1
|
Maneenoi N, Russell LM, Han S, Dedrick JL, Williams AS, Berta VZ, Pelayo C, Zawadowicz MA, Sedlacek AJ, Silber I, Thieman M, Painemal D, Shen SSP. Photochemical and Cloud and Aerosol Aqueous Contributions to Regionally-Emitted Shipping and Biogenic Non-Sea-Salt Sulfate Aerosol in Coastal California. ACS ES&T AIR 2025; 2:648-664. [PMID: 40242281 PMCID: PMC11997993 DOI: 10.1021/acsestair.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/18/2025]
Abstract
Aerosol nonsea-salt sulfate (NSS sulfate) forms in the atmosphere by secondary reactions of emissions from marine phytoplankton and shipping, with gas-phase as well as cloud and aerosol aqueous reactions controlling production. Twelve months of Atmospheric Radiation Measurements (ARM) during the Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) at Scripps Pier in La Jolla, California, showed the highest NSS sulfate mass concentrations occurred for the northwesterly back-trajectories over 64% of the year, with an average of 0.90 μg/m3 that contributed 76% of annual NSS sulfate concentration. Multiple Linear Regression (MLR) and a refractory black carbon tracer method attributed 76-80% of the regionally emitted sulfur dioxide (SO2) sources of submicron NSS sulfate to marine biogenic emissions and 20-24% to shipping emissions. MLR for oxidation processes explained 21% of the variability with Downwelling Shortwave Radiation (DSW) driving photochemical reactions to account for 34% of annual regional sulfate production, Upwind Cloud Vertical Fraction (UCVF) controlling cloud-associated oxidation to account for 29%, and relative humidity (RH) describing aerosol-phase oxidation to account for 36%. NSS sulfate was correlated moderately to UCVF during April-June and August but to RH in October-January. These findings show the apportionment of SO2 emissions to biogenic and shipping sources and provide observational constraints for the mechanisms for sulfate production from SO2 in the atmosphere.
Collapse
Affiliation(s)
- Nattamon Maneenoi
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Lynn M. Russell
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Sanghee Han
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Jeramy L. Dedrick
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Abigail S. Williams
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Veronica Z. Berta
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | - Christian Pelayo
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
| | | | | | - Israel Silber
- Pacific
Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mandy Thieman
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - David Painemal
- NASA
Langley Research Center, Hampton, Virginia 23681, United States
| | - Samuel S. P. Shen
- Scripps
Institution of Oceanography, University
of California, San Diego, La Jolla, California 92037, United States
- San
Diego State University, San Diego, California 92182, United States
| |
Collapse
|
2
|
Carstens C, Bell DM, Sari Doré F, Top J, Dubois C, Zhang Y, Perrier S, El Haddad I, Riva M. Effects of Relative Humidity on Time-Resolved Molecular Characterization of Secondary Organic Aerosols from the OH-Initiated Oxidation of Cresol in the Presence of NO x. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1700-1711. [PMID: 39817678 DOI: 10.1021/acs.est.4c08215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
While biomass burning (BB) is the largest source of fine particles in the atmosphere, the influence of relative humidity (RH) and photochemistry on BB secondary organic aerosol (BB-SOA) formation and aging remains poorly constrained. These effects need to be addressed to better capture and comprehend the evolution of BB-SOA in the atmosphere. Cresol (C7H8O) is used as a BB proxy to investigate these effects. It is emitted directly from BB and has been identified as a significant SOA precursor from residential wood-burning emissions. The gas- and particle-phase signal intensities are investigated using online mass spectrometers. An increase in the SOA mass yield of 7% is observed when the RH rises from 0.5-20 to 70-87%. At elevated RH, a significant increase in the formation of nitrogen-containing compounds is observed due to particle-phase processes. This is linked to a net decrease in the SOA viscosity, enabling these compounds to be formed to a greater extent at elevated RH in the presence of nitrogen oxides. These results highlight the importance of the particle water content for the molecular formation and aging of BB-SOA compounds.
Collapse
Affiliation(s)
- Cecilie Carstens
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - David M Bell
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Félix Sari Doré
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Jens Top
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Clément Dubois
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Yanjun Zhang
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Sébastien Perrier
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| | - Imad El Haddad
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute (PSI), 5232 Villigen, Switzerland
| | - Matthieu Riva
- CNRS, IRCELYON, UMR 5256, Université Claude Bernard Lyon 1, F-69100 Villeurbanne, France
| |
Collapse
|
3
|
Jiang W, Yu L, Yee L, Chhabra P, Seinfeld J, Anastasio C, Zhang Q. Chemical Differences between Phenolic Secondary Organic Aerosol Formed through Gas-Phase and Aqueous-Phase Reactions. ACS EARTH & SPACE CHEMISTRY 2024; 8:2270-2283. [PMID: 39600320 PMCID: PMC11587083 DOI: 10.1021/acsearthspacechem.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024]
Abstract
Phenolic compounds, which are significant emissions from biomass burning (BB), undergo rapid photochemical reactions in both gas and aqueous phases to form secondary organic aerosol, namely, gasSOA and aqSOA, respectively. The formation of gasSOA and aqSOA involves different reaction mechanisms, leading to different product distributions. In this study, we investigate the gaseous and aqueous reactions of guaiacol-a representative BB phenol-to elucidate the compositional differences between phenolic aqSOA and gasSOA. Aqueous-phase reactions of guaiacol produce higher SOA yields than gas-phase reactions (e.g., roughly 60 vs 30% at one half-life of guaiacol). These aqueous reactions involve more complex reaction mechanisms and exhibit a more gradual SOA evolution than their gaseous counterparts. Initially, gasSOA forms with high oxidation levels (O/C > 0.82), while aqSOA starts with lower O/C (0.55-0.75). However, prolonged aqueous-phase reactions substantially increase the oxidation state of aqSOA, making its bulk chemical composition closer to that of gasSOA. Additionally, aqueous reactions form a greater abundance of oligomers and high-molecular-weight compounds, alongside a more sustained production of carboxylic acids. AMS spectral signatures representative of phenolic gasSOA have been identified, which, together with tracer ions of aqSOA, can aid in the interpretation of field observation data on aerosol aging within BB smoke. The notable chemical differences between phenolic gasSOA and aqSOA highlighted in this study also underscore the importance of accurately representing both pathways in atmospheric models to better predict the aerosol properties and their environmental impacts.
Collapse
Affiliation(s)
- Wenqing Jiang
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Lu Yu
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| | - Lindsay Yee
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Puneet Chhabra
- Department
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - John Seinfeld
- Department
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
- Division
of Engineering and Applied Science, California
Institute of Technology, Pasadena, California 91125, United States
| | - Cort Anastasio
- Agricultural
and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
- Department
of Land, Air, and Water Resources, University
of California, Davis, California 95616-8627, United States
| | - Qi Zhang
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
- Agricultural
and Environmental Chemistry Graduate Group, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
Liang C, Wang S, Zhao B, Xie J, Li Y, Feng B, He Y, Hou S, Huang L, Qu Q, Zhang H, Zhu L, Jiang J, Hao J. Secondary Organic Aerosol Formation from the Photooxidation of Aromatic Ketone Intermediate Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39482268 DOI: 10.1021/acs.est.4c05384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Oxygenated aromatics are substantial secondary organic aerosol (SOA) precursors, such as benzyl alcohol and phenolic compounds. Aromatic ketone intermediate volatile organic compounds (IVOCs), as a subclass of oxygenated aromatics, were found in anthropogenic source emissions and may contribute to SOA formation. However, the SOA yields and formation pathways of aromatic ketone IVOCs remain unknown. In this study, the photooxidations of aromatic ketone IVOCs in the absence and presence of NOx were studied in an oxidation flow reactor, and the particle- and gas-phase oxidation products were measured. The maximum SOA yields of benzophenone and 1,2-diphenylethanone are 0.24 and 0.33-0.35, respectively, relatively high among oxygenated aromatics. The SOA yields in the presence of NOx are 2-3 times higher than those in the absence of NOx in the late stage of oxidation. As the photooxidation proceeds, H/C of SOA slightly increases with O/C, and a greater amount of more-oxidized ring-retaining products exists in the particle phase in the presence of NOx. Based on gas-phase products and possible reaction pathways, functionalization of benzoic acid via the phenolic pathway is favored in the presence of NOx. Thus, our study highlights the significant SOA formation from aromatic ketone IVOCs, especially in the presence of NOx during long-time photooxidation.
Collapse
Affiliation(s)
- Chengrui Liang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jinzi Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yuyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Boyang Feng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yicong He
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuai Hou
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Lyuyin Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Qipeng Qu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Hua Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Liang Zhu
- TOFWERK China, No. 320, Pubin Road, Pukou District, Nanjing 211800, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
5
|
Daellenbach KR, Cai J, Hakala S, Dada L, Yan C, Du W, Yao L, Zheng F, Ma J, Ungeheuer F, Vogel AL, Stolzenburg D, Hao Y, Liu Y, Bianchi F, Uzu G, Jaffrezo JL, Worsnop DR, Donahue NM, Kulmala M. Substantial contribution of transported emissions to organic aerosol in Beijing. NATURE GEOSCIENCE 2024; 17:747-754. [PMID: 39131449 PMCID: PMC11315673 DOI: 10.1038/s41561-024-01493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/27/2024] [Indexed: 08/13/2024]
Abstract
Haze in Beijing is linked to atmospherically formed secondary organic aerosol, which has been shown to be particularly harmful to human health. However, the sources and formation pathways of these secondary aerosols remain largely unknown, hindering effective pollution mitigation. Here we have quantified the sources of organic aerosol via direct near-molecular observations in central Beijing. In winter, organic aerosol pollution arises mainly from fresh solid-fuel emissions and secondary organic aerosols originating from both solid-fuel combustion and aqueous processes, probably involving multiphase chemistry with aromatic compounds. The most severe haze is linked to secondary organic aerosols originating from solid-fuel combustion, transported from the Beijing-Tianjing-Hebei Plain and rural mountainous areas west of Beijing. In summer, the increased fraction of secondary organic aerosol is dominated by aromatic emissions from the Xi'an-Shanghai-Beijing region, while the contribution of biogenic emissions remains relatively small. Overall, we identify the main sources of secondary organic aerosol affecting Beijing, which clearly extend beyond the local emissions in Beijing. Our results suggest that targeting key organic precursor emission sectors regionally may be needed to effectively mitigate organic aerosol pollution.
