1
|
Chan CW, Yang Z, Gan Z, Zhang R. Interplay of chemotactic force, Péclet number, and dimensionality dictates the dynamics of auto-chemotactic chiral active droplets. J Chem Phys 2024; 161:014904. [PMID: 38953449 DOI: 10.1063/5.0207355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Zheng Yang
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Zecheng Gan
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Qu C, Geng Y, Ding Z, Li Y, Jiang H, Su M, Liu H. In Situ Spatiotemporal SERS Profiling of Bacterial Quorum Sensing by Hierarchical Hydrophobic Plasmonic Arrays in Agar Medium. Anal Chem 2024; 96:2396-2405. [PMID: 38305857 DOI: 10.1021/acs.analchem.3c04299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A feedback inhibition effect of high autoinducer levels on metabolite secretion in Chromobacterium subtsugae (C. subtsugae) was evidenced by in situ spatiotemporal surface-enhanced Raman spectroscopy (SERS) profiling. The hierarchical hydrophobic plasmonic array in agar medium is structured by oil/water/oil (OL/W/OH) triphasic interfacial self-assembly. The hydrophobic layer acts as a "door curtain" to selectively permit adsorption of a quorum sensing (QS)-regulated fat-soluble metabolite, i.e., violacein (Vio), and significantly blocks nonspecific adsorption of water-soluble proteins, etc. The SERS profiling clearly evidences that the diffusion of N-hexanoyl-l-homoserine lactone (C6-HSL) in agar medium quickly triggers the initial synthesis of Vio in C. subtsugae CV026 but surprisingly inhibits the intrinsic synthesis of Vio in C. subtsugae ATCC31532. The latter negative response might be related to the VioS repressor of ATCC31532, which negatively controls violacein production without influencing the expression of the CviI/R QS system. Moreover, two sender-receiver systems are constructed by separately coculturing CV026 or ATCC31532 with Hafnia alvei H4 that secretes large amounts of C6-HSL. Expectedly, the cocultivation similarly triggers the initial synthesis of Vio in CV026 but seems to have a quite weak negative effect on the intrinsic synthesis in ATCC31532. In fact, the negative regulation in ATCC31532 might be affected by a diffusion-dependent concentration effect. The H4 growth and its secretion of C6-HSL are a slow and continuous process, thereby avoiding the gathering of local high concentrations. Overall, our study put forward an in situ SERS strategy as an alternative to traditional bioluminescent tools for highly sensitively analyzing the spatiotemporal communication and cooperation in live microbial colonies.
Collapse
Affiliation(s)
- Cheng Qu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yuchuang Geng
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhongxiang Ding
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yuzhu Li
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hao Jiang
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Mengke Su
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| | - Honglin Liu
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
3
|
Scheidweiler D, Bordoloi AD, Jiao W, Sentchilo V, Bollani M, Chhun A, Engel P, de Anna P. Spatial structure, chemotaxis and quorum sensing shape bacterial biomass accumulation in complex porous media. Nat Commun 2024; 15:191. [PMID: 38167276 PMCID: PMC10761857 DOI: 10.1038/s41467-023-44267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Biological tissues, sediments, or engineered systems are spatially structured media with a tortuous and porous structure that host the flow of fluids. Such complex environments can influence the spatial and temporal colonization patterns of bacteria by controlling the transport of individual bacterial cells, the availability of resources, and the distribution of chemical signals for communication. Yet, due to the multi-scale structure of these complex systems, it is hard to assess how different biotic and abiotic properties work together to control the accumulation of bacterial biomass. Here, we explore how flow-mediated interactions allow the gut commensal Escherichia coli to colonize a porous structure that is composed of heterogenous dead-end pores (DEPs) and connecting percolating channels, i.e. transmitting pores (TPs), mimicking the structured surface of mammalian guts. We find that in presence of flow, gradients of the quorum sensing (QS) signaling molecule autoinducer-2 (AI-2) promote E. coli chemotactic accumulation in the DEPs. In this crowded environment, the combination of growth and cell-to-cell collision favors the development of suspended bacterial aggregates. This results in hot-spots of resource consumption, which, upon resource limitation, triggers the mechanical evasion of biomass from nutrients and oxygen depleted DEPs. Our findings demonstrate that microscale medium structure and complex flow coupled with bacterial quorum sensing and chemotaxis control the heterogenous accumulation of bacterial biomass in a spatially structured environment, such as villi and crypts in the gut or in tortuous pores within soil and filters.
