1
|
Bekers E, van Bladel DAG, Berendsen MR, Eijkelenboom A, van Krieken JHJM, Ooft M, Ruijter E, Verhagen A, Flucke UE, Scheijen B. Detection of PRKAR1A gene mutations in sporadic cardiac myxomas: a study of 24 cases. Virchows Arch 2025; 486:511-519. [PMID: 39966109 PMCID: PMC11950028 DOI: 10.1007/s00428-025-04049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
The benign neoplasm cardiac myxoma represents one of the hallmarks of Carney complex (CNC), a familial multiple neoplasia syndrome. About 80% of the index cases have germline mutations in PRKAR1A encoding the RIα regulatory subunit of cAMP-dependent protein kinase A (PKA). However, the role of PRKAR1A gene mutations in the pathogenesis of non-CNC-associated sporadic cardiac myxoma is less well established. Here, we investigated the presence of PRKAR1A gene variants in a cohort of 24 sporadic cardiac myxomas using targeted next-generation sequencing. Our study shows that 14 out of 24 cases (58%) harbor PRKAR1A gene mutations, represented mostly by frameshift, nonsense, and splice site mutations (together 84%), leading to a premature stop codon predicted to be degraded via non-sense mediated mRNA decay. The other 16% of PRKAR1A genetic alterations involved missense mutations, often located in important functional domains of the regulatory subunit RIα. Notably, 64% (n = 9/14) of the cases harbored more than one PRKAR1A gene variant, suggesting compound heterozygous mutations either in cis or trans. In conclusion, PRKAR1A gene mutations associated with loss of RIα function leading to increased PKA activity were observed in ~ 60% of sporadic cardiac myxomas, strongly supporting an essential role for PKA in mediating formation of cardiac myxoma.
Collapse
Affiliation(s)
- Elise Bekers
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Diede A G van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Madeleine R Berendsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Astrid Eijkelenboom
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Han J M van Krieken
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc Ooft
- Pathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Emiel Ruijter
- Pathology-DNA, Rijnstate Hospital, Arnhem, The Netherlands
| | - Ad Verhagen
- Department of Cardio Thoracic Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Uta E Flucke
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Garcha J, Huang J, Martinez Pomier K, Melacini G. Amyloid-Driven Allostery. Biophys Chem 2024; 315:107320. [PMID: 39278064 DOI: 10.1016/j.bpc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
The fields of allostery and amyloid-related pathologies, such as Parkinson's disease (PD), have been extensively explored individually, but less is known about how amyloids control allostery. Recent advancements have revealed that amyloids can drive allosteric effects in both intrinsically disordered proteins, such as alpha-synuclein (αS), and multi-domain signaling proteins, such as protein kinase A (PKA). Amyloid-driven allostery plays a central role in explaining the mechanisms of gain-of-pathological-function mutations in αS (e.g. E46K, which causes early PD onset) and loss-of-physiological-function mutations in PKA (e.g. A211D, which predisposes to tumors). This review highlights allosteric effects of disease-related mutations and how they can cause exposure of amyloidogenic regions, leading to amyloids that are either toxic or cause aberrant signaling. We also discuss multiple potential modulators of these allosteric effects, such as MgATP and kinase substrates, opening future opportunities to improve current pharmacological interventions against αS and PKA-related pathologies. Overall, we show that amyloid-driven allosteric models are useful to explain the mechanisms underlying disease-related mutations.