Collapse
Affiliation(s)
- Kaspar R. Daellenbach
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Jing Cai
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Simo Hakala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- Department of Meteorology (MISU) and Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Lubna Dada
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Chao Yan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- Nanjing-Helsinki Institute in Atmospheric and Earth System Sciences, Nanjing University, Suzhou, China
| | - Wei Du
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Lei Yao
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jialiang Ma
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Florian Ungeheuer
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexander L. Vogel
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dominik Stolzenburg
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- Institute of Materials Chemistry, TU Wien, Vienna, Austria
| | - Yufang Hao
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Federico Bianchi
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Gaëlle Uzu
- Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Institute of Engineering and Management Univ. Grenoble Alpes (Grenoble INP), Institut des Géosciences de l’Environnement (IGE), Université Grenoble Alpes, Grenoble, France
| | - Douglas R. Worsnop
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
- Aerodyne Research Inc., Billerica, MA USA
| | - Neil M. Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA USA
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Geng XZ, Hu JT, Zhang ZM, Li ZL, Chen CJ, Wang YL, Zhang ZQ, Zhong YJ. Exploring efficient strategies for air quality improvement in China based on its regional characteristics and interannual evolution of PM 2.5 pollution. ENVIRONMENTAL RESEARCH 2024; 252:119009. [PMID: 38679277 DOI: 10.1016/j.envres.2024.119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Fine particulate matter (PM2.5) harms human health and hinders normal human life. Considering the serious complexity and obvious regional characteristics of PM2.5 pollution, it is urgent to fill in the comprehensive overview of regional characteristics and interannual evolution of PM2.5. This review studied the PM2.5 pollution in six typical areas between 2014 and 2022 based on the data published by the Chinese government and nearly 120 relevant literature. We analyzed and compared the characteristics of interannual and quarterly changes of PM2.5 concentration. The Beijing-Tianjin-Hebei region (BTH), Yangtze River Delta (YRD) and Pearl River Delta (PRD) made remarkable progress in improving PM2.5 pollution, while Fenwei Plain (FWP), Sichuan Basin (SCB) and Northeast Plain (NEP) were slightly inferior mainly due to the relatively lower level of economic development. It was found that the annual average PM2.5 concentration change versus year curves in the three areas with better pollution control conditions can be merged into a smooth curve. Importantly, this can be fitted for the accurate evaluation of each area and provide reliable prediction of its future evolution. In addition, we analyzed the factors affecting the PM2.5 in each area and summarize the causes of air pollution in China. They included primary emission, secondary generation, regional transmission, as well as unfavorable air dispersion conditions. We also suggested that the PM2.5 pollution control should target specific industries and periods, and further research need to be carried out on the process of secondary production. The results provided useful assistance such as effect prediction and strategy guidance for PM2.5 pollution control in Chinese backward areas.
Collapse
Affiliation(s)
- Xin-Ze Geng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jia-Tian Hu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zi-Meng Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chong-Jun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-Long Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhi-Qing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ying-Jie Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
7
|
Wang T, Li K, Bell DM, Zhang J, Cui T, Surdu M, Baltensperger U, Slowik JG, Lamkaddam H, El Haddad I, Prevot ASH. Large contribution of in-cloud production of secondary organic aerosol from biomass burning emissions. NPJ CLIMATE AND ATMOSPHERIC SCIENCE 2024; 7:149. [PMID: 38938472 PMCID: PMC11199137 DOI: 10.1038/s41612-024-00682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Organic compounds released from wildfires and residential biomass burning play a crucial role in shaping the composition of the atmosphere. The solubility and subsequent reactions of these compounds in the aqueous phase of clouds and fog remain poorly understood. Nevertheless, these compounds have the potential to become an important source of secondary organic aerosol (SOA). In this study, we simulated the aqueous SOA (aqSOA) from residential wood burning emissions under atmospherically relevant conditions of gas-liquid phase partitioning, using a wetted-wall flow reactor (WFR). We analyzed and quantified the specific compounds present in these emissions at a molecular level and determined their solubility in clouds. Our findings reveal that while 1% of organic compounds are fully water-soluble, 19% exhibit moderate solubility and can partition into the aqueous phase in a thick cloud. Furthermore, it is found that the aqSOA generated in our laboratory experiments has a substantial fraction being attributed to the formation of oligomers in the aqueous phase. We also determined an aqSOA yield of 20% from residential wood combustion, which surpasses current estimates based on gas-phase oxidation. These results indicate that in-cloud chemistry of organic gases emitted from wood burning can serve as an efficient pathway to produce organic aerosols, thus potentially influencing climate and air quality.
Collapse
Affiliation(s)
- Tiantian Wang
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Kun Li
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Present Address: Environmental Research Institute, Shandong University, Qingdao, 266237 China
| | - David M. Bell
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jun Zhang
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Tianqu Cui
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Mihnea Surdu
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Urs Baltensperger
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Jay G. Slowik
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Houssni Lamkaddam
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Imad El Haddad
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Andre S. H. Prevot
- PSI Center for Energy and Environmental Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
8
|
Vandergrift GW, Dexheimer DN, Zhang D, Cheng Z, Lata NN, Rogers MM, Shrivastava M, Zhang J, Gaudet BJ, Mei F, China S. Tethered balloon system and High-Resolution Mass Spectrometry Reveal Increased Organonitrates Aloft Compared to the Ground Level. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10060-10071. [PMID: 38709895 DOI: 10.1021/acs.est.4c02090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Atmospheric particles play critical roles in climate. However, significant knowledge gaps remain regarding the vertically resolved organic molecular-level composition of atmospheric particles due to aloft sampling challenges. To address this, we use a tethered balloon system at the Southern Great Plains Observatory and high-resolution mass spectrometry to, respectively, collect and characterize organic molecular formulas (MF) in the ground level and aloft (up to 750 m) samples. We show that organic MF uniquely detected aloft were dominated by organonitrates (139 MF; 54% of all uniquely detected aloft MF). Organonitrates that were uniquely detected aloft featured elevated O/C ratios (0.73 ± 0.23) compared to aloft organonitrates that were commonly observed at the ground level (0.63 ± 0.22). Unique aloft organic molecular composition was positively associated with increased cloud coverage, increased aloft relative humidity (∼40% increase compared to ground level), and decreased vertical wind variance. Furthermore, 29% of extremely low volatility organic compounds in the aloft sample were truly unique to the aloft sample compared to the ground level, emphasizing potential oligomer formation at higher altitudes. Overall, this study highlights the importance of considering vertically resolved organic molecular composition (particularly for organonitrates) and hypothesizes that aqueous phase transformations and vertical wind variance may be key variables affecting the molecular composition of aloft organic aerosol.
Collapse
Affiliation(s)
- Gregory W Vandergrift
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | | | - Damao Zhang
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Zezhen Cheng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Nurun Nahar Lata
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Mickey M Rogers
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Manish Shrivastava
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Jie Zhang
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Brian J Gaudet
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Fan Mei
- Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| | - Swarup China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99352, United States
| |
Collapse
|
9
|
Li C, Zhou B, Zhang J, Jiao L, Cheng K, Chen L, Li Y, Li Y, Ho SSH, Wen Z. Optical properties and radiative forcing of carbonaceous aerosols in a valley city under persistent high temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172462. [PMID: 38615761 DOI: 10.1016/j.scitotenv.2024.172462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Carbonaceous aerosols were collected in the valley city of Baoji city in Northern China in August 2022. The light absorption characteristics and influencing factors of black carbon (BC) and brown carbon (BrC) were analyzed, and their radiative forcing was estimated. The results showed that the light absorption of secondary brown carbon [AbsBrC,sec (370)] was 7.5 ± 2.4 Mm-1, which was 2.5 times that of primary brown carbon [AbsBrC,pri (370), 3.0 ± 1.2 Mm-1]. During the study period, the absorption Ångström exponent (AAE) of aerosol was 1.6, indicating that there was obvious secondary aerosol formation or carbonaceous aerosol aging in the valley city of Baoji. Except for secondary BrC (BrCsec), the light absorption coefficient (Abs) and mass absorption efficiency (MAE) of BC and primary BrC (BrCpri) during the persistent high temperature period (PHT) were higher than those during the normal temperature period (NT) and the precipitation period (PP), which indicated that the light absorption capacity of black carbon and primary brown carbon increased, while the light absorption capacity of secondary brown carbon decreased under persistent high temperature period. Secondary aerosols sulfide (SO42-), nitrate (NO3-) and secondary organic carbon (SOC) are important factors for promoting the light absorption enhancemen of BC and BrCpri and photobleaching of BrCsec during persistent high temperature period. The Principal Component Analysis-Multiple Linear Regression (PCA-MLR) model showed that traffic emissions was the most important source of pollution in Baoji City. Based on this, the secondary source accelerates the aging of BC and BrC, causing changes in light absorption. During PHT, the radiative forcing of BC and BrCpri were enhanced, while the radiative forcing of BrCsec was weakened, but the positive radiative forcing generated by them may aggravate the high-temperature disaster.
