1
|
Ikliptikawati DK, Makiyama K, Hazawa M, Wong RW. Unlocking the Gateway: The Spatio-Temporal Dynamics of the p53 Family Driven by the Nuclear Pores and Its Implication for the Therapeutic Approach in Cancer. Int J Mol Sci 2024; 25:7465. [PMID: 39000572 PMCID: PMC11242911 DOI: 10.3390/ijms25137465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The p53 family remains a captivating focus of an extensive number of current studies. Accumulating evidence indicates that p53 abnormalities rank among the most prevalent in cancer. Given the numerous existing studies, which mostly focus on the mutations, expression profiles, and functional perturbations exhibited by members of the p53 family across diverse malignancies, this review will concentrate more on less explored facets regarding p53 activation and stabilization by the nuclear pore complex (NPC) in cancer, drawing on several studies. p53 integrates a broad spectrum of signals and is subject to diverse regulatory mechanisms to enact the necessary cellular response. It is widely acknowledged that each stage of p53 regulation, from synthesis to degradation, significantly influences its functionality in executing specific tasks. Over recent decades, a large body of data has established that mechanisms of regulation, closely linked with protein activation and stabilization, involve intricate interactions with various cellular components. These often transcend canonical regulatory pathways. This new knowledge has expanded from the regulation of genes themselves to epigenomics and proteomics, whereby interaction partners increase in number and complexity compared with earlier paradigms. Specifically, studies have recently shown the involvement of the NPC protein in such complex interactions, underscoring the further complexity of p53 regulation. Furthermore, we also discuss therapeutic strategies based on recent developments in this field in combination with established targeted therapies.
Collapse
Affiliation(s)
- Dini Kurnia Ikliptikawati
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
| | - Kei Makiyama
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Masaharu Hazawa
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| | - Richard W. Wong
- Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan;
- Laboratory of Molecular Cell Biology, Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 9201192, Japan
| |
Collapse
|
2
|
Tingey M, Ruba A, Jiang Z, Yang W. Deciphering vesicle-assisted transport mechanisms in cytoplasm to cilium trafficking. Front Cell Neurosci 2024; 18:1379976. [PMID: 38860265 PMCID: PMC11163138 DOI: 10.3389/fncel.2024.1379976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
The cilium, a pivotal organelle crucial for cell signaling and proper cell function, relies on meticulous macromolecular transport from the cytoplasm for its formation and maintenance. While the intraflagellar transport (IFT) pathway has traditionally been the focus of extensive study concerning ciliogenesis and ciliary maintenance, recent research highlights a complementary and alternative mechanism-vesicle-assisted transport (VAT) in cytoplasm to cilium trafficking. Despite its potential significance, the VAT pathway remains largely uncharacterized. This review explores recent studies providing evidence for the dynamics of vesicle-related diffusion and transport within the live primary cilium, employing high-speed super-resolution light microscopy. Additionally, we analyze the spatial distribution of vesicles in the cilium, mainly relying on electron microscopy data. By scrutinizing the VAT pathways that facilitate cargo transport into the cilium, with a specific emphasis on recent advancements and imaging data, our objective is to synthesize a comprehensive model of ciliary transport through the integration of IFT-VAT mechanisms.
