1
|
Foo ACY, Edin ML, Lin WC, Lih FB, Gabel SA, Uddin MN, Fessler MB, Zeldin DC, Mueller GA. Production and Release of Proinflammatory Mediators by the Cockroach Allergen Bla g 1 via a Shared Membrane-Destabilization Mechanism. Biochemistry 2024; 63:1730-1737. [PMID: 38915291 DOI: 10.1021/acs.biochem.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The cockroach allergen Bla g 1 encloses an exceptionally large hydrophobic cavity, which allows it to bind and deliver unsaturated fatty acid ligands. Bla g 1-mediated delivery of naturally occurring (nMix) ligands has been shown to destabilize lipid membranes, contributing to its digestive/antiviral functions within the source organism. However, the consequences of this activity on Bla g 1 allergenicity following human exposure remain unknown. In this work, we show that Bla g 1-mediated membrane disruption can induce a proinflammatory immune response in mammalian cells via two complementary pathways. At high concentrations, the cytotoxic activity of Bla g 1 induces the release of proinflammatory cytosolic contents including damage-associated molecular patterns (DAMPs) such as heat-shock Protein-70 (HSP70) and the cytokine interleukin-1 (IL-1β). Sublytic concentrations of Bla g 1 enhanced the ability of phospholipase A2 (PLA2) to extract and hydrolyze phospholipid substrates from cellular membranes, stimulating the production of free polyunsaturated fatty acids (PUFAs) and various downstream inflammatory lipid mediators. Both of these effects are dependent on the presence of Bla g 1's natural fatty-acid (nMix) ligands with CC50 values corresponding to the concentrations required for membrane destabilization reported in previous studies. Taken together, these results suggest that mechanisms through which Bla g 1-mediated lipid delivery and membrane destabilization could directly contribute to cockroach allergic sensitization.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Dept. of Chemistry, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| | - Matthew L Edin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Wan-Chi Lin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Fred B Lih
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Scott A Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Mohammad N Uddin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Darryl C Zeldin
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, Research Triangle Park, North Carolina 27709, United States
| |
Collapse
|
2
|
Gao L, Yang W, Wang J. Implications of mosquito metabolism on vector competence. INSECT SCIENCE 2024; 31:674-682. [PMID: 37907431 DOI: 10.1111/1744-7917.13288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023]
Abstract
Mosquito-borne diseases (MBDs) annually kill nearly half a million people. Due to the lack of effective vaccines and drugs on most MBDs, disease prevention relies primarily on controlling mosquitoes. Despite huge efforts having been put into mosquito control, eco-friendly and sustainable mosquito-control strategies are still lacking and urgently demanded. Most mosquito-transmitted pathogens have lost the capacity of de novo nutrition biosynthesis, and rely on their vertebrate and invertebrate hosts for sustenance during the long-term obligate parasitism process. Therefore, a better understanding of the metabolic interactions between mosquitoes and pathogens will contribute to the discovery of novel metabolic targets or regulators that lead to reduced mosquito populations or vector competence. This review summarizes the current knowledge about the effects of mosquito metabolism on the transmission of multiple pathogens. We also discuss that research in this area remains to be explored to develop multiple biological prevention and control strategies for MBDs.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenxu Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Garrigós M, Ylla G, Martínez-de la Puente J, Figuerola J, Ruiz-López MJ. Two avian Plasmodium species trigger different transcriptional responses on their vector Culex pipiens. Mol Ecol 2023:e17240. [PMID: 38108558 DOI: 10.1111/mec.17240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Malaria is a mosquito-borne disease caused by protozoans of the genus Plasmodium that affects both humans and wildlife. The fitness consequences of infections by avian malaria are well known in birds, however, little information exists on its impact on mosquitoes. Here we study how Culex pipiens mosquitoes transcriptionally respond to infection by two different Plasmodium species, P. relictum and P. cathemerium, differing in their virulence (mortality rate) and transmissibility (parasite presence in exposed mosquitoes' saliva). We studied the mosquito response to the infection at three critical stages of parasite development: the formation of ookinetes at 24 h post-infection (hpi), the release of sporozoites into the hemocoel at 10 days post-infection (dpi), and the storage of sporozoites in the salivary glands at 21 dpi. For each time point, we characterized the gene expression of mosquitoes infected with each P. relictum and P. cathemerium and mosquitoes fed on an uninfected bird and, subsequently, compared their transcriptomic responses. Differential gene expression analysis showed that most transcriptomic changes occurred during the early infection stage (24 hpi), especially when comparing P. relictum and P. cathemerium-infected mosquitoes. Differentially expressed genes in mosquitoes infected with each species were related mainly to the metabolism of the immune response, trypsin, and other serine-proteases. We conclude that these differences in response may partly play a role in the differential virulence and transmissibility previously observed between P. relictum and P. cathemerium in Cx. pipiens.
