1
|
Peguero-Sanchez E, Pardo-Lopez L, Merino E. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association. BMC Genomics 2015; 16:1059. [PMID: 26666532 PMCID: PMC4678720 DOI: 10.1186/s12864-015-2266-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/01/2015] [Indexed: 01/17/2023] Open
Abstract
Background The initiation of translation via cellular internal ribosome entry sites plays an important role in the stress response and certain physiological conditions in which canonical cap-dependent translation initiation is compromised. Currently, only a limited number of these regulatory elements have been experimentally identified. Notably, cellular internal ribosome entry sites lack conservation of both the primary sequence and mRNA secondary structure, rendering their identification difficult. Despite their biological importance, the currently available computational strategies to predict them have had limited success. We developed a bioinformatic method based on a support vector machine for the prediction of internal ribosome entry sites in fungi using the 5’-UTR sequences of 20 non-redundant fungal organisms. Additionally, we performed a comparative analysis and characterization of the functional relationships among the gene products predicted to be translated by this cap-independent mechanism. Results Using our method, we predicted 6,532 internal ribosome entry sites in 20 non-redundant fungal organisms. Some orthologous groups were enriched with our positive predictions. This is the case of the HSP70 chaperone family, which remarkably has two verified internal ribosome entry sites, one in humans and the other in flies. A second example is the orthologous group of the eIF4G repression protein Sbp1p, which has two homologous genes known to be translated by this cap-independent mechanism, one in mice and the other in yeast. These examples emphasize the wide conservation of these regulatory elements as a result of selective pressure. In addition, we performed a protein-protein interaction network characterization of the gene products of our positive predictions using Saccharomyces cerevisiae as a model, which revealed a highly connected and modular topology, suggesting a functional association. A remarkable example of this functional association is our prediction of internal ribosome entry sites elements in three components of the RNA polymerase II mediator complex. Conclusions We developed a method for the prediction of cellular internal ribosome entry sites that may guide experimental and bioinformatic analyses to increase our understanding of protein translation regulation. Our analysis suggests that fungi show evolutionary conservation and functional association of proteins translated by this cap-independent mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2266-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esteban Peguero-Sanchez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Liliana Pardo-Lopez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Cuernavaca, Morelos, CP 62210, Mexico.
| |
Collapse
|
2
|
Berens TJ, Toczyski DP. Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell 2012; 23:1058-67. [PMID: 22298423 PMCID: PMC3302733 DOI: 10.1091/mbc.e11-10-0852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the DNA damage checkpoint, the sensor kinase Mec1 must be activated by Ddc1 or Dpb11. However, Ddc1 and Dpb11 are dispensable for the related replication checkpoint. Instead, colocalization of Mec1 and the replisome component Mrc1 is the minimal signal required to activate the replication checkpoint and allow survival of replication stress. When DNA is damaged or DNA replication goes awry, cells activate checkpoints to allow time for damage to be repaired and replication to complete. In Saccharomyces cerevisiae, the DNA damage checkpoint, which responds to lesions such as double-strand breaks, is activated when the lesion promotes the association of the sensor kinase Mec1 and its targeting subunit Ddc2 with its activators Ddc1 (a member of the 9-1-1 complex) and Dpb11. It has been more difficult to determine what role these Mec1 activators play in the replication checkpoint, which recognizes stalled replication forks, since Dpb11 has a separate role in DNA replication itself. Therefore we constructed an in vivo replication-checkpoint mimic that recapitulates Mec1-dependent phosphorylation of the effector kinase Rad53, a crucial step in checkpoint activation. In the endogenous replication checkpoint, Mec1 phosphorylation of Rad53 requires Mrc1, a replisome component. The replication-checkpoint mimic requires colocalization of Mrc1-LacI and Ddc2-LacI and is independent of both Ddc1 and Dpb11. We show that these activators are also dispensable for Mec1 activity and cell survival in the endogenous replication checkpoint but that Ddc1 is absolutely required in the absence of Mrc1. We propose that colocalization of Mrc1 and Mec1 is the minimal signal required to activate the replication checkpoint.