Collapse
Affiliation(s)
- Chunyan Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Bianhong Zhou
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China; State Key Laboratory of Loess and Quaternary Geology, Key Lab of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Junhui Zhang
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Lihua Jiao
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Kaijing Cheng
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Long Chen
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yu Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Yongqiang Li
- College of Geography and Environment, Baoji University of Arts and Sciences, Shaanxi Key Laboratory of Disaster Monitoring and Mechanism Simulation, Baoji 721013, China
| | - Steven Sai Hang Ho
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, United States
| | - Zhongtao Wen
- Baoji Ecological Environment Science and Technology Service Center, Baoji 721000, China
| |
Collapse
|
10
|
Zahed MA, Salehi S, Khoei MA, Esmaeili P, Mohajeri L. Risk assessment of Benzene, Toluene, Ethyl benzene, and Xylene (BTEX) in the atmospheric air around the world: A review. Toxicol In Vitro 2024; 98:105825. [PMID: 38615724 DOI: 10.1016/j.tiv.2024.105825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Volatile organic compounds, such as BTEX, have been the subject of numerous debates due to their detrimental effects on the environment and human health. Human beings have had a significant role in the emergence of this situation. Even though US EPA, WHO, and other health-related organizations have set standard limits as unhazardous levels, it has been observed that within or even below these limits, constant exposure to these toxic chemicals results in negative consequences as well. According to these facts, various studies have been carried out all over the world - 160 of which are collected within this review article, so that experts and governors may come up with effective solutions to manage and control these toxic chemicals. The outcome of this study will serve the society to evaluate and handle the risks of being exposed to BTEX. In this review article, the attempt was to collect the most accessible studies relevant to risk assessment of BTEX in the atmosphere, and for the article to contain least bias, it was reviewed and re-evaluated by all authors, who are from different institutions and backgrounds, so that the insights of the article remain unbiased. There may be some limitations to consistency or precision in some points due to the original sources, however the attempt was to minimize them as much as possible.
Collapse
Affiliation(s)
| | - Samira Salehi
- Department of Health, Safety and Environment, Petropars Company, Tehran, Iran.
| | - Mahtab Akbarzadeh Khoei
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Pedram Esmaeili
- Department of Fiber and Particle Engineering, Faculty of Technology, Oulu University, Oulu, Finland
| | - Leila Mohajeri
- Department of HSE, Ostovan Kish Drilling Company (OKDC), No. 148, Dastgerdi Street (Zafar), Tehran, Iran
| |
Collapse
|
11
|
Salzmann H, McCoy AB, Weber JM. Infrared Spectrum of the Pyrene Anion in the CH Stretching Region. J Phys Chem A 2024; 128:4225-4232. [PMID: 38753443 DOI: 10.1021/acs.jpca.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this work, we report the infrared spectrum of the pyrene anion, measured using messenger tagging with up to three Ar atoms. We assign the spectrum using density functional theory and vibrational perturbation theory. We discuss our results in the context of computed and experimental spectra from the literature as well as recent observations from astronomical sources, addressing the question of whether polycyclic aromatic hydrocarbon anions could contribute to the strong infrared emission bands at 3.29 μm from carbon-rich regions of space.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| | - Anne B McCoy
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - J Mathias Weber
- JILA and Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0440, United States
| |
Collapse
|
12
|
Mabato BG, Li YJ, Huang DD, Chan CK. Aqueous-Phase Photoreactions of Mixed Aromatic Carbonyl Photosensitizers Yield More Oxygenated, Oxidized, and less Light-Absorbing Secondary Organic Aerosol (SOA) than Single Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7924-7936. [PMID: 38652049 PMCID: PMC11080053 DOI: 10.1021/acs.est.3c10199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Aromatic carbonyls have been mainly probed as photosensitizers for aqueous secondary organic aerosol (aqSOA) and light-absorbing organic aerosol (i.e., brown carbon or BrC) formation, but due to their organic nature, they can also undergo oxidation to form aqSOA and BrC. However, photochemical transformations of aromatic carbonyl photosensitizers, particularly in multicomponent systems, are understudied. This study explored aqSOA formation from the irradiation of aromatic carbonyl photosensitizers in mixed and single systems under cloud/fog conditions. Mixed systems consisting of phenolic carbonyls only (VL + ActSyr + SyrAld: vanillin [VL] + acetosyringone [ActSyr] + syringaldehyde [SyrAld]) and another composed of both nonphenolic and phenolic carbonyls (DMB + ActSyr + SyrAld: 3,4-dimethoxybenzaldehyde [DMB], a nonphenolic carbonyl, + ActSyr + SyrAld) were compared to single systems of VL (VL*) and DMB (DMB*), respectively. In mixed systems, the shorter lifetimes of VL and DMB indicate their diminished capacity to trigger the oxidation of other organic compounds (e.g., guaiacol [GUA], a noncarbonyl phenol). In contrast to the slow decay and minimal photoenhancement for DMB*, the rapid photodegradation and significant photoenhancement for VL* indicate efficient direct photosensitized oxidation (i.e., self-photosensitization). Relative to single systems, the increased oxidant availability promoted functionalization in VL + ActSyr + SyrAld and accelerated the conversion of early generation aqSOA in DMB + ActSyr + SyrAld. Moreover, the increased availability of oxidizable substrates countered by stronger oxidative capacity limited the contribution of mixed systems to aqSOA light absorption. This suggests a weaker radiative effect of BrC from mixed photosensitizer systems than BrC from single photosensitizer systems. Furthermore, more oxygenated and oxidized aqSOA was observed with increasing complexity of the reaction systems (e.g., VL* < VL + ActSyr + SyrAld < VL + ActSyr + SyrAld + GUA). This work offers new insights into aqSOA formation by emphasizing the dual role of organic photosensitizers as oxidant sources and oxidizable substrates.
Collapse
Affiliation(s)
- Beatrix
Rosette Go Mabato
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
| | - Yong Jie Li
- Department
of Civil and Environmental Engineering, and Centre for Regional Ocean,
Faculty of Science and Technology, University
of Macau, Macau 999078, China
| | - Dan Dan Huang
- Shanghai
Academy of Environmental Sciences, Shanghai 200233, China
| | - Chak K. Chan
- School
of Energy and Environment, City University
of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong SAR, China
- Division
of Physical Sciences and Engineering, King
Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah 23955-6900, Kingdom
of Saudi Arabia
| |
Collapse
|
13
|
Salzmann H, Rasmussen AP, Eaves JD, Weber JM. Competition between Water-Water Hydrogen Bonds and Water-π Bonds in Pyrene-Water Cluster Anions. J Phys Chem A 2024; 128:2772-2781. [PMID: 38564313 DOI: 10.1021/acs.jpca.4c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
We present infrared spectra and density functional theory calculations of hydrated pyrene anion clusters with up to four water molecules. The experimental spectra were acquired by using infrared Ar messenger photodissociation spectroscopy. Water molecules form clusters on the surface of the pyrene, forming hydrogen bonds with the π-system. The structures of the water clusters and their interaction with the π-system are encoded in OH stretching vibrational modes. We find that the interactions between water molecules are stronger than the interactions between water molecules and the π-system. While all clusters show multiple conformers, three- and four-membered rings are the lowest energy structures in the larger hydrates.
Collapse
Affiliation(s)
- Heinrich Salzmann
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Anne P Rasmussen
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus, Denmark
| | - Joel D Eaves
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - J Mathias Weber
- JILA, University of Colorado, Boulder, Colorado 80309-0440, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
14
|
Jiang Y, Yu S, Chen X, Zhang Y, Li M, Li Z, Song Z, Li P, Zhang X, Lichtfouse E, Rosenfeld D. Large contributions of emission reductions and meteorological conditions to the abatement of PM 2.5 in Beijing during the 24th Winter Olympic Games in 2022. J Environ Sci (China) 2024; 136:172-188. [PMID: 37923428 DOI: 10.1016/j.jes.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 11/07/2023]
Abstract
To guarantee the blue skies for the 2022 Winter Olympics held in Beijing and Zhangjiakou from February 4 to 20, Beijing and its surrounding areas adopted a series of emission control measures. This provides an opportunity to determine the impacts of large-scale temporary control measures on the air quality in Beijing during this special period. Here, we applied the WRF-CMAQ model to quantify the contributions of emission reduction measures and meteorological conditions. Results show that meteorological conditions in 2022 decreased PM2.5 in Beijing by 6.9 and 11.8 µg/m3 relative to 2021 under the scenarios with and without emission reductions, respectively. Strict emission reduction measures implemented in Beijing and seven neighboring provinces resulted in an average decrease of 13.0 µg/m3 (-41.2%) in PM2.5 in Beijing. Over the entire period, local emission reductions contributed more to good air quality in Beijing than nonlocal emission reductions. Under the emission reduction scenario, local, controlled regions, other regions, and boundary conditions contributed 47.7%, 42.0%, 5.3%, and 5.0% to the PM2.5 concentrations in Beijing, respectively. The results indicate that during the cleaning period with the air masses from the northwest, the abatements of PM2.5 were mainly caused by local emission reductions. However, during the potential pollution period with the air masses from the east-northeast and west-southwest, the abatements of PM2.5 were caused by both local and nonlocal emission reductions almost equally. This implies that regional coordinated prevention and control strategies need to be arranged scientifically and rationally when heavy pollution events are forecasted.
Collapse
Affiliation(s)
- Yaping Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shaocai Yu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xue Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yibo Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengying Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Song
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengfei Li
- College of Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Xiaoye Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing 100081, China
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, Coll France, CNRS, IRD, INRAE, Europole Mediterraneen de l'Arbois, Avenue Louis Philibert, 13100 Aix en Provence, France; Xi'an Jiaotong University, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an 710049, China
| | - Daniel Rosenfeld
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Ma J, Li L. VOC emitted by biopharmaceutical industries: Source profiles, health risks, and secondary pollution. J Environ Sci (China) 2024; 135:570-584. [PMID: 37778828 DOI: 10.1016/j.jes.2022.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/18/2022] [Accepted: 10/16/2022] [Indexed: 10/03/2023]
Abstract
The biopharmaceutical industry contributes substantially to volatile organic compounds (VOCs) emissions, causing growing concerns and social developmental conflicts. This study conducted an on-site investigation of the process-based emission of VOCs from three biopharmaceutical enterprises. In the workshops of the three enterprises, 26 VOCs were detected, which could be sorted into 4 classes: hydrocarbons, aromatic hydrocarbons, oxygen-containing compounds, and nitrogen-containing compounds. Ketones were the main components of waste gases, accounting for 44.13%-77.85% of the overall VOCs. Process-based source profiles were compiled for each process unit, with the fermentation and extraction units of tiamulin fumarate being the main source of VOC emissions. Dimethyl heptanone, vinyl acetate, diethylamine, propylene glycol methyl ether (PGME), and benzene were screened as priority pollutants through a fuzzy comprehensive evaluation system. Ground level concentration simulation results of the Gauss plume diffusion model demonstrated that the diffusivity of VOCs in the atmosphere was relatively high, indicating potential non-carcinogenic and carcinogenic risks 1.5-2 km downwind. Furthermore, the process-based formation potentials of ozone and secondary organic aerosols (SOAs) were determined and indicated that N-methyl-2-pyrrolidone, dimethyl heptanone, and PGME should be preferentially controlled to reduce the ozone formation potential, whereas the control of benzene and chlorobenzene should be prioritized to reduce the generation of SOAs. Our results provide a basis for understanding the characteristics of VOC emission by biopharmaceutical industries and their diffusion, potentially allowing the development of measures to reduce health risks and secondary pollution.