Collapse
Affiliation(s)
| | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Singh D, Soni N, Hutchings J, Echeverria I, Shaikh F, Duquette M, Suslov S, Li Z, van Eeuwen T, Molloy K, Shi Y, Wang J, Guo Q, Chait BT, Fernandez-Martinez J, Rout MP, Sali A, Villa E. The Molecular Architecture of the Nuclear Basket. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587068. [PMID: 38586009 PMCID: PMC10996695 DOI: 10.1101/2024.03.27.587068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of Nups in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Digvijay Singh
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Neelesh Soni
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Joshua Hutchings
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Farhaz Shaikh
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeleine Duquette
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Sergey Suslov
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhixun Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Trevor van Eeuwen
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Kelly Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Yi Shi
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Qiang Guo
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Javier Fernandez-Martinez
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, 48940 Leioa, Spain
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth Villa
- School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Yu W, Tingey M, Kelich JM, Li Y, Yu J, Junod SL, Jiang Z, Hansen I, Good N, Yang W. Exploring Cellular Gateways: Unraveling the Secrets of Disordered Proteins within Live Nuclear Pores. RESEARCH SQUARE 2024:rs.3.rs-3504130. [PMID: 38260360 PMCID: PMC10802689 DOI: 10.21203/rs.3.rs-3504130/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Understanding the spatial organization of nucleoporins (Nups) with intrinsically disordered domains within the nuclear pore complex (NPC) is crucial for deciphering eukaryotic nucleocytoplasmic transport. Leveraging high-speed 2D single-molecule tracking and virtual 3D super-resolution microscopy in live HeLa cells, we investigated the spatial distribution of all eleven phenylalanine-glycine (FG)-rich Nups within individual NPCs. Our study reveals a nuanced landscape of FG-Nup conformations and arrangements. Five FG-Nups are steadfastly anchored at the NPC scaffold, collectively shaping a central doughnut-shaped channel, while six others exhibit heightened flexibility, extending towards the cytoplasmic and nucleoplasmic regions. Intriguingly, Nup214 and Nup153 contribute to cap-like structures that dynamically alternate between open and closed states along the nucleocytoplasmic transport axis, impacting the cytoplasmic and nuclear sides, respectively. Furthermore, Nup98, concentrated at the scaffold region, extends throughout the entire NPC while overlapping with other FG-Nups. Together, these eleven FG-Nups compose a versatile, capped trichoid channel spanning approximately 270 nm across the nuclear envelope. This adaptable trichoid channel facilitates a spectrum of pathways for passive diffusion and facilitated nucleocytoplasmic transport. Our comprehensive mapping of FG-Nup organization within live NPCs offers a unifying mechanism accommodating multiple transport pathways, thereby advancing our understanding of cellular transport processes.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph M. Kelich
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Jingjie Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Zecheng Jiang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ian Hansen
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Nacef Good
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Oishi A, Nakagawa S, Tamura K. Nucleoporin 50 proteins affect longevity and salinity stress tolerance in seeds. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:60-72. [PMID: 37849222 DOI: 10.1093/jxb/erad396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Nucleoporin 50 (Nup50) is an evolutionarily conserved protein that is a constituent of the nuclear pore complex (NPC); however, its physiological role in plants is unclear. Arabidopsis has two Nup50 proteins, Nup50a and Nup50b, which are highly expressed in developing seeds. Green fluoresceent protein (GFP)-fused Nup50a and Nup50b are localized exclusively in the nucleopolasm, implying an additional function beyond the NPC in the nuclear envelope. To investigate the function of Nup50s, we employed the CRISPR/Cas9 [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9] system to generate a nup50a nup50b double mutant, which exhibited premature translation termination of both Nup50 proteins. While the mutant showed no significant abnormal phenotype during vegetative growth, the nup50a nup50b seeds had an abnormal shape compared with the wild type. Comparative transcriptomics using immature seeds revealed that Nup50s regulate the expression of various genes, including cell wall-related genes. The nup50a nup50b seeds exhibited reduced seed longevity and salinity stress tolerance. Tetrazolium uptake and mucilage release assays implied that the nup50a nup50b seeds had greater water permeability than the wild type. Taken together, our results imply that Nup50s play a critical role in seed formation by regulating gene expression.
Collapse
Affiliation(s)
- Ayumi Oishi
- School of Food and Nutritional Sciences, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shitomi Nakagawa
- School of Food and Nutritional Sciences, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kentaro Tamura
- School of Food and Nutritional Sciences, Department of Environmental and Life Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Rush C, Jiang Z, Tingey M, Feng F, Yang W. Unveiling the complexity: assessing models describing the structure and function of the nuclear pore complex. Front Cell Dev Biol 2023; 11:1245939. [PMID: 37876551 PMCID: PMC10591098 DOI: 10.3389/fcell.2023.1245939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
The nuclear pore complex (NPC) serves as a pivotal subcellular structure, acting as a gateway that orchestrates nucleocytoplasmic transport through a selectively permeable barrier. Nucleoporins (Nups), particularly those containing phenylalanine-glycine (FG) motifs, play indispensable roles within this barrier. Recent advancements in technology have significantly deepened our understanding of the NPC's architecture and operational intricacies, owing to comprehensive investigations. Nevertheless, the conspicuous presence of intrinsically disordered regions within FG-Nups continues to present a formidable challenge to conventional static characterization techniques. Historically, a multitude of strategies have been employed to unravel the intricate organization and behavior of FG-Nups within the NPC. These endeavors have given rise to multiple models that strive to elucidate the structural layout and functional significance of FG-Nups. Within this exhaustive review, we present a comprehensive overview of these prominent models, underscoring their proposed dynamic and structural attributes, supported by pertinent research. Through a comparative analysis, we endeavor to shed light on the distinct characteristics and contributions inherent in each model. Simultaneously, it remains crucial to acknowledge the scarcity of unequivocal validation for any of these models, as substantiated by empirical evidence.