Collapse
Affiliation(s)
- Theresa J Berens
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
3
|
Navadgi-Patil VM, Burgers PM. The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. Mol Cell 2010; 36:743-53. [PMID: 20005839 DOI: 10.1016/j.molcel.2009.10.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/11/2009] [Accepted: 09/23/2009] [Indexed: 12/26/2022]
Abstract
DNA damage checkpoint pathways operate to prevent cell-cycle progression in response to DNA damage and replication stress. In S. cerevisiae, Mec1-Ddc2 (human ATR-ATRIP) is the principal checkpoint protein kinase. Biochemical studies have identified two factors, the 9-1-1 checkpoint clamp and the Dpb11/TopBP1 replication protein, as potential activators of Mec1/ATR. Here, we show that G1 phase checkpoint activation of Mec1 is achieved by the Ddc1 subunit of 9-1-1, while Dpb11 is dispensable. However, in G2, 9-1-1 activates Mec1 by two distinct mechanisms. One mechanism involves direct activation of Mec1 by Ddc1, while the second proceeds by Dpb11 recruitment mediated through Ddc1 T602 phosphorylation. Two aromatic residues, W352 and W544, localized to two widely separated, conserved motifs of Ddc1, are essential for Mec1 activation in vitro and checkpoint function in G1. Remarkably, small peptides that fuse the two tryptophan-containing motifs together are proficient in activating Mec1.
Collapse
Affiliation(s)
- Vasundhara M Navadgi-Patil
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
4
|
Abstract
In response to even a single chromosomal double-strand DNA break, cells enact the DNA damage checkpoint. This checkpoint triggers cell cycle arrest, providing time for the cell to repair damaged chromosomes before entering mitosis. This mechanism helps prevent the segregation of damaged or mutated chromosomes and thus promotes genomic stability. Recent work has elucidated the molecular mechanisms underlying several critical steps in checkpoint activation, notably the recruitment of the upstream checkpoint kinases of the ATM and ATR families to different damaged DNA structures and the molecular events through which these kinases activate their effectors. Chromatin modification has emerged as one important component of checkpoint activation and maintenance. Following DNA repair, the checkpoint pathway is inactivated in a process termed recovery. A related but genetically distinct process, adaptation, controls cell cycle re-entry in the face of unrepairable damage.
Collapse
Affiliation(s)
- Jacob C Harrison
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02445, USA.
| | | |
Collapse
|
5
|
Grenon M, Magill CP, Lowndes NF, Jackson SP. Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Res 2006; 6:836-47. [PMID: 16879433 DOI: 10.1111/j.1567-1364.2006.00076.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Together with the Tel1 PI3 kinase, the Mre11/Rad50/Xrs2 (MRX) complex is involved in checkpoint activation in response to double-strand breaks (DSBs), a function also conserved in human cells by Mre11/Rad50/Nbs1 acting with ATM. It has been proposed that the yeast Tel1/MRX pathway is activated in the presence of DSBs that cannot be resected. The Mec1 PI3 kinase, by contrast, would be involved in detecting breaks that can be processed. The significance of a Mec1/MRX DSB-activated DNA damage checkpoint has yet to be reported. To understand whether the MRX complex works specifically with Tel1 or Mec1, we investigated MRX function in checkpoint activation in response to endonuclease-induced DSBs in synchronized cells. We found that the expression of EcoRI activated the G1 and intra-S phase checkpoints in a MRX- and Mec1-dependent, but Tel1-independent manner. The pathways identified here are therefore different from the Tel1/MRX pathway that was previously reported. Thus, our results demonstrate that MRX can function in concert with both Mec1 and Tel1 PI3K-like kinases to trigger checkpoint activation in response to DSBs. Importantly, we also describe a novel MRX-independent checkpoint that is activated in late S-phase when cells replicate their DNA in the presence of DSBs. The existence of this novel mode of checkpoint activation explains why several previous studies had reported that mutations in the MRX complex did not abrogate DSB-induced checkpoint activation in asynchronous cells.