Collapse
Affiliation(s)
- Jiawei Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
16
|
Mokarram M, Taripanah F, Pham TM. Using neural networks and remote sensing for spatio-temporal prediction of air pollution during the COVID-19 pandemic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122886-122905. [PMID: 37979107 DOI: 10.1007/s11356-023-30859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
The study aims to monitor air pollution in Iranian metropolises using remote sensing, specifically focusing on pollutants such as O3, CH4, NO2, CO2, SO2, CO, and suspended particles (aerosols) in 2001 and 2019. Sentinel 5 satellite images are utilized to prepare maps of each pollutant. The relationship between these pollutants and land surface temperature (LST) is determined using linear regression analysis. Additionally, the study estimates air pollution levels in 2040 using Markov and Cellular Automata (CA)-Markov chains. Furthermore, three neural network models, namely multilayer perceptron (MLP), radial basis function (RBF), and long short-term memory (LSTM), are employed for predicting contamination levels. The results of the research indicate an increase in pollution levels from 2010 to 2019. It is observed that temperature has a strong correlation with contamination levels (R2 = 0.87). The neural network models, particularly RBF and LSTM, demonstrate higher accuracy in predicting pollution with an R2 value of 0.90. The findings highlight the significance of managing industrial towns to minimize pollution, as these areas exhibit both high pollution levels and temperatures. So, the study emphasizes the importance of monitoring air pollution and its correlation with temperature. Remote sensing techniques and advanced prediction models can provide valuable insights for effective pollution management and decision-making processes.
Collapse
Affiliation(s)
- Marzieh Mokarram
- Department of Geography, Faculty of Economics, Management and Social Sciences, Shiraz University, Shiraz, Iran
| | - Farideh Taripanah
- Department of Desert Control and Management, University of Kashan, Kashan, Iran
| | - Tam Minh Pham
- Research Group On "Fuzzy Set Theory and Optimal Decision-Making Model in Economics and Management", Vietnam National University, Hanoi, 144 Xuan Thuy Str., Hanoi, 100000, Vietnam.
- VNU School of Interdisciplinary Studies, Vietnam National University, Hanoi, 144 Xuan Thuy Str., Hanoi, 100000, Vietnam.
| |
Collapse
|
17
|
Jiang H, Cai J, Feng X, Chen Y, Wang L, Jiang B, Liao Y, Li J, Zhang G, Mu Y, Chen J. Aqueous-Phase Reactions of Anthropogenic Emissions Lead to the High Chemodiversity of Atmospheric Nitrogen-Containing Compounds during the Haze Event. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16500-16511. [PMID: 37844026 DOI: 10.1021/acs.est.3c06648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nitrogen-containing organic compounds (NOCs), a type of important reactive-nitrogen species, are abundant in organic aerosols in haze events observed in Northern China. However, due to the complex nature of NOCs, the sources, formation, and influencing factors are still ambiguous. Here, the molecular composition of organic matters (OMs) in hourly PM2.5 samples collected during a haze event in Northern China was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We found that CHON compounds (formulas containing C, H, O, and N atoms) dominated the OM fractions during the haze and showed high chemodiversity and transformability. Relying on the newly developed revised-workflow and oxidation-hydrolyzation knowledge for CHON compounds, 64% of the major aromatic CHON compounds (>80%) could be derived from the oxidization or hydrolyzation processes. Results from FT-ICR MS data analysis further showed that the aerosol liquid water (ALW)-involved aqueous-phase reactions are important for the molecular distribution of aromatic-CHON compounds besides the coal combustion, and the ALW-involved aromatic-CHON compound formation during daytime and nighttime was different. Our results improve the understanding of molecular composition, sources, and potential formation of CHON compounds, which can help to advance the understanding for the formation, evolution, and control of haze.
Collapse
Affiliation(s)
- Hongxing Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Junjie Cai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xinxin Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lina Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yujing Mu
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
18
|
Ye C, Liu Y, Yuan B, Wang Z, Lin Y, Hu W, Chen W, Li T, Song W, Wang X, Lv D, Gu D, Shao M. Low-NO-like Oxidation Pathway Makes a Significant Contribution to Secondary Organic Aerosol in Polluted Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13912-13924. [PMID: 37669221 DOI: 10.1021/acs.est.3c01055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Anthropogenic pollutants can greatly mediate formation pathways and chemical compositions of secondary organic aerosol (SOA) in urban atmospheres. We investigated the molecular tracers for different types of SOA in PM2.5 under varying NO/NO2 conditions in Guangzhou using source analysis of particle-phase speciated organics obtained from an iodide chemical ionization mass spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-I-CIMS). Results show that low-NO-like pathways (when NO/NO2 < 0.2) explained ∼75% of the total measured FIGAERO-OA during regional transport periods, which was enriched in more-oxidized C4-C6 non-nitrogenous compounds over ozone accumulation. Daytime high-NO chemistry played larger roles (38%) in local pollution episodes, with organic nitrates (ONs) and nitrophenols increasing with enhanced aerosol water content and nitrate fraction. Nighttime NO3-initiated oxidation, characterized by monoterpene-derived ONs, accounted for comparable percentages (10-12%) of FIGAERO-OA for both two periods. Furthermore, the presence of organosulfates (OSs) improves the understanding of the roles of aqueous-phase processes in SOA production. Carbonyl-derived OSs exhibited a preferential formation under conditions of high aerosol acidity and/or abundant sulfate, which correlated well with low-NO-like SOA. Our results demonstrate the importance of NO/NO2 ratios in controlling SOA compositions, as well as interactions between water content, aerosol acidity, and inorganic salts in gas-to-particle partitioning of condensable organics.
Collapse
Affiliation(s)
- Chenshuo Ye
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China
| | - Ying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Zelong Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Yi Lin
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Weiwei Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wei Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tiange Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Daqi Lv
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKL-ESPC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Dasa Gu
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Min Shao
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| |
Collapse
|
19
|
Li F, Tang S, Lv J, He A, Wang Y, Liu S, Cao H, Zhao L, Wang Y, Jiang G. Molecular-Scale Investigation on the Formation of Brown Carbon Aerosol via Iron-Phenolic Compound Reactions in the Dark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11173-11184. [PMID: 37462533 DOI: 10.1021/acs.est.3c04263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.
Collapse
Affiliation(s)
- Feifei Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Tang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
20
|
Liu J, Zhang F, Xu W, Chen L, Ren J, Wang Y. Contrasting the characteristics, sources, and evolution of organic aerosols between summer and winter in a megacity of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162937. [PMID: 36934913 DOI: 10.1016/j.scitotenv.2023.162937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Organic aerosol (OA) accounts for the largest fraction of fine particles in the ambient atmosphere, however, its formation process remains highly uncertain. Here, with an aim of obtaining insights to OA formation mechanism, we have focused on contrasting the characteristics, sources and evolution of OA of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) between summer and winter based on two field campaigns of urban Beijing. The results show that secondary OA (SOA) dominates OA mass in PM2.5 both in summer and winter, accounting for 87 % and 74 %, respectively. This is much higher compared to the mass fraction of ~56 % that observed in PM1, indicating an important role of SOA in larger size particles. We also show that, the SOA is becoming more dominant in total OA and our observed high SOA proportion is reconciled with its overall upward trends in recent years. The observed mass concentrations of SOA (less oxidized oxygenated OA, LO-OOA; more oxidized OOA, MO-OOA) in winter are about twice higher than those in summer. The Van-Krevelen diagram implies that the addition of carboxylic acid may be a primary oxidation process of OA in summer, while the addition of alcohol/peroxide may play a dominant role in OA evolution in winter. Our observation and analysis illustrate a more efficient conversion from LO-OOA to MO-OOA through aqueous-phase processes in winter of Beijing. While, in summer, cooking OA may be easier to convert to MO-OOA through photochemical process than other OA factors. We further show that the POA is mainly locally emitted, while the origin of SOA is from both regional transport and locally formed. The results of this study may provide policy basis for the precise control of OA pollution and would also help to improve the accuracy of assessing the environmental and climate effects of OA.
Collapse
Affiliation(s)
- Jieyao Liu
- School of Geographical Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| | - Weiqi Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Lu Chen
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Jingye Ren
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
| | - Ying Wang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
21
|
Qian Z, Meng Q, Chen K, Zhang Z, Liang H, Yang H, Huang X, Zhong W, Zhang Y, Wei Z, Zhang B, Zhang K, Chen M, Zhang Y, Ge X. Machine Learning Explains Long-Term Trend and Health Risk of Air Pollution during 2015-2022 in a Coastal City in Eastern China. TOXICS 2023; 11:481. [PMID: 37368580 PMCID: PMC10305355 DOI: 10.3390/toxics11060481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Exposure to air pollution is one of the greatest environmental risks for human health. Air pollution level is significantly driven by anthropogenic emissions and meteorological conditions. To protect people from air pollutants, China has implemented clean air actions to reduce anthropogenic emissions, which has led to rapid improvement in air quality over China. Here, we evaluated the impact of anthropogenic emissions and meteorological conditions on trends in air pollutants in a coastal city (Lianyungang) in eastern China from 2015 to 2022 based on a random forest model. The annual mean concentration of observed air pollutants, including fine particles, inhalable particles, sulfur dioxide, nitrogen dioxide, and carbon monoxide, presented significant decreasing trends during 2015-2022, with dominant contributions (55-75%) by anthropogenic emission reduction. An increasing trend in ozone was observed with an important contribution (28%) by anthropogenic emissions. The impact of meteorological conditions on air pollution showed significant seasonality. For instance, the negative impact on aerosol pollution occurred during cold months, while the positive impact was in warm months. Health-risk-based air quality decreased by approximately 40% in 8 years, for which anthropogenic emission made a major contribution (93%).
