physiological ionic conditions, the NMDAR current response at negative potentials was enhanced relative to ionic conditions typically used in slice experiments. NMDAR activity was also seen in synaptic recordings from hippocampal CA1 neurons, indicating a general property of NMDAR signaling. Using a fluorescent Ca2+ indicator, we measured responses to stimulation in layer 4 at individual synaptic sites, and Ca2+ influx could be detected even with AMPARs blocked. In current clamp recordings, we found that resting membrane potential was hyperpolarized by ∼7 mV and AP firing threshold depolarized by ∼4 mV in traditional compared to physiological ionic concentrations, and that NMDARs contribute to EPSPs at resting membrane potentials. These measurements demonstrate that, even in the presence of extracellular Mg2+ and absence of postsynaptic depolarization, NMDARs contribute to synaptic currents and Ca2+ influx.
Collapse
Affiliation(s)
- Delia N Chiu
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany
| | - Brett C Carter
- European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany
| |
Collapse
|
47
|
Chindemi G, Abdellah M, Amsalem O, Benavides-Piccione R, Delattre V, Doron M, Ecker A, Jaquier AT, King J, Kumbhar P, Monney C, Perin R, Rössert C, Tuncel AM, Van Geit W, DeFelipe J, Graupner M, Segev I, Markram H, Muller EB. A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex. Nat Commun 2022; 13:3038. [PMID: 35650191 PMCID: PMC9160074 DOI: 10.1038/s41467-022-30214-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.
Collapse
Affiliation(s)
- Giuseppe Chindemi
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Marwan Abdellah
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Oren Amsalem
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.,Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ruth Benavides-Piccione
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Vincent Delattre
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michael Doron
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - András Ecker
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Aurélien T Jaquier
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - James King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Pramod Kumbhar
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Caitlin Monney
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Rodrigo Perin
- Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Rössert
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Anil M Tuncel
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Werner Van Geit
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Javier DeFelipe
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
| | - Michael Graupner
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Idan Segev
- Department of Neurobiology, the Hebrew University of Jerusalem, Jerusalem, Israel.,Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.,Laboratory of Neural Microcircuitry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland. .,Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada. .,CHU Sainte-Justine Research Center, Montréal, QC, Canada. .,Quebec Artificial Intelligence Institute (Mila), Montréal, Canada.
| |
Collapse
|
48
|
Gonzalez KC, Losonczy A, Negrean A. Dendritic Excitability and Synaptic Plasticity In Vitro and In Vivo. Neuroscience 2022; 489:165-175. [PMID: 34998890 PMCID: PMC9392867 DOI: 10.1016/j.neuroscience.2021.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
Much of our understanding of dendritic and synaptic physiology comes from in vitro experimentation, where the afforded mechanical stability and convenience of applying drugs allowed patch-clamping based recording techniques to investigate ion channel distributions, their gating kinetics, and to uncover dendritic integrative and synaptic plasticity rules. However, with current efforts to study these questions in vivo, there is a great need to translate existing knowledge between in vitro and in vivo experimental conditions. In this review, we identify discrepancies between in vitro and in vivo ionic composition of extracellular media and discuss how changes in ionic composition alter dendritic excitability and plasticity induction. Here, we argue that under physiological in vivo ionic conditions, dendrites are expected to be more excitable and the threshold for synaptic plasticity induction to be lowered. Consequently, the plasticity rules described in vitro vary significantly from those implemented in vivo.
Collapse
Affiliation(s)
- Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA; Kavli Institute for Brain Science, New York, NY, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, NY, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| |
Collapse
|
49
|
Stoler O, Stavsky A, Khrapunsky Y, Melamed I, Stutzmann GE, Gitler D, Sekler I, Fleidervish I. Frequency- and spike-timing-dependent mitochondrial Ca 2+ signaling regulates the metabolic rate and synaptic efficacy in cortical. eLife 2022; 11:74606. [PMID: 35192454 PMCID: PMC8906805 DOI: 10.7554/elife.74606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/20/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial activity is crucial for the plasticity of central synapses, but how the firing pattern of pre- and postsynaptic neurons affects the mitochondria remains elusive. We recorded changes in the fluorescence of cytosolic and mitochondrial Ca2+ indicators in cell bodies, axons, and dendrites of cortical pyramidal neurons in mouse brain slices while evoking pre- and postsynaptic spikes. Postsynaptic spike firing elicited fast mitochondrial Ca2+ responses that were about threefold larger in the somas and apical dendrites than in basal dendrites and axons. The amplitude of these responses and metabolic activity were extremely sensitive to the firing frequency. Furthermore, while an EPSP alone caused no detectable Ca2+ elevation in the dendritic mitochondria, the coincidence of EPSP with a backpropagating spike produced prominent, highly localized mitochondrial Ca2+ hotspots. Our results indicate that mitochondria decode the spike firing frequency and the Hebbian temporal coincidences into the Ca2+ signals, which are further translated into the metabolic output and most probably lead to long-term changes in synaptic efficacy.
Collapse
Affiliation(s)
- Ohad Stoler
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Alexandra Stavsky
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Yana Khrapunsky
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Israel Melamed
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Grace E Stutzmann
- Rosalind Franklin University of Medicine and Science, North Chicago, United States
| | - Daniel Gitler
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Israel Sekler
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ilya Fleidervish
- Depatrment of Physiology and Cell Biology, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
50
|
Milstein AD, Li Y, Bittner KC, Grienberger C, Soltesz I, Magee JC, Romani S. Bidirectional synaptic plasticity rapidly modifies hippocampal representations. eLife 2021; 10:e73046. [PMID: 34882093 PMCID: PMC8776257 DOI: 10.7554/elife.73046] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Learning requires neural adaptations thought to be mediated by activity-dependent synaptic plasticity. A relatively non-standard form of synaptic plasticity driven by dendritic calcium spikes, or plateau potentials, has been reported to underlie place field formation in rodent hippocampal CA1 neurons. Here, we found that this behavioral timescale synaptic plasticity (BTSP) can also reshape existing place fields via bidirectional synaptic weight changes that depend on the temporal proximity of plateau potentials to pre-existing place fields. When evoked near an existing place field, plateau potentials induced less synaptic potentiation and more depression, suggesting BTSP might depend inversely on postsynaptic activation. However, manipulations of place cell membrane potential and computational modeling indicated that this anti-correlation actually results from a dependence on current synaptic weight such that weak inputs potentiate and strong inputs depress. A network model implementing this bidirectional synaptic learning rule suggested that BTSP enables population activity, rather than pairwise neuronal correlations, to drive neural adaptations to experience.
Collapse
Affiliation(s)
- Aaron D Milstein
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Yiding Li
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Katie C Bittner
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| | | | - Ivan Soltesz
- Department of Neurosurgery and Stanford Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| | - Jeffrey C Magee
- Howard Hughes Medical Institute, Baylor College of MedicineHoustonUnited States
| | - Sandro Romani
- Howard Hughes Medical Institute, Janelia Research CampusAshburnUnited States
| |
Collapse
|