Collapse
Affiliation(s)
| | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Junod SL, Tingey M, Kelich JM, Goryaynov A, Herbine K, Yang W. Dynamics of nuclear export of pre-ribosomal subunits revealed by high-speed single-molecule microscopy in live cells. iScience 2023; 26:107445. [PMID: 37599825 PMCID: PMC10433129 DOI: 10.1016/j.isci.2023.107445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/24/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
We present a study on the nuclear export efficiency and time of pre-ribosomal subunits in live mammalian cells, using high-speed single-molecule tracking and single-molecule fluorescence resonance energy transfer techniques. Our findings reveal that pre-ribosomal particles exhibit significantly higher nuclear export efficiency compared to other large cargos like mRNAs, with around two-thirds of interactions between the pre-60S or pre-40S and the nuclear pore complexes (NPCs) resulting in successful export to the cytoplasm. We also demonstrate that nuclear transport receptor (NTR) chromosomal maintenance 1 (CRM1) plays a crucial role in nuclear export efficiency, with pre-60S and pre-40S particle export efficiency decreasing by 11-17-fold when CRM1 is inhibited. Our results suggest that multiple copies of CRM1 work cooperatively to chaperone pre-ribosomal subunits through the NPC, thus increasing export efficiency and decreasing export time. Significantly, this cooperative NTR mechanism extends beyond pre-ribosomal subunits, as evidenced by the enhanced nucleocytoplasmic transport of proteins.
Collapse
Affiliation(s)
- Samuel L. Junod
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | | | - Karl Herbine
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Yu W, Rush C, Tingey M, Junod S, Yang W. Application of Super-resolution SPEED Microscopy in the Study of Cellular Dynamics. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:356-371. [PMID: 37501792 PMCID: PMC10369678 DOI: 10.1021/cbmi.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 07/29/2023]
Abstract
Super-resolution imaging techniques have broken the diffraction-limited resolution of light microscopy. However, acquiring three-dimensional (3D) super-resolution information about structures and dynamic processes in live cells at high speed remains challenging. Recently, the development of high-speed single-point edge-excitation subdiffraction (SPEED) microscopy, along with its 2D-to-3D transformation algorithm, provides a practical and effective approach to achieving 3D subdiffraction-limit information in subcellular structures and organelles with rotational symmetry. One of the major benefits of SPEED microscopy is that it does not rely on complex optical components and can be implemented on a standard, inverted epifluorescence microscope, simplifying the process of sample preparation and the expertise requirement. SPEED microscopy is specifically designed to obtain 2D spatial locations of individual immobile or moving fluorescent molecules inside submicrometer biological channels or cavities at high spatiotemporal resolution. The collected data are then subjected to postlocalization 2D-to-3D transformation to obtain 3D super-resolution structural and dynamic information. In recent years, SPEED microscopy has provided significant insights into nucleocytoplasmic transport across the nuclear pore complex (NPC) and cytoplasm-cilium trafficking through the ciliary transition zone. This Review focuses on the applications of SPEED microscopy in studying the structure and function of nuclear pores.
Collapse
Affiliation(s)
- Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Coby Rush
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Samuel Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
9
|
Bhat P, Aksenova V, Gazzara M, Rex EA, Aslam S, Haddad C, Gao S, Esparza M, Cagatay T, Batten K, El Zahed SS, Arnaoutov A, Zhong H, Shay JW, Tolbert BS, Dasso M, Lynch KW, García-Sastre A, Fontoura BMA. Influenza virus mRNAs encode determinants for nuclear export via the cellular TREX-2 complex. Nat Commun 2023; 14:2304. [PMID: 37085480 PMCID: PMC10121598 DOI: 10.1038/s41467-023-37911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
Nuclear export of influenza A virus (IAV) mRNAs occurs through the nuclear pore complex (NPC). Using the Auxin-Induced Degron (AID) system to rapidly degrade proteins, we show that among the nucleoporins localized at the nucleoplasmic side of the NPC, TPR is the key nucleoporin required for nuclear export of influenza virus mRNAs. TPR recruits the TRanscription and EXport complex (TREX)-2 to the NPC for exporting a subset of cellular mRNAs. By degrading components of the TREX-2 complex (GANP, Germinal-center Associated Nuclear Protein; PCID2, PCI domain containing 2), we show that influenza mRNAs require the TREX-2 complex for nuclear export and replication. Furthermore, we found that cellular mRNAs whose export is dependent on GANP have a small number of exons, a high mean exon length, long 3' UTR, and low GC content. Some of these features are shared by influenza virus mRNAs. Additionally, we identified a 45 nucleotide RNA signal from influenza virus HA mRNA that is sufficient to mediate GANP-dependent mRNA export. Thus, we report a role for the TREX-2 complex in nuclear export of influenza mRNAs and identified RNA determinants associated with the TREX-2-dependent mRNA export.