Collapse
Affiliation(s)
- Marta Garrigós
- Department of Parasitology, University of Granada, Granada, Spain
| | - Guillem Ylla
- Bioinformatics and Genome Biology Lab, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Josué Martínez-de la Puente
- Department of Parasitology, University of Granada, Granada, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - María José Ruiz-López
- CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
- Department of Wetland Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| |
Collapse
|
4
|
Pye ES, Wallace SE, Marangoni DG, Foo ACY. Albumin Proteins as Delivery Vehicles for PFAS Contaminants into Respiratory Membranes. ACS OMEGA 2023; 8:44036-44043. [PMID: 38027323 PMCID: PMC10666230 DOI: 10.1021/acsomega.3c06239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Poly- and perfluoroalkyl substances (PFAS) are a family of chemicals that have been used in a wide range of commercial products. While their use is declining, the prevalence of PFAS, combined with their chemical longevity, ensures that detectable levels will remain in the environment for years to come. As such, there is a pressing need to understand how PFAS contaminants interact with other elements of the human exposome and the consequences of these interactions for human health. Using serum albumin as a model system, we show that proteins can bind PFAS contaminants and facilitate their incorporation into model pulmonary surfactant systems and lipid bilayers. Protein-mediated PFAS delivery significantly altered the structure and function of both model membrane systems, potentially contributing to respiratory dysfunction and airway diseases in vivo. These results provide valuable insights into the synergistic interaction between PFAS contaminants and other elements of the human exposome and their potential consequences for human health.
Collapse
Affiliation(s)
- Evan S. Pye
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Shannon E. Wallace
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - D. Gerrard Marangoni
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| | - Alexander C. Y. Foo
- Dept. of Chemistry, St. Francis Xavier University, 2321 Notre Dame Avenue, Antigonish B2G 2W5, Nova Scotia, Canada
| |
Collapse
|
5
|
Min J, Foo ACY, Gabel SA, Perera L, DeRose EF, Pomés A, Pedersen LC, Mueller GA. Structural and ligand binding analysis of the pet allergens Can f 1 and Fel d 7. FRONTIERS IN ALLERGY 2023; 4:1133412. [PMID: 36960093 PMCID: PMC10028261 DOI: 10.3389/falgy.2023.1133412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Pet lipocalins are respiratory allergens with a central hydrophobic ligand-binding cavity called a calyx. Molecules carried in the calyx by allergens are suggested to influence allergenicity, but little is known about the native ligands. Methods To provide more information on prospective ligands, we report crystal structures, NMR, molecular dynamics, and florescence studies of a dog lipocalin allergen Can f 1 and its closely related (and cross-reactive) cat allergen Fel d 7. Results Structural comparisons with reported lipocalins revealed that Can f 1 and Fel d 7 calyxes are open and positively charged while other dog lipocalin allergens are closed and negatively charged. We screened fatty acids as surrogate ligands, and found that Can f 1 and Fel d 7 bind multiple ligands with preferences for palmitic acid (16:0) among saturated fatty acids and oleic acid (18:1 cis-9) among unsaturated ones. NMR analysis of methyl probes reveals that conformational changes occur upon binding of pinolenic acid inside the calyx. Molecular dynamics simulation shows that the carboxylic group of fatty acids shuttles between two positively charged amino acids inside the Can f 1 and Fel d 7 calyx. Consistent with simulations, the stoichiometry of oleic acid-binding is 2:1 (fatty acid: protein) for Can f 1 and Fel d 7. Discussion The results provide valuable insights into the determinants of selectivity and candidate ligands for pet lipocalin allergens Can f 1 and Fel d 7.
Collapse
Affiliation(s)
- Jungki Min
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Alexander C. Y. Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Scott A. Gabel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Eugene F. DeRose
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Anna Pomés
- Basic Research, InBio, Charlottesville, VA, United States
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
6
|
Foo ACY, Lafont BAP, Mueller GA. Expanding the Antiviral Potential of the Mosquito Lipid-transfer Protein AEG12 Against SARS-CoV-2 Using Hydrophobic Antiviral Ligands. FEBS Lett 2022; 596:2555-2565. [PMID: 35891619 PMCID: PMC9353291 DOI: 10.1002/1873-3468.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
The mosquito protein AEG12 encompasses a large (~ 3800 Å3) hydrophobic cavity which binds and delivers unsaturated fatty acids into biological membranes, allowing it to lyse cells and neutralize a wide range of enveloped viruses. Herein, the lytic and antiviral activities are modified with non‐naturally occurring lipid ligands. We generated novel AEG12 complexes in which the endogenous fatty acid ligands were replaced with hydrophobic viral inhibitors. The resulting compounds modulated cytotoxicity and infectivity against SARS‐CoV‐2, potentially reflecting additional mechanisms of action beyond membrane destabilization. These studies provide valuable insight into the design of novel broad‐spectrum antiviral therapeutics centred on the AEG12 protein scaffold as a delivery vehicle for hydrophobic therapeutic compounds.