Collapse
Affiliation(s)
- David Scheidweiler
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Ankur Deep Bordoloi
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Wenqiao Jiao
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | | | - Audam Chhun
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Pietro de Anna
- Institute of Earth Sciences, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
4
|
Jung H. A pore-scale reactive transport modeling study for quorum sensing-driven biofilm dispersal in heterogeneous porous media. Math Biosci 2024; 367:109126. [PMID: 38070765 DOI: 10.1016/j.mbs.2023.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Microorganisms regulate the expression of energetically expensive phenotypes via a collective decision-making mechanism known as quorum sensing (QS). This study investigates the intricate dynamics of biofilm growth and QS-controlled biofilm dispersal in heterogeneous porous media, employing a pore-scale reactive transport modeling approach. Model simulations carried out under various fluid flow conditions and biofilm growth scenarios reveal that QS processes are influenced not only by the biomass density of biofilm colonies but also by a complex interplay between pore architecture, flow velocity, and the rates of biofilm growth and dispersal. This study demonstrates that pore architecture controls the initiation of QS processes and advection gives rise to oscillatory growth of biofilms. Such oscillation is suppressed if biofilm dynamics are in favor of sustaining a sufficiently high signal concentration, such as fast growth or slow dispersal rates. By establishing a mathematical framework, this study contributes to the fundamental understanding of QS-controlled biofilm dynamics in complex environments.
Collapse
Affiliation(s)
- Heewon Jung
- Department of Geological Sciences, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
5
|
Pai L, Patil S, Liu S, Wen F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol 2023; 13:1327069. [PMID: 38188636 PMCID: PMC10770264 DOI: 10.3389/fcimb.2023.1327069] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Biofilms are a common survival strategy employed by bacteria in healthcare settings, which enhances their resistance to antimicrobial and biocidal agents making infections difficult to treat. Mechanisms of biofilm-induced antimicrobial resistance involve reduced penetration of antimicrobial agents, increased expression of efflux pumps, altered microbial physiology, and genetic changes in the bacterial population. Factors contributing to the formation of biofilms include nutrient availability, temperature, pH, surface properties, and microbial interactions. Biofilm-associated infections can have serious consequences for patient outcomes, and standard antimicrobial therapies are often ineffective against biofilm-associated bacteria, making diagnosis and treatment challenging. Novel strategies, including antibiotics combination therapies (such as daptomycin and vancomycin, colistin and azithromycin), biofilm-targeted agents (such as small molecules (LP3134, LP3145, LP4010, LP1062) target c-di-GMP), and immunomodulatory therapies (such as the anti-PcrV IgY antibodies which target Type IIIsecretion system), are being developed to combat biofilm-induced antimicrobial resistance. A multifaceted approach to diagnosis, treatment, and prevention is necessary to address this emerging problem in healthcare settings.
Collapse
Affiliation(s)
- Liu Pai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
6
|
Ridgway WJM, Dalwadi MP, Pearce P, Chapman SJ. Motility-Induced Phase Separation Mediated by Bacterial Quorum Sensing. PHYSICAL REVIEW LETTERS 2023; 131:228302. [PMID: 38101339 DOI: 10.1103/physrevlett.131.228302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023]
Abstract
We study motility-induced phase separation (MIPS) in living active matter, in which cells interact through chemical signaling, or quorum sensing. In contrast to previous theories of MIPS, our multiscale continuum model accounts explicitly for genetic regulation of signal production and motility. Through analysis and simulations, we derive a new criterion for the onset of MIPS that depends on features of the genetic network. Furthermore, we identify and characterize a new type of oscillatory instability that occurs when gene regulation inside cells promotes motility in higher signal concentrations.