Collapse
Affiliation(s)
- Prasanna Bhat
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Gazzara
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emily A Rex
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Shengyan Gao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tolga Cagatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Batten
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sara S El Zahed
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexei Arnaoutov
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hualin Zhong
- Department of Biological Sciences, Hunter College, New York, NY, 10065, USA
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
10
|
Vial A, Costa L, Dosset P, Rosso P, Boutières G, Faklaris O, Haschke H, Milhiet PE, Doucet CM. Structure and mechanics of the human nuclear pore complex basket using correlative AFM-fluorescence superresolution microscopy. NANOSCALE 2023; 15:5756-5770. [PMID: 36786384 DOI: 10.1039/d2nr06034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nuclear pore complexes (NPCs) are the only gateways between the nucleus and cytoplasm in eukaryotic cells. They restrict free diffusion to molecules below 5 nm while facilitating the active transport of selected cargoes, sometimes as large as the pore itself. This versatility implies an important pore plasticity. Recently, cryo-EM and AI-based protein modeling of human NPC revealed with acute precision how most constituents are arranged. But the basket, a fish trap-like structure capping the nucleoplasmic side of the pore, remains poorly resolved. Here by atomic force microscopy (AFM) coupled to single molecule localization microscopy (SMLM) we revealed that the basket is very soft and explores a large conformational landscape: apart from its canonical basket shape, it dives into the central pore channel or opens, with filaments reaching to the pore sides. Our observations highlight how this structure can adapt and let morphologically diverse cargoes shuttle through NPCs.
Collapse
Affiliation(s)
- Anthony Vial
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Luca Costa
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Patrice Dosset
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Pietro Rosso
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Gaëlle Boutières
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Orestis Faklaris
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Christine M Doucet
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
11
|
Huang Y, Gao BQ, Meng Q, Yang LZ, Ma XK, Wu H, Pan YH, Yang L, Li D, Chen LL. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos. Genome Biol 2023; 24:15. [PMID: 36658633 PMCID: PMC9854193 DOI: 10.1186/s13059-023-02848-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Understanding gene transcription and mRNA-protein (mRNP) dynamics in single cells in a multicellular organism has been challenging. The catalytically dead CRISPR-Cas13 (dCas13) system has been used to visualize RNAs in live cells without genetic manipulation. We optimize this system to track developmentally expressed mRNAs in zebrafish embryos and to understand features of endogenous transcription kinetics and mRNP export. RESULTS We report that zygotic microinjection of purified CRISPR-dCas13-fluorescent proteins and modified guide RNAs allows single- and dual-color tracking of developmentally expressed mRNAs in zebrafish embryos from zygotic genome activation (ZGA) until early segmentation period without genetic manipulation. Using this approach, we uncover non-synchronized de novo transcription between inter-alleles, synchronized post-mitotic re-activation in pairs of alleles, and transcriptional memory as an extrinsic noise that potentially contributes to synchronized post-mitotic re-activation. We also reveal rapid dCas13-engaged mRNP movement in the nucleus with a corralled and diffusive motion, but a wide varying range of rate-limiting mRNP export, which can be shortened by Alyref and Nxf1 overexpression. CONCLUSIONS This optimized dCas13-based toolkit enables robust spatial-temporal tracking of endogenous mRNAs and uncovers features of transcription and mRNP motion, providing a powerful toolkit for endogenous RNA visualization in a multicellular developmental organism.