Collapse
Affiliation(s)
- Jaskiran Garcha
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Karla Martinez Pomier
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
3
|
Benjamin-Zukerman T, Shimon G, Gaine ME, Dakwar A, Peled N, Aboraya M, Masri-Ismail A, Safadi-Safa R, Solomon M, Lev-Ram V, Rissman RA, Mayrhofer JE, Raffeiner A, Mol MO, Argue BMR, McCool S, Doan B, van Swieten J, Stefan E, Abel T, Ilouz R. A mutation in the PRKAR1B gene drives pathological mechanisms of neurodegeneration across species. Brain 2024; 147:3890-3905. [PMID: 38743596 PMCID: PMC11531844 DOI: 10.1093/brain/awae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Protein kinase A (PKA) neuronal function is controlled by the interaction of a regulatory (R) subunit dimer with two catalytic subunits. Recently, the L50R variant in the gene encoding the RIβ subunit was identified in individuals with a novel neurodegenerative disease. However, the mechanisms driving the disease phenotype remained unknown. In this study, we generated a mouse model carrying the RIβ-L50R mutation to replicate the human disease phenotype and study its progression with age. We examined post-mortem brains of affected individuals as well as live cell cultures. Employing biochemical assays, immunohistochemistry and behavioural assessments, we investigated the impact of the mutation on PKA complex assembly, protein aggregation and neuronal degeneration. We reveal that RIβ is an aggregation-prone protein that progressively accumulates in wildtype and Alzheimer's mouse models with age, while aggregation is accelerated in the RIβ-L50R mouse model. We define RIβ-L50R as a causal mutation driving an age-dependent behavioural and disease phenotype in human and mouse models. Mechanistically, this mutation disrupts RIβ dimerization, leading to aggregation of its monomers. Intriguingly, interaction with the catalytic subunit protects the RIβ-L50R from self-aggregating, in a dose-dependent manner. Furthermore, cAMP signaling induces RIβ-L50R aggregation. The pathophysiological mechanism elucidated here for a newly recognized neurodegenerative disease, in which protein aggregation is the result of disrupted homodimerization, sheds light on a remarkably under-appreciated but potentially common mechanism across several neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Gilat Shimon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Marie E Gaine
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Anwar Dakwar
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Netta Peled
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Mohammad Aboraya
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Ashar Masri-Ismail
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Rania Safadi-Safa
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Meir Solomon
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
| | - Varda Lev-Ram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert A Rissman
- Department of Physiology and Neurosciences, Alzheimer’s Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA 92121, USA
| | - Johanna E Mayrhofer
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Andrea Raffeiner
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Merel O Mol
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Benney M R Argue
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Shaylah McCool
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - Binh Doan
- Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, IA 52242, USA
| | - John van Swieten
- Department of Neurology and Alzheimer Center Erasmus MC, Erasmus University Medical Center, Rotterdam 3015 CE, The Netherlands
| | - Eduard Stefan
- Institute of Molecular Biology, Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Tyrol 6020, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Tyrol 6020, Austria
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Ronit Ilouz
- The Azrieli Faculty of Medicine, Bar Ilan University, Safed 1311502, Israel
- The Leslie & Susan Goldschmied (Gonda) Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002 Ramat-Gan, Israel
| |
Collapse
|
4
|
Zheng H, Kang H, Qiu Y, Xie L, Wu J, Lai P, Kang J. Novel PRKAR1A mutation in Carney complex: a case report and literature review. Front Endocrinol (Lausanne) 2024; 15:1384956. [PMID: 39050568 PMCID: PMC11266075 DOI: 10.3389/fendo.2024.1384956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Objective Carney complex is a rare autosomal dominant syndrome that has been shown to be associated with inactivation due to PRKAR1A mutations. We revealed a novel PRKAR1A gene mutation in Chinese patient with Carney complex and review the literature to enhance understanding of Carney complex. Case presentation A 23-year-old Chinese male patient with a family history cardiac myxoma was admitted to our Department of Endocrinology because of central obesity and hyperpigmentation. Physical examination revealed a maximum blood pressure of 150/93mmHg, a waist circumference of 102cm, a weight of 70kg, a height of 170cm, and a BMI of 24.22kg/m2. Additionally, there was spotty skin pigmentation on the lip mucosa, purple striae on the abdomen, thin skin on both legs, and visible veins. Blood examination revealed hypercortisolemia, decreased adrenocorticotropic hormone (ACTH) levels and failure to suppress cortisol with low and high-dose dexamethasone suppression tests. Magnetic resonance imaging (MRI) scan revealed multiple small adrenal nodules and Retroperitoneal neurogenic tumor. Genetic testing showed a novel heterozygous mutation in exon 5 of PRKAR1A (c.500_502 + 8delAAGGTAAGGGC). The patient underwent resection of the right adrenal gland and retroperitoneal neoplasms in 2020. Postoperative pathology following the right adrenal gland resection showed nodular hyperplasia of the adrenal cortex. The pathology from the retroperitoneal tumor resection revealed spindle cell tumors rich in pigment and cells. The patient was diagnosed as Carney complex according to Stratakis CA in 2001 guidelines. After long-term follow-up, the patient's condition was stable, with weight loss, waist circumference reduction, significantly lower cortisol levels, and normal blood lipids. Conclusion This case reported a Carney complex in a Chinese patient, characterized clinically by non-ACTH-dependent Cushing's syndrome, familial recurrent cardiac myxomas, psammomatous melanotic schwannoma (PMS) and skin and mucosal pigmentation. A novel subtype of PRKAR1A mutation was discovered, which may affect the characteristics of the PRKAR1A protein and contribute to the development of Carney complex.