Collapse
Affiliation(s)
- Wesley J M Ridgway
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Mohit P Dalwadi
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Department of Mathematics, University College London, London WC1H 0AY, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Philip Pearce
- Department of Mathematics, University College London, London WC1H 0AY, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - S Jonathan Chapman
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
7
|
Winkle JJ, Saha S, Essman J, Bennett MR, Ott W, Josić K, Mugler A. Signaling in microbial communities with open boundaries. Biophys J 2023; 122:2808-2817. [PMID: 37300250 PMCID: PMC10397789 DOI: 10.1016/j.bpj.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023] Open
Abstract
Microbial communities such as swarms or biofilms often form at the interfaces of solid substrates and open fluid flows. At the same time, in laboratory environments these communities are commonly studied using microfluidic devices with media flows and open boundaries. Extracellular signaling within these communities is therefore subject to different constraints than signaling within classic, closed-boundary systems such as developing embryos or tissues, yet is understudied by comparison. Here, we use mathematical modeling to show how advective-diffusive boundary flows and population geometry impact cell-cell signaling in monolayer microbial communities. We reveal conditions where the intercellular signaling lengthscale depends solely on the population geometry and not on diffusion or degradation, as commonly expected. We further demonstrate that diffusive coupling with the boundary flow can produce signal gradients within an isogenic population, even when there is no flow within the population. We use our theory to provide new insights into the signaling mechanisms of published experimental results, and we make several experimentally verifiable predictions. Our research highlights the importance of carefully evaluating boundary dynamics and environmental geometry when modeling microbial cell-cell signaling and informs the study of cell behaviors in both natural and synthetic systems.
Collapse
Affiliation(s)
- James J Winkle
- Department of Mathematics, University of Houston, Houston, Texas
| | - Soutick Saha
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana
| | - Joseph Essman
- Department of BioSciences, Rice University, Houston, Texas
| | | | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas.
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas; Department of BioSciences, Rice University, Houston, Texas; Department of Biology and Biochemistry, University of Houston, Houston, Texas.
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
8
|
Abstract
Bacteria thrive in environments rich in fluid flow, such as the gastrointestinal tract, bloodstream, aquatic systems, and the urinary tract. Despite the importance of flow, how flow affects bacterial life is underappreciated. In recent years, the combination of approaches from biology, physics, and engineering has led to a deeper understanding of how bacteria interact with flow. Here, we highlight the wide range of bacterial responses to flow, including changes in surface adhesion, motility, surface colonization, quorum sensing, virulence factor production, and gene expression. To emphasize the diversity of flow responses, we focus our review on how flow affects four ecologically distinct bacterial species: Escherichia coli, Staphylococcus aureus, Caulobacter crescentus, and Pseudomonas aeruginosa. Additionally, we present experimental approaches to precisely study bacteria in flow, discuss how only some flow responses are triggered by shear force, and provide perspective on flow-sensitive bacterial signaling.
Collapse
Affiliation(s)
- Gilberto C. Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alexander M. Shuppara
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica-Jae S. Palalay
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Anuradha Sharma
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Joseph E. Sanfilippo
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Dalwadi MP, Pearce P. Universal dynamics of biological pattern formation in spatio-temporal morphogen variations. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
In biological systems, chemical signals termed morphogens self-organize into patterns that are vital for many physiological processes. As observed by Turing in 1952, these patterns are in a state of continual development, and are usually transitioning from one pattern into another. How do cells robustly decode these spatio-temporal patterns into signals in the presence of confounding effects caused by unpredictable or heterogeneous environments? Here, we answer this question by developing a general theory of pattern formation in spatio-temporal variations of ‘pre-pattern’ morphogens, which determine gene-regulatory network parameters. Through mathematical analysis, we identify universal dynamical regimes that apply to wide classes of biological systems. We apply our theory to two paradigmatic pattern-forming systems, and predict that they are robust with respect to non-physiological morphogen variations. More broadly, our theoretical framework provides a general approach to classify the emergent dynamics of pattern-forming systems based on how the bifurcations in their governing equations are traversed.