Collapse
Affiliation(s)
- Youkui Huang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Bao-Qing Gao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Quan Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Liang-Zhong Yang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Xu-Kai Ma
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Yu-Hang Pan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
12
|
Herceg S, Janoštiak R. Diagnostic and Prognostic Profiling of Nucleocytoplasmic Shuttling Genes in Hepatocellular Carcinoma. Folia Biol (Praha) 2023; 69:133-148. [PMID: 38410971 DOI: 10.14712/fb2023069040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
One of the key features of eukaryotic cells is the separation of nuclear and cytoplasmic compartments by a double-layer nuclear envelope. This separation is crucial for timely regulation of gene expression, mRNA biogenesis, cell cycle, and differentiation. Since transcription takes place in the nucleus and the major part of translation in the cytoplasm, proper distribution of biomolecules between these two compartments is ensured by nucleocytoplasmic shuttling proteins - karyopherins. Karyopherins transport biomolecules through nuclear pores bidirectionally in collaboration with Ran GTPases and utilize GTP as the source of energy. Different karyopherins transport different cargo molecules that play important roles in the regulation of cell physiology. In cancer cells, this nucleocytoplasmic transport is significantly dysregulated to support increased demands for the import of cell cycle-promoting biomolecules and export of cell cycle inhibitors and mRNAs. Here, we analysed genomic, transcriptomic and proteomic data from published datasets to comprehensively profile karyopherin genes in hepatocellular carcinoma. We have found out that expression of multiple karyopherin genes is increased in hepatocellular carcinoma in comparison to the normal liver, with importin subunit α-1, exportin 2, importin subunit β-1 and importin 9 being the most over-expressed. More-over, we have found that increased expression of these genes is associated with higher neoplasm grade as well as significantly worse overall survival of liver cancer patients. Taken together, our bioinformatic data-mining analysis provides a comprehensive geno-mic and transcriptomic landscape of karyopherins in hepatocellular carcinoma and identifies potential members that could be targeted in order to develop new treatment regimens.
Collapse
Affiliation(s)
- Samuel Herceg
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav Janoštiak
- BIOCEV - First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
13
|
Tingey M, Li Y, Yu W, Young A, Yang W. Spelling out the roles of individual nucleoporins in nuclear export of mRNA. Nucleus 2022; 13:170-193. [PMID: 35593254 PMCID: PMC9132428 DOI: 10.1080/19491034.2022.2076965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/01/2022] Open
Abstract
The Nuclear Pore Complex (NPC) represents a critical passage through the nuclear envelope for nuclear import and export that impacts nearly every cellular process at some level. Recent technological advances in the form of Auxin Inducible Degron (AID) strategies and Single-Point Edge-Excitation sub-Diffraction (SPEED) microscopy have enabled us to provide new insight into the distinct functions and roles of nuclear basket nucleoporins (Nups) upon nuclear docking and export for mRNAs. In this paper, we provide a review of our recent findings as well as an assessment of new techniques, updated models, and future perspectives in the studies of mRNA's nuclear export.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Wenlan Yu
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Albert Young
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Tough Way In, Tough Way Out: The Complex Interplay of Host and Viral Factors in Nucleocytoplasmic Trafficking during HIV-1 Infection. Viruses 2022; 14:v14112503. [PMID: 36423112 PMCID: PMC9696704 DOI: 10.3390/v14112503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) is a retrovirus that integrates its reverse-transcribed genome as proviral DNA into the host genome to establish a successful infection. The viral genome integration requires safeguarding the subviral complexes, reverse transcription complex (RTC) and preintegration complex (PIC), in the cytosol from degradation, presumably effectively secured by the capsid surrounding these complexes. An intact capsid, however, is a large structure, which raises concerns about its translocation from cytoplasm to nucleus crossing the nuclear membrane, guarded by complex nuclear pore structures, which do not allow non-specific transport of large molecules. In addition, the generation of new virions requires the export of incompletely processed viral RNA from the nucleus to the cytoplasm, an event conventionally not permitted through mammalian nuclear membranes. HIV-1 has evolved multiple mechanisms involving redundant host pathways by liaison with the cell's nucleocytoplasmic trafficking system, failure of which would lead to the collapse of the infection cycle. This review aims to assemble the current developments in temporal and spatial events governing nucleocytoplasmic transport of HIV-1 factors. Discoveries are anticipated to serve as the foundation for devising host-directed therapies involving selective abolishment of the critical interactomes between viral proteins and their host equivalents.