Collapse
Affiliation(s)
- Zihe Qian
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Qingxiao Meng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Kehong Chen
- Lianyungang Environmental Monitoring Center, Lianyungang 222000, China (W.Z.)
| | - Zihang Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Hongwei Liang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Han Yang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Xiaolei Huang
- Lianyungang Environmental Monitoring Center, Lianyungang 222000, China (W.Z.)
| | - Weibin Zhong
- Lianyungang Environmental Monitoring Center, Lianyungang 222000, China (W.Z.)
| | - Yichen Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Ziqian Wei
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Binqian Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Kexin Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Meijuan Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Yunjiang Zhang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| | - Xinlei Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; (Z.Q.); (Z.Z.); (Y.Z.); (B.Z.)
| |
Collapse
|
22
|
Xiang W, Wang W, Du L, Zhao B, Liu X, Zhang X, Yao L, Ge M. Toxicological Effects of Secondary Air Pollutants. Chem Res Chin Univ 2023; 39:326-341. [PMID: 37303472 PMCID: PMC10147539 DOI: 10.1007/s40242-023-3050-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 06/13/2023]
Abstract
Secondary air pollutants, originating from gaseous pollutants and primary particulate matter emitted by natural sources and human activities, undergo complex atmospheric chemical reactions and multiphase processes. Secondary gaseous pollutants represented by ozone and secondary particulate matter, including sulfates, nitrates, ammonium salts, and secondary organic aerosols, are formed in the atmosphere, affecting air quality and human health. This paper summarizes the formation pathways and mechanisms of important atmospheric secondary pollutants. Meanwhile, different secondary pollutants' toxicological effects and corresponding health risks are evaluated. Studies have shown that secondary pollutants are generally more toxic than primary ones. However, due to their diverse source and complex generation mechanism, the study of the toxicological effects of secondary pollutants is still in its early stages. Therefore, this paper first introduces the formation mechanism of secondary gaseous pollutants and focuses mainly on ozone's toxicological effects. In terms of particulate matter, secondary inorganic and organic particulate matters are summarized separately, then the contribution and toxicological effects of secondary components formed from primary carbonaceous aerosols are discussed. Finally, secondary pollutants generated in the indoor environment are briefly introduced. Overall, a comprehensive review of secondary air pollutants may shed light on the future toxicological and health effects research of secondary air pollutants.
Collapse
Affiliation(s)
- Wang Xiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Libo Du
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Bin Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024 P. R. China
| | - Xingyang Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Xiaojie Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Li Yao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
| |
Collapse
|
23
|
Zhu T, Tang M, Gao M, Bi X, Cao J, Che H, Chen J, Ding A, Fu P, Gao J, Gao Y, Ge M, Ge X, Han Z, He H, Huang RJ, Huang X, Liao H, Liu C, Liu H, Liu J, Liu SC, Lu K, Ma Q, Nie W, Shao M, Song Y, Sun Y, Tang X, Wang T, Wang T, Wang W, Wang X, Wang Z, Yin Y, Zhang Q, Zhang W, Zhang Y, Zhang Y, Zhao Y, Zheng M, Zhu B, Zhu J. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the "Air Pollution Complex". ADVANCES IN ATMOSPHERIC SCIENCES 2023; 40:1-23. [PMID: 37359906 PMCID: PMC10140723 DOI: 10.1007/s00376-023-2379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/06/2023] [Accepted: 04/10/2023] [Indexed: 06/28/2023]
Abstract
Atmospheric chemistry research has been growing rapidly in China in the last 25 years since the concept of the "air pollution complex" was first proposed by Professor Xiaoyan TANG in 1997. For papers published in 2021 on air pollution (only papers included in the Web of Science Core Collection database were considered), more than 24 000 papers were authored or co-authored by scientists working in China. In this paper, we review a limited number of representative and significant studies on atmospheric chemistry in China in the last few years, including studies on (1) sources and emission inventories, (2) atmospheric chemical processes, (3) interactions of air pollution with meteorology, weather and climate, (4) interactions between the biosphere and atmosphere, and (5) data assimilation. The intention was not to provide a complete review of all progress made in the last few years, but rather to serve as a starting point for learning more about atmospheric chemistry research in China. The advances reviewed in this paper have enabled a theoretical framework for the air pollution complex to be established, provided robust scientific support to highly successful air pollution control policies in China, and created great opportunities in education, training, and career development for many graduate students and young scientists. This paper further highlights that developing and low-income countries that are heavily affected by air pollution can benefit from these research advances, whilst at the same time acknowledging that many challenges and opportunities still remain in atmospheric chemistry research in China, to hopefully be addressed over the next few decades.
Collapse
Affiliation(s)
- Tong Zhu
- Peking University, Beijing, 100871 China
| | - Mingjin Tang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Meng Gao
- Hong Kong Baptist University, Hong Kong SAR, China
| | - Xinhui Bi
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Huizheng Che
- Chinese Academy of Meteorological Sciences, Beijing, 100081 China
| | | | - Aijun Ding
- Nanjing University, Nanjing, 210023 China
| | | | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, 100012 China
| | - Yang Gao
- Ocean University of China, Qingdao, 266100 China
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | - Xinlei Ge
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Zhiwei Han
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Ru-Jin Huang
- Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 China
| | - Xin Huang
- Nanjing University, Nanjing, 210023 China
| | - Hong Liao
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Cheng Liu
- University of Science and Technology of China, Hefei, 230026 China
| | - Huan Liu
- Tsinghua University, Beijing, 100084 China
| | - Jianguo Liu
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | | | - Keding Lu
- Peking University, Beijing, 100871 China
| | - Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Wei Nie
- Nanjing University, Nanjing, 210023 China
| | - Min Shao
- Jinan University, Guangzhou, 510632 China
| | - Yu Song
- Peking University, Beijing, 100871 China
| | - Yele Sun
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Xiao Tang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Tao Wang
- Hong Kong Polytechnic University, Hong Kong SAR, China
| | | | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
| | | | - Zifa Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Yan Yin
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | | | - Weijun Zhang
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 China
| | - Yanlin Zhang
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Yunhong Zhang
- Beijing Institute of Technology, Beijing, 100081 China
| | - Yu Zhao
- Nanjing University, Nanjing, 210023 China
| | - Mei Zheng
- Peking University, Beijing, 100871 China
| | - Bin Zhu
- Nanjing University of Information Science and Technology, Nanjing, 210044 China
| | - Jiang Zhu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029 China
| |
Collapse
|
24
|
Chen T, Zhang P, Chu B, Ma Q, Ge Y, He H. Synergistic Effects of SO 2 and NH 3 Coexistence on SOA Formation from Gasoline Evaporative Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6616-6625. [PMID: 37055378 DOI: 10.1021/acs.est.3c01921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Vehicular evaporative emissions make an increasing contribution to anthropogenic sources of volatile organic compounds (VOCs), thus contributing to secondary organic aerosol (SOA) formation. However, few studies have been conducted on SOA formation from vehicle evaporative VOCs under complex pollution conditions with the coexistence of NOx, SO2, and NH3. In this study, the synergistic effects of SO2 and NH3 on SOA formation from gasoline evaporative VOCs with NOx were examined using a 30 m3 smog chamber with the aid of a series of mass spectrometers. Compared with the systems involving SO2 or NH3 alone, SO2 and NH3 coexistence had a greater promotion effect on SOA formation, which was larger than the cumulative effect of the two promotions alone. Meanwhile, contrasting effects of SO2 on the oxidation state (OSc) of SOA in the presence or absence of NH3 were observed, and SO2 could further increase the OSc with the coexistence of NH3. The latter was attributed to the synergistic effects of SO2 and NH3 coexistence on SOA formation, wherein N-S-O adducts can be formed from the reaction of SO2 with N-heterocycles generated in the presence of NH3. Our study contributes to the understanding of SOA formation from vehicle evaporative VOCs under highly complex pollution conditions and its atmospheric implications.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Jovanovic G, Perisic M, Bacanin N, Zivkovic M, Stanisic S, Strumberger I, Alimpic F, Stojic A. Potential of Coupling Metaheuristics-Optimized-XGBoost and SHAP in Revealing PAHs Environmental Fate. TOXICS 2023; 11:394. [PMID: 37112620 PMCID: PMC10142005 DOI: 10.3390/toxics11040394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) refer to a group of several hundred compounds, among which 16 are identified as priority pollutants, due to their adverse health effects, frequency of occurrence, and potential for human exposure. This study is focused on benzo(a)pyrene, being considered an indicator of exposure to a PAH carcinogenic mixture. For this purpose, we have applied the XGBoost model to a two-year database of pollutant concentrations and meteorological parameters, with the aim to identify the factors which were mostly associated with the observed benzo(a)pyrene concentrations and to describe types of environments that supported the interactions between benzo(a)pyrene and other polluting species. The pollutant data were collected at the energy industry center in Serbia, in the vicinity of coal mining areas and power stations, where the observed benzo(a)pyrene maximum concentration for a study period reached 43.7 ngm-3. The metaheuristics algorithm has been used to optimize the XGBoost hyperparameters, and the results have been compared to the results of XGBoost models tuned by eight other cutting-edge metaheuristics algorithms. The best-produced model was later on interpreted by applying Shapley Additive exPlanations (SHAP). As indicated by mean absolute SHAP values, the temperature at the surface, arsenic, PM10, and total nitrogen oxide (NOx) concentrations appear to be the major factors affecting benzo(a)pyrene concentrations and its environmental fate.
Collapse
Affiliation(s)
- Gordana Jovanovic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (F.A.); (A.S.)
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Mirjana Perisic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (F.A.); (A.S.)
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Nebojsa Bacanin
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Miodrag Zivkovic
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Svetlana Stanisic
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Ivana Strumberger
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| | - Filip Alimpic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (F.A.); (A.S.)
| | - Andreja Stojic
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.P.); (F.A.); (A.S.)