Collapse
|
10
|
Rasheed A, Hegde O, Chatterjee R, Sampathirao SR, Chakravortty D, Basu S. Physics of self-assembly and morpho-topological changes of Klebsiella pneumoniae in desiccating sessile droplets. J Colloid Interface Sci 2023; 629:620-631. [PMID: 36183643 DOI: 10.1016/j.jcis.2022.09.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The bacteria suspended in pure water self-assemble into unique patterns depending on bacteria-bacteria, bacteria-substrate and bacteria-liquid interactions. The physical forces acting on bacteria vary based on their respective spatial location inside the droplet cause an assorted magnitude of physical stress. The shear and dehydration induced stress on pathogens(bacteria) in drying bio-fluid droplets alters the viability and infectivity. EXPERIMENTS We have investigated the flow and desiccation-driven self-assembly of Klebsiella pneumoniae in the naturally evaporating sessile droplets. Klebsiella pneumoniae exhibits extensive changes in its morphology and forms unique patterns as the droplet dries, revealing hitherto unexplored rich physics governing its survival and infection strategies. Self-assembly of bacteria at the droplet contact line is characterized by order-to-disorder packing transitions with high packing densities and excessive deformations (analysed using scanning electron microscopy and atomic force microscopy). In contrast, thin-film instability-led hole formation at the center of the droplet engenders spatial packing of bacteria analogous to honeycomb weathering. FINDINGS Self-assembly favors the bacteria at the rim of the droplet, leading to enhanced viability and pathogenesis on the famously known "coffee ring" of the droplet compared to the bacteria present at the center of the droplet residue. Mechanistic insights gained via our study can have far-reaching implications for bacterial infection through droplets, e.g., through open wounds.
Collapse
Affiliation(s)
- Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
11
|
Sang Y, Wen X, He Y. Single‐cell/nanoparticle trajectories reveal two‐tier Lévy‐like interactions across bacterial swarms. VIEW 2022. [DOI: 10.1002/viw.20220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuqian Sang
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| | - Xiaodong Wen
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| | - Yan He
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| |
Collapse
|
12
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
13
|
Quorum Sensing and Quorum Quenching with a Focus on Cariogenic and Periodontopathic Oral Biofilms. Microorganisms 2022; 10:microorganisms10091783. [PMID: 36144385 PMCID: PMC9503171 DOI: 10.3390/microorganisms10091783] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Numerous in vitro studies highlight the role of quorum sensing in the pathogenicity and virulence of biofilms. This narrative review discusses general principles in quorum sensing, including Gram-positive and Gram-negative models and the influence of flow, before focusing on quorum sensing and quorum quenching in cariogenic and periodontopathic biofilms. In cariology, quorum sensing centres on the role of Streptococcus mutans, and to a lesser extent Candida albicans, while Fusobacterium nucleatum and the red complex pathogens form the basis of the majority of the quorum sensing research on periodontopathic biofilms. Recent research highlights developments in quorum quenching, also known as quorum sensing inhibition, as a potential antimicrobial tool to attenuate the pathogenicity of oral biofilms by the inhibition of bacterial signalling networks. Quorum quenchers may be synthetic or derived from plant or bacterial products, or human saliva. Furthermore, biofilm inhibition by coating quorum sensing inhibitors on dental implant surfaces provides another potential application of quorum quenching technologies in dentistry. While the body of predominantly in vitro research presented here is steadily growing, the clinical value of quorum sensing inhibitors against in vivo oral polymicrobial biofilms needs to be ascertained.
Collapse
|
14
|
Nguyen AV, Shourabi AY, Yaghoobi M, Zhang S, Simpson KW, Abbaspourrad A. A high-throughput integrated biofilm-on-a-chip platform for the investigation of combinatory physicochemical responses to chemical and fluid shear stress. PLoS One 2022; 17:e0272294. [PMID: 35960726 PMCID: PMC9374262 DOI: 10.1371/journal.pone.0272294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/19/2022] Open
Abstract
Physicochemical conditions play a key role in the development of biofilm removal strategies. This study presents an integrated, double-layer, high-throughput microfluidic chip for real-time screening of the combined effect of antibiotic concentration and fluid shear stress (FSS) on biofilms. Biofilms of Escherichia coli LF82 and Pseudomonas aeruginosa were tested against gentamicin and streptomycin to examine the time dependent effects of concentration and FSS on the integrity of the biofilm. A MatLab image analysis method was developed to measure the bacterial surface coverage and total fluorescent intensity of the biofilms before and after each treatment. The chip consists of two layers. The top layer contains the concentration gradient generator (CGG) capable of diluting the input drug linearly into four concentrations. The bottom layer contains four expanding FSS chambers imposing three different FSSs on cultured biofilms. As a result, 12 combinatorial states of concentration and FSS can be investigated on the biofilm simultaneously. Our proof-of-concept study revealed that the reduction of E. coli biofilms was directly dependent upon both antibacterial dose and shear intensity, whereas the P. aeruginosa biofilms were not impacted as significantly. This confirmed that the effectiveness of biofilm removal is dependent on bacterial species and the environment. Our experimental system could be used to investigate the physicochemical responses of other biofilms or to assess the effectiveness of biofilm removal methods.