Collapse
|
15
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
16
|
Mannino PJ, Lusk CP. Quality control mechanisms that protect nuclear envelope identity and function. J Biophys Biochem Cytol 2022; 221:213424. [PMID: 36036741 PMCID: PMC9442147 DOI: 10.1083/jcb.202205123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
The nuclear envelope (NE) is a specialization of the endoplasmic reticulum with distinct biochemistry that defines inner and outer membranes connected at a pore membrane that houses nuclear pore complexes (NPCs). Quality control mechanisms that maintain the physical integrity and biochemical identity of these membranes are critical to ensure that the NE acts as a selective barrier that also contributes to genome stability and metabolism. As the proteome of the NE is highly integrated, it is challenging to turn over by conventional ubiquitin-proteasome and autophagy mechanisms. Further, removal of entire sections of the NE requires elaborate membrane remodeling that is poorly understood. Nonetheless, recent work has made inroads into discovering specializations of cellular degradative machineries tailored to meeting the unique challenges imposed by the NE. In addition, cells have evolved mechanisms to surveil and repair the NE barrier to protect against the deleterious effects of a breach in NE integrity, in the form of either a ruptured NE or a dysfunctional NPC. Here, we synthesize the most recent work exploring NE quality control mechanisms across eukaryotes.
Collapse
|
17
|
Tingey M, Li Y, Yang W. Selective Degradation and Quantification of Nucleoporins in the Nuclear Pore by Auxin-Inducible Degrons and Single-Molecule Microscopy. Curr Protoc 2022; 2:e520. [PMID: 36063146 PMCID: PMC9454236 DOI: 10.1002/cpz1.520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is a significant current question regarding the viable copy numbers of nucleoporins required for the function of the nuclear pore complex (NPC) in eukaryotic cells. The NPC consists of approximately 30 different nucleoporins in an eight-fold symmetry, meaning that there are multiple duplicates of each nucleoporin present within the nuclear pore. We recently developed a method that combines auxin-inducible degrons and single-molecule super-resolution microscopy to evaluate the copy number of nuclear basket nucleoporins required for the successful function of the NPC. Here, we describe the theory behind this auxin-inducible degron and single-molecule super-resolution microscopy method, and we detail a step-by-step process to selectively degrade nucleoporins either completely or in a stepwise manner. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Degradation of target nucleoporins Basic Protocol 2: Quantification of nucleoporin copy number via narrow-field fluorescence microscopy.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yichen Li
- Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Tingey M, Yang W. Unraveling docking and initiation of mRNA export through the nuclear pore complex. Bioessays 2022; 44:e2200027. [PMID: 35754154 PMCID: PMC9308666 DOI: 10.1002/bies.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/07/2022]
Abstract
The nuclear export of mRNA through the nuclear pore complex (NPC) is a process required for the healthy functioning of human cells, making it a critical area of research. However, the geometries of mRNA and the NPC are well below the diffraction limit of light microscopy, thereby presenting significant challenges in evaluating the discrete interactions and dynamics involved in mRNA nuclear export through the native NPC. Recent advances in biotechnology and single-molecule super-resolution light microscopy have enabled researchers to gain granular insight into the specific contributions made by discrete nucleoporins in the nuclear basket of the NPC to the export of mRNA. Specifically, by expanding upon the docking step facilitated by the protein TPR in the nuclear basket as well as identifying NUP153 as being the primary nuclear basket protein initiating export through the central channel of the NPC.
Collapse
Affiliation(s)
- Mark Tingey
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Holzer G, Antonin W. Nup50 plays more than one instrument. Cell Cycle 2022; 21:1785-1794. [PMID: 35549614 PMCID: PMC9359400 DOI: 10.1080/15384101.2022.2074742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Nup50 is nuclear pore complex component localized to the nuclear side of the pore and in the nucleoplasm. It has been characterized as an auxiliary factor in nuclear transport reactions. Our recent work indicates that it interacts with and stimulates RCC1, the sole guanine nucleotide exchange factor for the GTPase Ran. Here, we discuss how this interaction might contribute to Nup50 function in nuclear transport but also its other functions like control of gene expression, cell cycle and DNA damage repair.