- Faculty of Informatics and Computing, Singidunum University, 11000 Belgrade, Serbia; (N.B.); (M.Z.); (I.S.)
| |
Collapse
|
26
|
Chang X, Zheng H, Zhao B, Yan C, Jiang Y, Hu R, Song S, Dong Z, Li S, Li Z, Zhu Y, Shi H, Jiang Z, Xing J, Wang S. Drivers of High Concentrations of Secondary Organic Aerosols in Northern China during the COVID-19 Lockdowns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5521-5531. [PMID: 36999996 DOI: 10.1021/acs.est.2c06914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
During the COVID-19 lockdown in early 2020, observations in Beijing indicate that secondary organic aerosol (SOA) concentrations increased despite substantial emission reduction, but the reasons are not fully explained. Here, we integrate the two-dimensional volatility basis set into a state-of-the-art chemical transport model, which unprecedentedly reproduces organic aerosol (OA) components resolved by the positive matrix factorization based on aerosol mass spectrometer observations. The model shows that, for Beijing, the emission reduction during the lockdown lowered primary organic aerosol (POA)/SOA concentrations by 50%/18%, while deteriorated meteorological conditions increased them by 30%/119%, resulting in a net decrease in the POA concentration and a net increase in the SOA concentration. Emission reduction and meteorological changes both led to an increased OH concentration, which accounts for their distinct effects on POA and SOA. SOA from anthropogenic volatile organic compounds and organics with lower volatility contributed 28 and 62%, respectively, to the net SOA increase. Different from Beijing, the SOA concentration decreased in southern Hebei during the lockdown because of more favorable meteorology. Our findings confirm the effectiveness of organic emission reductions and meanwhile reveal the challenge in controlling SOA pollution that calls for large organic precursor emission reductions to rival the adverse impact of OH increase.
Collapse
Affiliation(s)
- Xing Chang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
- Transport Planning and Research Institute, Ministry of Transport, Laboratory of Transport Pollution Control and Monitoring Technology, Beijing 100028, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Chao Yan
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Yueqi Jiang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Ruolan Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shaojie Song
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control & Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhaoxin Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shengyue Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Zeqi Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Yun Zhu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, College of Environment and Energy, Guangzhou Higher Education Mega Center, South China University of Technology, Guangzhou 510006, China
| | - Hongrong Shi
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100045, China
| | - Zhe Jiang
- Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100045, China
| | - Jia Xing
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
27
|
Li K, Guo Y, Nizkorodov S, Rudich Y, Angelaki M, Wang X, An T, Perrier S, George C. Spontaneous dark formation of OH radicals at the interface of aqueous atmospheric droplets. Proc Natl Acad Sci U S A 2023; 120:e2220228120. [PMID: 37011187 PMCID: PMC10104570 DOI: 10.1073/pnas.2220228120] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Hydroxyl radical (OH) is a key oxidant that triggers atmospheric oxidation chemistry in both gas and aqueous phases. The current understanding of its aqueous sources is mainly based on known bulk (photo)chemical processes, uptake from gaseous OH, or related to interfacial O3 and NO3 radical-driven chemistry. Here, we present experimental evidence that OH radicals are spontaneously produced at the air-water interface of aqueous droplets in the dark and the absence of known precursors, possibly due to the strong electric field that forms at such interfaces. The measured OH production rates in atmospherically relevant droplets are comparable to or significantly higher than those from known aqueous bulk sources, especially in the dark. As aqueous droplets are ubiquitous in the troposphere, this interfacial source of OH radicals should significantly impact atmospheric multiphase oxidation chemistry, with substantial implications on air quality, climate, and health.
Collapse
Affiliation(s)
- Kangwei Li
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Yunlong Guo
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | | | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute, Rehovot76100, Israel
| | - Maria Angelaki
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Xinke Wang
- Department of Chemistry, University of California, Irvine, CA92697
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Sebastien Perrier
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| | - Christian George
- Université Claude Bernard Lyon 1, CNRS, IRCELYON, VilleurbanneF-69626, France
| |
Collapse
|
28
|
Li T, Zhang Q, Peng Y, Guan X, Li L, Mu J, Wang X, Yin X, Wang Q. Contributions of various driving factors to air pollution events: Interpretability analysis from Machine learning perspective. ENVIRONMENT INTERNATIONAL 2023; 173:107861. [PMID: 36898175 DOI: 10.1016/j.envint.2023.107861] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The air quality in China has been improved substantially, however fine particulate matter (PM2.5) still remain at a high level in many areas. PM2.5 pollution is a complex process that is attributed to gaseous precursors, chemical, and meteorological factors. Quantifying the contribution of each variable to air pollution can facilitate the formulation of effective policies to precisely eliminate air pollution. In this study, we first used decision plot to map out the decision process of the Random Forest (RF) model for a single hourly data set and constructed a framework for analyzing the causes of air pollution using multiple interpretable methods. Permutation importance was used to qualitatively analyze the effect of each variable on PM2.5 concentrations. The sensitivity of secondary inorganic aerosols (SIA): SO42-, NO3- and NH4+ to PM2.5 was verified by Partial dependence plot (PDP). Shapley Additive Explanation (Shapley) was used to quantify the contribution of drivers behind the ten air pollution events. The RF model can accurately predict PM2.5 concentrations, with determination coefficient (R2) of 0.94, root mean square error (RMSE) and mean absolute error (MAE) of 9.4 μg/m3 and 5.7 μg/m3, respectively. This study revealed that the order of sensitivity of SIA to PM2.5 was NH4+>NO3->SO42-. Fossil fuel and biomass combustion may be contributing factors to air pollution events in Zibo in 2021 autumn-winter. NH4+ contributed 19.9-65.4 μg/m3 among ten air pollution events (APs). K, NO3-, EC and OC were the other main drivers, contributing 8.7 ± 2.7 μg/m3, 6.8 ± 7.5 μg/m3, 3.6 ± 5.8 μg/m3 and 2.5 ± 2.0 μg/m3, respectively. Lower temperature and higher humidity were vital factors that promoted the formation of NO3-. Our study may provide a methodological framework for precise air pollution management.
Collapse
Affiliation(s)
- Tianshuai Li
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| | - Qingzhu Zhang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| | - Yanbo Peng
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China; Shandong Academy for Environmental Planning, Jinan 250101, PR China.
| | - Xu Guan
- Shandong Academy for Environmental Planning, Jinan 250101, PR China
| | - Lei Li
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| | - Jiangshan Mu
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| | - Xinfeng Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| | - Xianwei Yin
- Zibo Ecological Environment Monitoring Center of Shandong Province, Zibo 255040, PR China
| | - Qiao Wang
- Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China
| |
Collapse
|
29
|
Hu C, Yue F, Zhan H, Leung KMY, Liu H, Gu W, Zhang R, Chen A, Wang X, Xie Z. Spatiotemporal distribution and influencing factors of secondary organic aerosols in the summer atmosphere from the Bering Sea to the western North Pacific. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160138. [PMID: 36375559 DOI: 10.1016/j.scitotenv.2022.160138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
To better understand the formation process of biogenic and anthropogenic secondary organic aerosols (BSOA and ASOA) in the marine atmosphere under the background of global warming, aerosol samples were collected over three summers (i.e., 2014, 2016 and 2018) from the Bering Sea (BS) to the western North Pacific (WNP). The results showed that temporally, atmospheric concentrations of isoprene-derived SOA (SOAI) tracers were the lowest in 2014 regardless of the marine region, while atmospheric concentrations of monoterpenes-derived SOA (SOAM) tracers in this year were the highest and the aerosols were more aged than those in the other two years. In comparison, the concentrations of β-caryophyllene-derived and toluene-derived SOA (SOAC and SOAA) tracers were relatively low overall. Spatially, the concentrations of SOA tracers were significantly higher over the WNP than over the BS, with SOA tracers over the BS mainly coming from marine sources, while the WNP was strongly influenced by terrestrial inputs. In particular, for land-influenced samples from the WNP, NOx-channel products of SOAI were more dependent on O3 and SO2 relative to HO2-channel product, and the high atmospheric oxidation capacity and SO2 could promote the formation of later-generation SOAM products. The extent of terrestrial influence was further quantified using a principal component analysis (PCA)-generalized additive model (GAM), which showed that terrestrial emissions explained more than half of the BSOA tracers' concentrations and contributed almost all of the ASOA tracer. In addition, the assessment of secondary organic carbon (SOC) highlighted the key role of anthropogenic activities in organic carbon levels in offshore areas. Our study revealed significant contributions of terrestrial natural and anthropogenic sources to different SOA over the WNP, and these relevant findings help improve knowledge about SOA in the marine atmosphere.
Collapse
Affiliation(s)
- Chengge Hu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, China
| | - Fange Yue
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Haicong Zhan
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hongwei Liu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Weihua Gu
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Runqi Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Afeng Chen
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China.
| | - Zhouqing Xie
- Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
30
|
Xiao Y, Hu M, Li X, Zong T, Xu N, Hu S, Zeng L, Chen S, Song Y, Guo S, Wu Z. Aqueous secondary organic aerosol formation attributed to phenols from biomass burning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157582. [PMID: 35882337 DOI: 10.1016/j.scitotenv.2022.157582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Biomass burning emits large quantities of phenols, which readily partition into the atmospheric aqueous phase and subsequently may react to produce aqueous secondary organic aerosol (aqSOA). For the first time, we quantitatively explored the influence of phenols emitted from biomass burning on aqSOA formation in the winter of Beijing. A typical haze episode associated with significant aqSOA formation was captured. During this episode, aqueous-phase processing of biomass burning promoted aqSOA formation was identified. Furthermore, high-resolution mass spectrum analysis provided molecular-level evidence of the phenolic aqSOA tracers. Estimation of aqSOA formation rate (RaqSOA) with compiled laboratory kinetic data indicated that biomass-burning phenols can efficiently produce aqSOA at midday, with RaqSOA of 0.42 μg m-3 h-1 accounting for 15 % of total aqSOA formation rate. The results highlight that aqSOA formation of phenols contributes the haze pollution. This implies the importance of regional joint control of biomass burning to mitigate the heavy haze.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Xiao Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Taomou Zong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Nan Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuya Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yu Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Xu B, Zhang G, Gustafsson Ö, Kawamura K, Li J, Andersson A, Bikkina S, Kunwar B, Pokhrel A, Zhong G, Zhao S, Li J, Huang C, Cheng Z, Zhu S, Peng P, Sheng G. Large contribution of fossil-derived components to aqueous secondary organic aerosols in China. Nat Commun 2022; 13:5115. [PMID: 36045131 PMCID: PMC9433442 DOI: 10.1038/s41467-022-32863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Incomplete understanding of the sources of secondary organic aerosol (SOA) leads to large uncertainty in both air quality management and in climate change assessment. Chemical reactions occurring in the atmospheric aqueous phase represent an important source of SOA mass, yet, the effects of anthropogenic emissions on the aqueous SOA (aqSOA) are not well constrained. Here we use compound-specific dual-carbon isotopic fingerprints (δ13C and Δ14C) of dominant aqSOA molecules, such as oxalic acid, to track the precursor sources and formation mechanisms of aqSOA. Substantial stable carbon isotope fractionation of aqSOA molecules provides robust evidence for extensive aqueous-phase processing. Contrary to the paradigm that these aqSOA compounds are largely biogenic, radiocarbon-based source apportionments show that fossil precursors produced over one-half of the aqSOA molecules. Large fractions of fossil-derived aqSOA contribute substantially to the total water-soluble organic aerosol load and hence impact projections of both air quality and anthropogenic radiative forcing. Our findings reveal the importance of fossil emissions for aqSOA with effects on climate and air quality.