Collapse
Affiliation(s)
- Ann V. Nguyen
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Arash Yahyazadeh Shourabi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Mohammad Yaghoobi
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Shiying Zhang
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Kenneth W. Simpson
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Abstract
A substantial portion of molecules in an organism are involved in regulation of a wide spectrum of biological processes. Several models have been presented for various forms of biological regulation, including gene expression regulation and physiological regulation; however, a generic model is missing. Recently a new unifying theory in biology, poikilosis, was presented. Poikilosis indicates that all systems display intrinsic heterogeneity, which is a normal state. The concept of poikilosis allowed development of a model for biological regulation applicable to all types of regulated systems. The perturbation-lagom-TATAR countermeasures-regulator (PLTR) model combines the effects of perturbation and lagom (allowed and sufficient extent of heterogeneity) in a system with tolerance, avoidance, repair, attenuation and resistance (TARAR) countermeasures, and possible regulators. There are three modes of regulation, two of which are lagom-related. In the first scenario, lagom is maintained, both intrinsic (passive) and active TARAR countermeasures can be involved. In the second mode, there is a shift from one lagom to another. In the third mode, reguland regulation, the regulated entity is the target of a regulatory shift, which is often irreversible or requires action of another regulator to return to original state. After the shift, the system enters to lagom maintenance mode, but at new lagom extent. The model is described and elaborated with examples and applications, including medicine and systems biology. Consequences of non-lagom extent of heterogeneity are introduced, along with a novel idea for therapy by reconstituting biological processes to lagom extent, even when the primary effect cannot be treated.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, Lund, SE-221 84, Sweden
| |
Collapse
|
16
|
Abstract
A substantial portion of molecules in an organism are involved in regulation of a wide spectrum of biological processes. Several models have been presented for various forms of biological regulation, including gene expression regulation and physiological regulation; however, a generic model is missing. Recently a new unifying theory in biology, poikilosis, was presented. Poikilosis indicates that all systems display intrinsic heterogeneity. The concept of poikilosis allowed development of a model for biological regulation applicable to all types of regulated systems. The perturbation-lagom-TATAR countermeasures-regulator (PLTR) model combines the effects of perturbation and lagom (allowed and sufficient extent of heterogeneity) in a system with tolerance, avoidance, repair, attenuation and resistance (TARAR) countermeasures, and possible regulators. There are three modes of regulation, two of which are lagom-related. In the first scenario, lagom is maintained, both intrinsic (passive) and active TARAR countermeasures can be involved. In the second mode, there is a shift from one lagom to another. In the third mode, reguland regulation, the regulated entity is the target of a regulatory shift, which is often irreversible or requires action of another regulator to return to original state. After the shift, the system enters to lagom maintenance mode, but at new lagom extent. The model is described and elaborated with examples and applications, including medicine and systems biology. Consequences of non-lagom extent of heterogeneity are introduced, along with a novel idea for therapy by reconstituting biological processes to lagom extent, even when the primary effect cannot be treated.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, BMC B13, Lund, SE-221 84, Sweden
| |
Collapse
|
17
|
Tam AKY, Harding B, Green JEF, Balasuriya S, Binder BJ. Thin-film lubrication model for biofilm expansion under strong adhesion. Phys Rev E 2022; 105:014408. [PMID: 35193209 DOI: 10.1103/physreve.105.014408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Understanding microbial biofilm growth is important to public health because biofilms are a leading cause of persistent clinical infections. In this paper, we develop a thin-film model for microbial biofilm growth on a solid substratum to which it adheres strongly. We model biofilms as two-phase viscous fluid mixtures of living cells and extracellular fluid. The model explicitly tracks the movement, depletion, and uptake of nutrients and incorporates cell proliferation via a nutrient-dependent source term. Notably, our thin-film reduction is two dimensional and includes the vertical dependence of cell volume fraction. Numerical solutions show that this vertical dependence is weak for biologically feasible parameters, reinforcing results from previous models in which this dependence was neglected. We exploit this weak dependence by writing and solving a simplified one-dimensional model that is computationally more efficient than the full model. We use both the one- and two-dimensional models to predict how model parameters affect expansion speed and biofilm thickness. This analysis reveals that expansion speed depends on cell proliferation, nutrient availability, cell-cell adhesion on the upper surface, and slip on the biofilm-substratum interface. Our numerical solutions provide a means to qualitatively distinguish between the extensional flow and lubrication regimes, and quantitative predictions that can be tested in future experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Queensland 4000, Australia