Collapse
Affiliation(s)
- Guillaume Holzer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Dultz E, Wojtynek M, Medalia O, Onischenko E. The Nuclear Pore Complex: Birth, Life, and Death of a Cellular Behemoth. Cells 2022; 11:1456. [PMID: 35563762 PMCID: PMC9100368 DOI: 10.3390/cells11091456] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/01/2023] Open
Abstract
Nuclear pore complexes (NPCs) are the only transport channels that cross the nuclear envelope. Constructed from ~500-1000 nucleoporin proteins each, they are among the largest macromolecular assemblies in eukaryotic cells. Thanks to advances in structural analysis approaches, the construction principles and architecture of the NPC have recently been revealed at submolecular resolution. Although the overall structure and inventory of nucleoporins are conserved, NPCs exhibit significant compositional and functional plasticity even within single cells and surprising variability in their assembly pathways. Once assembled, NPCs remain seemingly unexchangeable in post-mitotic cells. There are a number of as yet unresolved questions about how the versatility of NPC assembly and composition is established, how cells monitor the functional state of NPCs or how they could be renewed. Here, we review current progress in our understanding of the key aspects of NPC architecture and lifecycle.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
| | - Matthias Wojtynek
- Institute of Biochemistry, Department of Biology, ETHZ Zurich, 8093 Zurich, Switzerland;
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland;
| | - Evgeny Onischenko
- Department of Biological Sciences, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
21
|
Stewart M. Function of the Nuclear Transport Machinery in Maintaining the Distinctive Compositions of the Nucleus and Cytoplasm. Int J Mol Sci 2022; 23:2578. [PMID: 35269721 PMCID: PMC8910404 DOI: 10.3390/ijms23052578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/13/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Although the separation of transcription and translation, mediated by the nuclear envelope, is the defining characteristic of Eukaryotes, the barrier between the nuclear and cytoplasmic compartments needs to be semipermeable to enable material to be moved between them. Moreover, each compartment needs to have a distinctive complement of macromolecules to mediate specific functions and so movement between them needs to be controlled. This is achieved through the selective active transport of macromolecules through the nuclear pores that stud the nuclear envelope, and which serve as a conduit between these compartments. Nuclear pores are huge cylindrical macromolecular assemblies and are constructed from the order of 30 different proteins called nucleoporins. Nuclear pores have a central transport channel that is filled with a dense network of natively unfolded portions of many different nuclear pore proteins (nucleoporins or nups). This network generates a barrier that impedes, but does not entirely prevent, the diffusion of many macromolecules through the pores. The rapid movement of a range of proteins and RNAs through the pores is mediated by a range of transport factors that bind their cargo in one compartment and release it in the other. However, although as their size increases the diffusion of macromolecules through nuclear pores is progressively impaired, additional mechanisms, including the binding of some macromolecules to immobile components of each compartment and also the active removal of macromolecules from the inappropriate compartment, are needed to fully maintain the distinctive compositions of each compartment.
Collapse
Affiliation(s)
- Murray Stewart
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| |
Collapse
|
22
|
Banerjee P, Markande S, Kalarikkal M, Joseph J. SUMOylation modulates the function of DDX19 in mRNA export. J Cell Sci 2022; 135:274424. [PMID: 35080244 DOI: 10.1242/jcs.259449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Nuclear export of mRNAs is a critical regulatory step in eukaryotic gene expression. The mRNA transcript undergoes extensive processing, and is loaded with a set of RNA-binding proteins (RBPs) to form export-competent messenger ribonucleoprotein particles (mRNPs) in the nucleus. During the transit of mRNPs through the nuclear pore complex (NPC), the DEAD-box ATPase - DDX19 - remodels mRNPs at the cytoplasmic side of the NPC, by removing a subset of RNA-binding proteins to terminate mRNP export. This requires the RNA-dependent ATPase activity of DDX19 and its dynamic interactions with Gle1 and Nup214. However, the regulatory mechanisms underlying these interactions are unclear. We find that DDX19 gets covalently attached with a small ubiquitin-like modifier (SUMO) at lysine 26, which enhances its interaction with Gle1. Furthermore, a SUMOylation-defective mutant of human DDX19B, K26R, failed to provide a complete rescue of the mRNA export defect caused by DDX19 depletion. Collectively, our results suggest that SUMOylation fine-tunes the function of DDX19 in mRNA export by regulating its interaction with Gle1. This study identifies SUMOylation of DDX19 as a modulatory mechanism during the mRNA export process.
Collapse
Affiliation(s)
- Poulomi Banerjee
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Shubha Markande
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Misha Kalarikkal
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| | - Jomon Joseph
- National Centre for Cell Science, S. P. Pune University Campus, Pune - 411007, Maharashtra State, India
| |
Collapse
|