Collapse
Affiliation(s)
- Buqing Xu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China. .,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Örjan Gustafsson
- Department of Environment Science and the Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, Sweden.
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - August Andersson
- Department of Environment Science and the Bolin Centre for Climate Research, Stockholm University, Stockholm, 10691, Sweden
| | - Srinivas Bikkina
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan.,CSIR-National Institute of Oceanography, Dona Paula, 403004, Goa, India
| | - Bhagawati Kunwar
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Ambarish Pokhrel
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan.,Institute of Science and Technology, Tribhuvan University, Kathmandu, 44600, Nepal
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Jing Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chen Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Zhineng Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Sanyuan Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Pingan Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
32
|
Sun J, Shen Z, Zhang T, Kong S, Zhang H, Zhang Q, Niu X, Huang S, Xu H, Ho KF, Cao J. A comprehensive evaluation of PM 2.5-bound PAHs and their derivative in winter from six megacities in China: Insight the source-dependent health risk and secondary reactions. ENVIRONMENT INTERNATIONAL 2022; 165:107344. [PMID: 35709581 DOI: 10.1016/j.envint.2022.107344] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/13/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric PAHs (polycyclic aromatic hydrocarbons) and their derivatives are a global concern that influences environments and threatens human health. Concentrations of 52 PAHs and the main derivatives in six Chinese megacities were measured in the winter of 2019. The concentrations of ∑PAHs (sum of 52 PAHs) ranged from 19.42 ± 7.68 to 65.40 ± 29.84 ng m-3, with significantly higher levels in northern cities (Harbin [HB], Beijing [BJ], and Xi'an [XA]) than southern ones (Wuhan [WH], Chengdu [CD] and Guangzhou [GZ]). Source apportionment of ∑PAHs was conducted by the PMF model and results showed coal combustion and traffic emissions were the two dominant sources, which dominated ∑PAHs in northern and southern cities, respectively. Biomass burning was also characterized as a crucial source of ∑PAHs and showed extremely high contributions in XA (42.5%). Assisted by the individual PAH source apportionment results, the source-depend TEQ (total BaP equivalent) and incremental lifetime cancer risk (ILCR) were firstly reported in these cities. The results highlighted the contributions of coal combustion and biomass burning to both TEQ and ILCR, which were underestimated by ∑PAHs source apportionment. Secondary organic aerosol-derived PAHs were demonstrated to increase the TEQ compared with the fresh PAHs and three parameters, namely temperature, relative humidity, and O3 concentrations were characterized by multiple linear regression as the principal factors influencing secondary reactions of PAHs in winter. This study provides accurate human health-orientated results and potential control measures to mitigate the toxicity of secondary formed PAHs, and significantly decrease the uncertainty level of traditional methods. The results also revealed great progress in air pollution control by the Chinese government in the past 20 years, but still a long way to go to formulate strict emission control strategies from both environmental and human health-protective perspectives.
Collapse
Affiliation(s)
- Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shaofei Kong
- Department of Atmospheric Science, School of Environmental Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Hongai Zhang
- Department of Pediatrics, Shanghai General Hospital, 650 Xinsongjiang Rd, Songjiang District, Shanghai 201620, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinyi Niu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049 China
| | - Shasha Huang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kin-Fai Ho
- The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| |
Collapse
|
33
|
Hu R, Wang S, Zheng H, Zhao B, Liang C, Chang X, Jiang Y, Yin R, Jiang J, Hao J. Variations and Sources of Organic Aerosol in Winter Beijing under Markedly Reduced Anthropogenic Activities During COVID-2019. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6956-6967. [PMID: 34786936 PMCID: PMC8610015 DOI: 10.1021/acs.est.1c05125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 11/05/2021] [Indexed: 05/19/2023]
Abstract
The COVID-19 outbreak provides a "controlled experiment" to investigate the response of aerosol pollution to the reduction of anthropogenic activities. Here we explore the chemical characteristics, variations, and emission sources of organic aerosol (OA) based on the observation of air pollutants and combination of aerosol mass spectrometer (AMS) and positive matrix factorization (PMF) analysis in Beijing in early 2020. By eliminating the impacts of atmospheric boundary layer and the Spring Festival, we found that the lockdown effectively reduced cooking-related OA (COA) but influenced fossil fuel combustion OA (FFOA) very little. In contrast, both secondary OA (SOA) and O3 formation was enhanced significantly after lockdown: less-oxidized oxygenated OA (LO-OOA, 37% in OA) was probably an aged product from fossil fuel and biomass burning emission with aqueous chemistry being an important formation pathway, while more-oxidized oxygenated OA (MO-OOA, 41% in OA) was affected by regional transport of air pollutants and related with both aqueous and photochemical processes. Combining FFOA and LO-OOA, more than 50% of OA pollution was attributed to combustion activities during the whole observation period. Our findings highlight that fossil fuel/biomass combustion are still the largest sources of OA pollution, and only controlling traffic and cooking emissions cannot efficiently eliminate the heavy air pollution in winter Beijing.
Collapse
Affiliation(s)
- Ruolan Hu
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Haotian Zheng
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Chengrui Liang
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Xing Chang
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Yueqi Jiang
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Rujing Yin
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation
and Pollution Control, School of Environment, Tsinghua
University, Beijing 100084, China
- State Environmental Protection Key Laboratory of
Sources and Control of Air Pollution Complex, School of Environment, Tsinghua
University, Beijing 100084, China
| |
Collapse
|
34
|
Wang H, Guo S, Wu Z, Qiao K, Tang R, Yu Y, Xu W, Zhu W, Zeng L, Huang X, He L, Hallquist M. Secondary organic aerosol formation from straw burning using an oxidation flow reactor. J Environ Sci (China) 2022; 114:249-258. [PMID: 35459490 DOI: 10.1016/j.jes.2021.08.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Herein, we use an oxidation flow reactor, Gothenburg: Potential Aerosol Mass (Go: PAM) reactor, to investigate the secondary organic aerosol (SOA) formation from wheat straw burning. Biomass burning emissions are exposed to high concentrations of hydroxyl radicals (OH) to simulate processes equivalent to atmospheric oxidation of 0-2.55 days. Primary volatile organic compounds (VOCs) were investigated, and particles were measured before and after the Go: PAM reactor. The influence of water content (i.e. 5% and 11%) in wheat straw was also explored. Two burning stages, the flaming stage, and non-flaming stages, were identified. Primary particle emission factors (EFs) at a water content of 11% (∼3.89 g/kg-fuel) are significantly higher than those at a water content of 5% (∼2.26 g/kg-fuel) during the flaming stage. However, the water content showed no significant influence at the non-flaming stage. EFs of aromatics at a non-flaming stage (321.8±46.2 mg/kg-fuel) are larger than that at a flaming stage (130.9±37.1 mg/kg-fuel). The OA enhancement ratios increased with the increase in OH exposure at first and decreased with the additional increment of OH exposure. The maximum OA enhancement ratio is ∼12 during the non-flaming stages, which is much higher than ∼ 1.7 during the flaming stages. The mass spectrum of the primary wheat burning organic aerosols closely resembles that of resolved biomass burning organic aerosols (BBOA) based on measurements in ambient air. Our results show that large gap (∼60%-90%) still remains to estimate biomass burning SOA if only the oxidation of VOCs were included.
Collapse
Affiliation(s)
- Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 10044, China.
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 10044, China.
| | - Kai Qiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Rongzhi Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weizhao Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenfei Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Liwu Zeng
- Key Laboratory for Urban Habitat Environmental Science and Technology, College of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaofeng Huang
- Key Laboratory for Urban Habitat Environmental Science and Technology, College of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyan He
- Key Laboratory for Urban Habitat Environmental Science and Technology, College of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Mattias Hallquist
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
35
|
Wang Y, Clusius P, Yan C, Dällenbach K, Yin R, Wang M, He XC, Chu B, Lu Y, Dada L, Kangasluoma J, Rantala P, Deng C, Lin Z, Wang W, Yao L, Fan X, Du W, Cai J, Heikkinen L, Tham YJ, Zha Q, Ling Z, Junninen H, Petäjä T, Ge M, Wang Y, He H, Worsnop DR, Kerminen VM, Bianchi F, Wang L, Jiang J, Liu Y, Boy M, Ehn M, Donahue NM, Kulmala M. Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:770-778. [PMID: 34806377 DOI: 10.1021/acs.est.1c05191] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The understanding at a molecular level of ambient secondary organic aerosol (SOA) formation is hampered by poorly constrained formation mechanisms and insufficient analytical methods. Especially in developing countries, SOA related haze is a great concern due to its significant effects on climate and human health. We present simultaneous measurements of gas-phase volatile organic compounds (VOCs), oxygenated organic molecules (OOMs), and particle-phase SOA in Beijing. We show that condensation of the measured OOMs explains 26-39% of the organic aerosol mass growth, with the contribution of OOMs to SOA enhanced during severe haze episodes. Our novel results provide a quantitative molecular connection from anthropogenic emissions to condensable organic oxidation product vapors, their concentration in particle-phase SOA, and ultimately to haze formation.