- School of Mathematics and Physics, The University of Queensland, St. Lucia Queensland 4072, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Brendan Harding
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - J Edward F Green
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Sanjeeva Balasuriya
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| | - Benjamin J Binder
- School of Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
18
|
Shklyaev OE, Balazs AC. Resonant amplification of enzymatic chemical oscillations by oscillating flow. CHAOS (WOODBURY, N.Y.) 2021; 31:093125. [PMID: 34598455 DOI: 10.1063/5.0061927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Using theory and simulation, we analyzed the resonant amplification of chemical oscillations that occur due to externally imposed oscillatory fluid flows. The chemical reactions are promoted by two enzyme-coated patches located sequentially on the inner surface of a pipe that transports the enclosed chemical solution. In the case of diffusion-limited systems, the period of oscillations in chemical reaction networks is determined by the rate of the chemical transport, which is diffusive in nature and, therefore, can be effectively accelerated by the imposed fluid flows. We first identify the natural frequencies of the chemical oscillations in the unperturbed reaction-diffusion system and, then, use the frequencies as a forcing input to drive the system to resonance. We demonstrate that flow-induced resonance can be used to amplify the amplitude of the chemical oscillations and to synchronize their frequency to the external forcing. In particular, we show that even 10% perturbations in the flow velocities can double the amplitude of the resulting chemical oscillations. Particularly, effective control can be achieved for the two-step chemical reactions where during the first half-period, the fluid flow accelerates the chemical flux toward the second catalytic patch, while during the second half-period, the flow amplifies the flux to the first patch. The results can provide design rules for regulating the dynamics of coupled reaction-diffusion processes and can facilitate the development of chemical reaction networks that act as chemical clocks.
Collapse
Affiliation(s)
- Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
19
|
Winkle JJ, Karamched BR, Bennett MR, Ott W, Josić K. Emergent spatiotemporal population dynamics with cell-length control of synthetic microbial consortia. PLoS Comput Biol 2021; 17:e1009381. [PMID: 34550968 PMCID: PMC8489724 DOI: 10.1371/journal.pcbi.1009381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain's division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains-but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology.
Collapse
Affiliation(s)
- James J Winkle
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew R Bennett
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
20
|
Lattice Boltzmann Method in Modeling Biofilm Formation, Growth and Detachment. SUSTAINABILITY 2021. [DOI: 10.3390/su13147968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biofilms are a complex and heterogeneous aggregation of multiple populations of microorganisms linked together by their excretion of extracellular polymer substances (EPS). Biofilms can cause many serious problems, such as chronic infections, food contamination and equipment corrosion, although they can be useful for constructive purposes, such as in wastewater treatment, heavy metal removal from hazardous waste sites, biofuel production, power generation through microbial fuel cells and microbially enhanced oil recovery; however, biofilm formation and growth are complex due to interactions among physicochemical and biological processes under operational and environmental conditions. Advanced numerical modeling techniques using the lattice Boltzmann method (LBM) are enabling the prediction of biofilm formation and growth and microbial community structures. This study is the first attempt to perform a general review on major contributions to LBM-based biofilm models, ranging from pioneering efforts to more recent progress. We present our understanding of the modeling of biofilm formation, growth and detachment using LBM-based models and present the fundamental aspects of various LBM-based biofilm models. We describe how the LBM couples with cellular automata (CA) and individual-based model (IbM) approaches and discuss their applications in assessing the spatiotemporal distribution of biofilms and their associated parameters and evaluating bioconversion efficiency. Finally, we discuss the main features and drawbacks of LBM-based biofilm models from ecological and biotechnological perspectives and identify current knowledge gaps and future research priorities.
Collapse
|