Collapse
Affiliation(s)
- Muriel Grenon
- Wellcome Trust and Cancer Research UK Gurdon Institute, Cambridge UK.
| | | | | | | |
Collapse
|
6
|
Chakhparonian M, Faucher D, Wellinger RJ. A mutation in yeast Tel1p that causes differential effects on the DNA damage checkpoint and telomere maintenance. Curr Genet 2005; 48:310-22. [PMID: 16228207 DOI: 10.1007/s00294-005-0020-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 08/02/2005] [Accepted: 08/17/2005] [Indexed: 11/26/2022]
Abstract
ATM/ATR homologs are the central elements of genome surveillance mechanisms in many organisms, including yeasts, flies, and mammals. In Saccharomyces cerevisiae, most checkpoint responses depend on the ATR ortholog Mec1p. The yeast ATM ortholog, Tel1p, so far has been implicated in a specific DNA damage checkpoint during S-phase as well as in telomere homeostasis. In particular, yeast cells lacking only Tel1p harbor short but stable telomeres, while cells lacking both Tel1p and Mec1p are unable to maintain telomeric repeats and senesce. Here, we present the characterization of a new mutation in the TEL1-gene, called tel1-11, which was isolated by virtue of a synthetic lethal interaction at 37 degrees C with a previously described mec1-ts mutation. Interestingly, telomere and checkpoint functions are differentially affected by the mutant protein Tel1-11p. The Tel1p-dependent checkpoint response is undetectable in cells containing Tel1-11p and incubated at 37 degrees C, but basic telomere function is maintained. Further, when the same cells are incubated at 26 degrees C, Tel1-11p confers full proficiency for all telomere functions analyzed, whereas the function for DNA-damage checkpoint activation is clearly affected. The results thus strongly suggest that the different cellular pathways affected by Tel1p do not require the same level of Tel1p activity to be fully functional.
Collapse
Affiliation(s)
- Mikhail Chakhparonian
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke, QC, J1H 5N4, Canada
| | | | | |
Collapse
|
7
|
Giannattasio M, Lazzaro F, Siede W, Nunes E, Plevani P, Muzi-Falconi M. DNA decay and limited Rad53 activation after liquid holding of UV-treated nucleotide excision repair deficient S. cerevisiae cells. DNA Repair (Amst) 2005; 3:1591-9. [PMID: 15474420 DOI: 10.1016/j.dnarep.2004.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 06/15/2004] [Indexed: 11/25/2022]
Abstract
The DNA damage checkpoint is a surveillance mechanism activated by DNA lesions and devoted to the maintenance of genome stability. It is considered as a signal transduction cascade, involving a sensing step, the activation of a set of protein kinases and the transmission and amplification of the damage signal through several phosphorylation events. In budding yeast many players of this pathway have been identified. Recent work showed that G1 and G2 checkpoint activation in response to UV irradiation requires prior recognition and processing of UV lesions by nucleotide excision repair (NER) factors that likely recruit checkpoint proteins near the damage. However, another report suggested that NER was not required for checkpoint function. Since the functional relationship between repair mechanisms and checkpoint activation is a very important issue in the field, we analyzed, under different experimental conditions, whether lesion processing by NER is required for checkpoint activation. We found that DNA damage checkpoint can be triggered in an NER-independent manner only if cells are subjected to liquid holding after UV treatment. This incubation causes a time-dependent breakage of DNA strands in NER-deficient cells and leads to partial activation of the checkpoint kinase. The analysis of the genetic requirements for this alternative activation pathway suggest that it requires Mec1 and the Rad17 complex and that the observed DNA breaks are likely to be due to spontaneous decay of damaged DNA.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Clerici M, Baldo V, Mantiero D, Lottersberger F, Lucchini G, Longhese MP. A Tel1/MRX-dependent checkpoint inhibits the metaphase-to-anaphase transition after UV irradiation in the absence of Mec1. Mol Cell Biol 2004; 24:10126-44. [PMID: 15542824 PMCID: PMC529042 DOI: 10.1128/mcb.24.23.10126-10144.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2004] [Revised: 08/10/2004] [Accepted: 09/07/2004] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.