Collapse
Affiliation(s)
- Huaqiang Zheng
- Department of Endocrinology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Hong Kang
- Department of Dermatology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Yizhen Qiu
- Department of Neurology Critical Care Medicine, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Liangxiao Xie
- Department of Endocrinology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Jinzhi Wu
- Department of Endocrinology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Pengbin Lai
- Department of Endocrinology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| | - Jiapeng Kang
- Department of Medical Oncology, Zhangzhou Municipal Hospital, Zhangzhou Municipal Hospital Affiliated of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
5
|
Creamer DR, Beynon RJ, Hubbard SJ, Ashe MP, Grant CM. Isoform-specific sequestration of protein kinase A fine-tunes intracellular signaling during heat stress. Cell Rep 2024; 43:114360. [PMID: 38865242 DOI: 10.1016/j.celrep.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
Protein kinase A (PKA) is a conserved kinase crucial for fundamental biological processes linked to growth, development, and metabolism. The PKA catalytic subunit is expressed as multiple isoforms in diverse eukaryotes; however, their contribution to ensuring signaling specificity in response to environmental cues remains poorly defined. Catalytic subunit activity is classically moderated via interaction with an inhibitory regulatory subunit. Here, a quantitative mass spectrometry approach is used to examine heat-stress-induced changes in the binding of yeast Tpk1-3 catalytic subunits to the Bcy1 regulatory subunit. We show that Tpk3 is not regulated by Bcy1 binding but, instead, is deactivated upon heat stress via reversible sequestration into cytoplasmic granules. These "Tpk3 granules" are enriched for multiple PKA substrates involved in various metabolic processes, with the Hsp42 sequestrase required for their formation. Hence, regulated sequestration of Tpk3 provides a mechanism to control isoform-specific kinase signaling activity during stress conditions.
Collapse
Affiliation(s)
- Declan R Creamer
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Simon J Hubbard
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Mark P Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Chris M Grant
- Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
6
|
Sang M, Liu S, Yan H, Zhang B, Chen S, Wu B, Ma T, Jiang H, Zhao P, Sun G, Gao X, Zang H, Cheng Y, Li C. Synergistic detoxification efficiency and mechanism of triclocarban degradation by a bacterial consortium in the liver-gut-microbiota axis of zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134178. [PMID: 38608581 DOI: 10.1016/j.jhazmat.2024.134178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Triclocarban (TCC), an emerging organic contaminant, poses a potential threat to human health with long-term exposure. Here, Rhodococcus rhodochrous BX2 and Pseudomonas sp. LY-1 were utilized to degrade TCC at environmental related concentrations for enhancing TCC biodegradation and investigating whether the toxicity of intermediate metabolites is lower than that of the parent compound. The results demonstrated that the bacterial consortium could degrade TCC by 82.0% within 7 days. The calculated 96 h LC50 for TCC, as well as its main degradation product 3,4-Dichloroaniline (DCA) were 0.134 mg/L and 1.318 mg/L respectively. Biodegradation also alleviated histopathological lesions induced by TCC in zebrafish liver and gut tissues. Liver transcriptome analysis revealed that biodegradation weakened differential expression of genes involved in disrupted immune regulation and lipid metabolism caused by TCC, verified through RT-qPCR analysis and measurement of related enzyme activities and protein contents. 16 S rRNA sequencing indicated that exposure to TCC led to gut microbial dysbiosis, which was efficiently improved through TCC biodegradation, resulting in decreased relative abundances of major pathogens. Overall, this study evaluated potential environmental risks associated with biodegradation of TCC and explored possible biodetoxification mechanisms, providing a theoretical foundation for efficient and harmless bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Mingyu Sang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyu Liu
- Heilongjiang Provincial Natural Resources Rights and Interests Investigation and Monitoring Institute, Harbin 150030, China
| | - Haohao Yan
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bing Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siyuan Chen
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bowen Wu
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tian Ma
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hanyi Jiang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Peichao Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guanjun Sun
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Gao
- Heilongjiang Boneng Green Energy Technology Co., Ltd, Harbin 150030, China
| | - Hailian Zang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China
| | - Yi Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin 150030, China.