Collapse
Affiliation(s)
- Alexander C Y Foo
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
7
|
Bidoli C, Miccoli A, Buonocore F, Fausto AM, Gerdol M, Picchietti S, Scapigliati G. Transcriptome Analysis Reveals Early Hemocyte Responses upon In Vivo Stimulation with LPS in the Stick Insect Bacillus rossius (Rossi, 1788). INSECTS 2022; 13:insects13070645. [PMID: 35886821 PMCID: PMC9316843 DOI: 10.3390/insects13070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Non-model insect species such as B. rossius suffer from a profound gap of knowledge regarding the temporal progression of physiological responses following the challenge with bacterial pathogens or cell wall components thereof. The reason for this mostly lies in the lack of genomic/transcriptomic resources, which would provide an unparalleled in-depth capacity in the analysis of molecular, biochemical, and metabolic mechanisms. We present a high-quality transcriptome obtained from high-coverage sequencing of hemocytes harvested from adult stick insect specimens both pre- and post-LPS stimulation. Such a resource served as the basis for a stringent differential gene expression and functional enrichment analyses, the results of which were characterized and discussed in depth. Selected transcripts encoding for C-type lectins and ML-domain containing proteins were further investigated from a phylogenetic perspective. Overall, these findings shed light on the physiological responses driven by a short-term LPS stimulation in the European stick insect. Abstract Despite a growing number of non-model insect species is being investigated in recent years, a greater understanding of their physiology is prevented by the lack of genomic resources. This is the case of the common European stick insect Bacillus rossius (Rossi, 1788): in this species, some knowledge is available on hemocyte-related defenses, but little is known about the physiological changes occurring in response to natural or experimental challenges. Here, the transcriptional signatures of adult B. rossius hemocytes were investigated after a short-term (2 h) LPS stimulation in vivo: a total of 2191 differentially expressed genes, mostly involved in proteolysis and carbohydrate and lipid metabolic processes, were identified in the de novo assembled transcriptome and in-depth discussed. Overall, the significant modulation of immune signals—such as C-type lectins, ML domain-containing proteins, serpins, as well as Toll signaling-related molecules—provide novel information on the early progression of LPS-induced responses in B. rossius.
Collapse
Affiliation(s)
- Carlotta Bidoli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
- Correspondence:
| | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.B.); (M.G.)
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.B.); (A.M.F.); (S.P.); (G.S.)
| |
Collapse
|
8
|
Hixson B, Bing XL, Yang X, Bonfini A, Nagy P, Buchon N. A transcriptomic atlas of Aedes aegypti reveals detailed functional organization of major body parts and gut regional specializations in sugar-fed and blood-fed adult females. eLife 2022; 11:76132. [PMID: 35471187 PMCID: PMC9113746 DOI: 10.7554/elife.76132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiao-Li Bing
- Department of Entomology, Cornell University, Ithaca, United States
| | - Xiaowei Yang
- Department of Entomology, Cornell University, Ithaca, United States
| | | | - Peter Nagy
- Department of Entomology, Cornell University, Ithaca, United States
| | - Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, United States
| |
Collapse
|
9
|
Cahyaningsih U, Sadiah S, Syafii W, Sari RK. Effectiveness combination of Strychnos ligustrina Blum wood extract and dihydroartemisinin-piperaquin phosphate (DHP) as antimalarial in mice infected with P. berghei. ASIAN PAC J TROP MED 2022. [DOI: 10.4103/1995-7645.340575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Foo ACY, Mueller GA. Abundance and Stability as Common Properties of Allergens. FRONTIERS IN ALLERGY 2021; 2:769728. [PMID: 35386965 PMCID: PMC8974735 DOI: 10.3389/falgy.2021.769728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/04/2021] [Indexed: 01/06/2023] Open
Abstract
There have been many attempts to identify common biophysical properties which differentiate allergens from their non-immunogenic counterparts. This review will focus on recent studies which examine two such factors: abundance and stability. Anecdotal accounts have speculated that the elevated abundance of potential allergens would increase the likelihood of human exposure and thus the probability of sensitization. Similarly, the stability of potential allergens dictates its ability to remain a viable immunogen during the transfer from the source to humans. This stability could also increase the resilience of potential allergens to both gastric and endosomal degradation, further skewing the immune system toward allergy. Statistical analyses confirm both abundance and stability as common properties of allergens, while epidemiological surveys show a correlation between exposure levels (abundance) and allergic disease. Additional studies show that changes in protein stability can predictably alter gastric/endosomal processing and immunogenicity, providing a mechanistic link between stability and allergenicity. However, notable exceptions exist to both hypotheses which highlight the multifaceted nature of immunological sensitization, and further inform our understanding of some of these other factors and their contribution to allergic disease.
Collapse
Affiliation(s)
| | - Geoffrey A. Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|