Collapse
Affiliation(s)
- Yonghong Wang
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Petri Clusius
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Kaspar Dällenbach
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Rujing Yin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Biwu Chu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yiqun Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Lubna Dada
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Juha Kangasluoma
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Pekka Rantala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Chenjuan Deng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhuohui Lin
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Weigang Wang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, China
| | - Lei Yao
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Xiaolong Fan
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Wei Du
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Jing Cai
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Liine Heikkinen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Yee Jun Tham
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Qiaozhi Zha
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Zhenhao Ling
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Heikki Junninen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
- Institute of Physics, University of Tartu, Tartu 50090, Estonia
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Maofa Ge
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, China
| | - Yuesi Wang
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hong He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Douglas R Worsnop
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Federico Bianchi
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Lin Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200438, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
| | - Michael Boy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Mikael Ehn
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100089, China
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00560, Finland
| |
Collapse
|
36
|
Li J, Deng S, Li G, Lu Z, Song H, Gao J, Sun Z, Xu K. VOCs characteristics and their ozone and SOA formation potentials in autumn and winter at Weinan, China. ENVIRONMENTAL RESEARCH 2022; 203:111821. [PMID: 34370988 DOI: 10.1016/j.envres.2021.111821] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Frequent ozone and fine particulate matter (PM2.5) pollution have been occurring in the Guanzhong Plain in China. To effectively control the tropospheric ozone and PM2.5 pollution, this study performed measurements of 102 VOCs species from Sep.19-25 (autumn) and Nov.27-Dec. 8, 2017 (winter) at Weinan in the central Guanzhong Plain. The total volatile organic compounds (TVOCs) concentrations were 95.8 ± 30.6 ppbv in autumn and 74.4 ± 37.1 ppbv in winter. Alkanes were the most abundant group in both of autumn and winter, accounting for 33.5% and 39.6% of TVOCs concentrations, respectively. The levels of aromatics and oxygenated VOCs were higher in autumn than in winter, mainly due to changes in industrial activities and combustion strength. Photochemical reactivities and ozone formation potentials (OFPs) of VOCs were calculated by applying the OH radical loss rate (LOH) and maximum incremental reactivity (MIR) method, respectively. Results showed that Alkenes and aromatics were the key VOCs in term ozone formation in Weinan, which together contributed 59.6% ̶ 65.3% to the total LOH and OFP. Secondary organic aerosol formation potentials (SOAFP) of the measured VOCs were investigated by employing the fractional aerosol coefficient (FAC) method. Aromatics contributed 94.9% and 96.2% to the total SOAFP in autumn and winter, respectively. The regional transport effects on VOCs and ozone formation were investigated by using trajectory analysis and potential source contribution function (PSCF). Results showed that regional anthropogenic sources from industrial cities (Tongchuan, Xi'an city) and biogenic sources from Qinling Mountain influenced VOCs levels and OFP at Weinan. Future studies need to emphasize on meteorological factors and sources that impact on VOCs concentrations in Weinan.
Collapse
Affiliation(s)
- Jianghao Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Shunxi Deng
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China.
| | - Guanghua Li
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Zhenzhen Lu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Hui Song
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; School of Architectural Engineering, Chang'an University, Xi'an, 710064, China
| | - Jian Gao
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Zhigang Sun
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| | - Ke Xu
- School of Water and Environment, Chang'an University, Xi'an, 710064, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an, 710064, China
| |
Collapse
|
37
|
Dong P, Chen Z, Qin X, Gong Y. Water Significantly Changes the Ring-Cleavage Process During Aqueous Photooxidation of Toluene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16316-16325. [PMID: 34877862 DOI: 10.1021/acs.est.1c04770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a major constituent of aromatic compounds, toluene exists widely in environmental aqueous phases. This research investigated the aqueous-phase OH oxidation of toluene to determine how liquid water changes the radical chemistry of ring-cleavage pathways. Results show that ring-cleavage pathways through the C7 bicyclic peroxy radical (BPR) account for about 70% of total aqueous-phase oxidation pathways, which is similar to that in the gas-phase oxidation. However, detailed ring-cleavage pathways in the aqueous phase change significantly compared with those in the gas phase as shown by the decreased production of glyoxal and methylglyoxal and the enhanced production of formic acid and acetic acid as primary products, which can be attributed to the presence of liquid water. Water facilitates the formation of the BPR whose structure is different from that in the gas-phase oxidation and results in different ring-cleavage pathways through hydrogen-shift reactions. Furthermore, water helps the hydration of acyl radicals formed by the BPR to produce organic acids. With the suggested ring-cleavage mechanisms, a box model can simulate aqueous-phase product distributions better than that with the classical ring-cleavage mechanisms. Given the influence of water on reaction mechanisms, aqueous-phase oxidation of hydrophobic organic compounds may be more important than previously assumed.
Collapse
Affiliation(s)
- Ping Dong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuan Qin
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yiwei Gong
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
38
|
Zheng Y, Chen Q, Cheng X, Mohr C, Cai J, Huang W, Shrivastava M, Ye P, Fu P, Shi X, Ge Y, Liao K, Miao R, Qiu X, Koenig TK, Chen S. Precursors and Pathways Leading to Enhanced Secondary Organic Aerosol Formation during Severe Haze Episodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15680-15693. [PMID: 34775752 DOI: 10.1021/acs.est.1c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular analyses help to investigate the key precursors and chemical processes of secondary organic aerosol (SOA) formation. We obtained the sources and molecular compositions of organic aerosol in PM2.5 in winter in Beijing by online and offline mass spectrometer measurements. Photochemical and aqueous processing were both involved in producing SOA during the haze events. Aromatics, isoprene, long-chain alkanes or alkenes, and carbonyls such as glyoxal and methylglyoxal were all important precursors. The enhanced SOA formation during the severe haze event was predominantly contributed by aqueous processing that was promoted by elevated amounts of aerosol water for which multifunctional organic nitrates contributed the most followed by organic compounds having four oxygen atoms in their formulae. The latter included dicarboxylic acids and various oxidation products from isoprene and aromatics as well as products or oligomers from methylglyoxal aqueous uptake. Nitrated phenols, organosulfates, and methanesulfonic acid were also important SOA products but their contributions to the elevated SOA mass during the severe haze event were minor. Our results highlight the importance of reducing nitrogen oxides and nitrate for future SOA control. Additionally, the formation of highly oxygenated long-chain molecules with a low degree of unsaturation in polluted urban environments requires further research.
Collapse
Affiliation(s)
- Yan Zheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xi Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Claudia Mohr
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm 11418, Sweden
| | - Jing Cai
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Wei Huang
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Manish Shrivastava
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Penglin Ye
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Xiaodi Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keren Liao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruqian Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinghua Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Theodore K Koenig
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Zhang Y, Lei R, Cui S, Wang H, Chen M, Ge X. Spatiotemporal trends and impact factors of PM<sub>2.5</sub> and O<sub>3</sub> pollution in major cities in China during 2015–2020. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Chemical Characteristics and Sources of Water-Soluble Organic Nitrogen Species in PM2.5 in Nanjing, China. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Water-soluble organic nitrogen (WSON) is an important component of PM2.5 which may affect air quality, climate and human health. Herein, one-year field samples of atmospheric PM2.5 (June 2017–May 2018) were collected in northern Nanjing. Chemical characterization of PM2.5 major components as well as WSON were conducted, and WSON composition and sources were further investigated via measurements by a Aerodyne soot particle aerosol mass spectrometer (SP-AMS) as well as positive matrix factorization (PMF). Inorganic ions, mainly consisting of ammonium, sulfate, and nitrate, were found to dominate PM2.5 mass (58.7%), followed by organic matter (OM) (22.6%), and elemental carbon (EC) (2.1%). Water-soluble OM dominated OM (65.1%), and its temporal variation was closely correlated with that of secondary organic matter, while time series of water-insoluble OM concentrations correlated tightly with that of primary organic matter. Average WSON concentration was 2.15 μg/m3, which was highest in winter and lowest in summer. Correlation analysis of WSON with PM2.5 components also indicated that WSON was mainly from secondary sources. SP-AMS revealed that WSON mass spectrum was composed of CxHyNp+ (91.2%) and CxHyOzNp+ (8.8%), indicating dominance of amines and other oxygenated ON compounds. PMF analysis resolved two primary sources (traffic, biomass burning) and two secondary sources (less-oxidized and more-oxidized factors) of WSOM and WSON, and the secondary source dominated both WSOM and WSON. Contribution of the more-oxidized ON factor was very high in winter, and the less-oxidized factor was significant in summer, indicating a likely important role of aqueous-phase processing in winter as well as photochemical oxidation in summer to WSON.
Collapse
|
41
|
Characterization of Products from the Aqueous-Phase Photochemical Oxidation of Benzene-Diols. ATMOSPHERE 2021. [DOI: 10.3390/atmos12050534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemical processing in atmospheric aqueous phases, including cloud and fog drops, might be significant in reconciling the gap between observed and modeled secondary organic aerosol (SOA) properties. In this work, we conducted a relatively comprehensive investigation of the reaction products generated from the aqueous-phase photochemical oxidation of three benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radical (·OH), triplet excited state (3C*) 3,4-dimethoxybenzaldehyde (3,4-DMB), and direct photolysis without any added oxidants. The results show that OH-initiated photo-degradation is the fastest of all the reaction systems. For the optical properties, the aqueous oxidation products generated under different reaction conditions all exhibited photo-enhancement upon illumination by simulated sunlight, and the light absorption was wavelength dependent on and increased as a function of the reaction time. The oxygen-to-carbon (O/C) ratio of the products also gradually increased against the irradiation time, indicating the persistent formation of highly oxygenated low-volatility products throughout the aging process. More importantly, aqueous-phase products from photochemical oxidation had an increased oxidative potential (OP) compared with its precursor, indicating they may more adversely impact health. The findings in this work highlight the importance of aqueous-phase photochemical oxidation, with implications for aqueous SOA formation and impacts on both the chemical properties and health effects of OA.
Collapse
|