Collapse
Affiliation(s)
- Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, P. zza della Scienza 2, 20126 Milan, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Wang X, Guan J, Hu B, Weiss RS, Iliakis G, Wang Y. Involvement of Hus1 in the chain elongation step of DNA replication after exposure to camptothecin or ionizing radiation. Nucleic Acids Res 2004; 32:767-75. [PMID: 14762204 PMCID: PMC373359 DOI: 10.1093/nar/gkh243] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 12/23/2003] [Accepted: 12/23/2003] [Indexed: 11/12/2022] Open
Abstract
DNA damage-induced S phase (S) checkpoint includes inhibition of both replicon initiation and chain elongation. The precise mechanism for controlling the two processes remains unclear. In this study, we showed that Hus1-deficient mouse cells had an impaired S checkpoint after exposure to DNA strand break-inducing agents such as camptothecin (CPT) (>or=1.0 micro M), or ionizing radiation (IR) (>or=15 Gy). The Hus1-dependent S checkpoint contributes to cell resistance to CPT. This impaired S checkpoint induced by CPT or IR in Hus1-deficient cells reflected mainly the chain elongation step of DNA replication and was correlated with the reduction of dissociation of PCNA from DNA replication foci. Although Hus1 is required for Rad9 phosphorylation following exposure of cells to CPT or IR, Hus1-deficient cells showed normal activation of ATR/CHK1 and ATM kinases at doses where the checkpoint defects were manifested, suggesting that Hus1 is not a component of the sensor system for activating these pathways in S checkpoint induced by CPT or IR.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
10
|
Giannattasio M, Lazzaro F, Longhese MP, Plevani P, Muzi-Falconi M. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J 2004; 23:429-38. [PMID: 14726955 PMCID: PMC1271758 DOI: 10.1038/sj.emboj.7600051] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Accepted: 11/25/2003] [Indexed: 11/09/2022] Open
Abstract
The mechanisms used by checkpoints to identify DNA lesions are poorly understood and may involve the function of repair proteins. Looking for mutants specifically defective in activating the checkpoint following UV lesions, but proficient in the response to methyl methane sulfonate and double-strand breaks, we isolated cdu1-1, which is allelic to RAD14, the homolog of human XPA, involved in lesion recognition during nucleotide excision repair (NER). Rad14 was also isolated as a partner of the Ddc1 checkpoint protein in a two-hybrid screening, and physical interaction was proven by co-immunoprecipitation. We show that lesion recognition is not sufficient for checkpoint activation, but processing, carried out by repair factors, is required for recruiting checkpoint proteins to damaged DNA. Mutations affecting the core NER machinery abolish G1 and G2 checkpoint responses to UV, preventing activation of the Mec1 kinase and its binding to chromosomes. Conversely, elimination of transcription-coupled or global genome repair alone does not affect checkpoints, suggesting a possible interpretation for the heterogeneity in cancer susceptibility observed in different NER syndrome patients.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| | - Marco Muzi-Falconi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy. Tel.: +39 02 5031 5034; Fax: +39 02 5031 5044; E-mail:
| |
Collapse
|
11
|
Giannattasio M, Sabbioneda S, Minuzzo M, Plevani P, Muzi-Falconi M. Correlation between checkpoint activation and in vivo assembly of the yeast checkpoint complex Rad17-Mec3-Ddc1. J Biol Chem 2003; 278:22303-8. [PMID: 12672803 DOI: 10.1074/jbc.m301260200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad17-Mec3-Ddc1 forms a proliferating cell nuclear antigen-like complex that is required for the DNA damage response in Saccharomyces cerevisiae and acts at an early step of the signal transduction cascade activated by DNA lesions. We used the mec3-dn allele, which causes a dominant negative checkpoint defect in G1 but not in G2, to test the stability of the complex in vivo and to correlate its assembly and disassembly with the mechanisms controlling checkpoint activation. Under physiological conditions, the mutant complex is formed both in G1 and G2, although the mutant phenotype is detectable only in G1, suggesting that is not the presence of the mutant complex per se to cause a checkpoint defect. Our data indicate that the Rad17-Mec3-Ddc1 complex is very stable, and it takes several hours to replace Mec3 with Mec3-dn within a wild type complex. On the other hand, the mutant complex is rapidly assembled when starting from a condition where the complex is not pre-assembled, indicating that the critical factor for the substitution is the disassembly step rather than complex formation. Moreover, the kinetics of mutant complex assembly, starting from conditions in which the wild type form is present, parallels the kinetics of checkpoint inactivation, suggesting that the complex acts in a stoichiometric way, rather than catalytically.
Collapse
Affiliation(s)
- Michele Giannattasio
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|