| |
Collapse
|
7
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular determinants and signaling effects of PKA RIα phase separation. Mol Cell 2024; 84:1570-1584.e7. [PMID: 38537638 PMCID: PMC11031308 DOI: 10.1016/j.molcel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures proper cellular function. Liquid-liquid phase separation (LLPS) of the ubiquitous PKA regulatory subunit RIα promotes cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces, combined with the cAMP-induced unleashing of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence, drive RIα condensate formation in the cytosol of mammalian cells, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in forming a non-canonical R:C complex, which recruits active PKA-C to RIα condensates to maintain low basal PKA activity in the cytosol. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
Affiliation(s)
- Julia C Hardy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily H Pool
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica G H Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xin Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingrong Li
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daojia R Zhou
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Max Palay
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lisa Chen
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jaclyn L C Choi
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ha Neul Lee
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stefan Strack
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Dong Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan S Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sohum Mehta
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Shu Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Hardy JC, Pool EH, Bruystens JGH, Zhou X, Li Q, Zhou DR, Palay M, Tan G, Chen L, Choi JLC, Lee HN, Strack S, Wang D, Taylor SS, Mehta S, Zhang J. Molecular Determinants and Signaling Effects of PKA RIα Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570836. [PMID: 38168176 PMCID: PMC10760030 DOI: 10.1101/2023.12.10.570836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Spatiotemporal regulation of intracellular signaling molecules, such as the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), ensures the specific execution of various cellular functions. Liquid-liquid phase separation (LLPS) of the ubiquitously expressed PKA regulatory subunit RIα was recently identified as a major driver of cAMP compartmentation and signaling specificity. However, the molecular determinants of RIα LLPS remain unclear. Here, we reveal that two separate dimerization interfaces combined with the cAMP-induced release of the PKA catalytic subunit (PKA-C) from the pseudosubstrate inhibitory sequence are required to drive RIα condensate formation in cytosol, which is antagonized by docking to A-kinase anchoring proteins. Strikingly, we find that the RIα pseudosubstrate region is critically involved in the formation of a non-canonical R:C complex, which serves to maintain low basal PKA activity in the cytosol by enabling the recruitment of active PKA-C to RIα condensates. Our results suggest that RIα LLPS not only facilitates cAMP compartmentation but also spatially restrains active PKA-C, thus highlighting the functional versatility of biomolecular condensates in driving signaling specificity.
Collapse
|
9
|
Araujo NA, Bubis J. Analysis of a Novel Peptide That Is Capable of Inhibiting the Enzymatic Activity of the Protein Kinase A Catalytic Subunit-Like Protein from Trypanosoma equiperdum. Protein J 2023; 42:709-727. [PMID: 37713008 DOI: 10.1007/s10930-023-10153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
A 26-residue peptide possessing the αN-helix motif of the protein kinase A (PKA) regulatory subunit-like proteins from the Trypanozoom subgenera (VAP26, sequence = VAPYFEKSEDETALILKLLTYNVLFS), was shown to inhibit the enzymatic activity of the Trypanosoma equiperdum PKA catalytic subunit-like protein, in a similar manner that the mammalian heat-stable soluble PKA inhibitor known as PKI. However, VAP26 does not contain the PKI inhibitory sequence. Bioinformatics analyzes of the αN-helix motif from various Trypanozoon PKA regulatory subunit-like proteins suggested that the sequence could form favorable peptide-protein interactions of hydrophobic nature with the PKA catalytic subunit-like protein, which possibly may represent an alternative PKA inhibitory mechanism. The sequence of the αN-helix motif of the Trypanozoon proteins was shown to be highly homologous but significantly divergent from the corresponding αN-helix motifs of their Leishmania and mammalian counterparts. This sequence divergence contrasted with the proposed secondary structure of the αN-helix motif, which appeared conserved in every analyzed regulatory subunit-like protein. In silico mutation experiments at positions I234, L238 and F244 of the αN-helix motif from the Trypanozoon proteins destabilized both the specific motif and the protein. On the contrary, mutations at positions T239 and Y240 stabilized the motif and the protein. These results suggested that the αN-helix motif from the Trypanozoon proteins probably possessed a different evolutionary path than their Leishmania and mammalian counterparts. Moreover, finding stabilizing mutations indicated that new inhibitory peptides may be designed based on the αN-helix motif from the Trypanozoon PKA regulatory subunit-like proteins.
Collapse
Affiliation(s)
- Nelson A Araujo
- Escuela de Ciencias Agroalimentarias, Animales y Ambientales, Universidad de O'Higgins, Campus Colchagua, ruta I-90, Km 3, San Fernando, Chile.
| | - José Bubis
- Unidad de Polimorfismo Genético, Genómica y Proteómica, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Unidad de Señalización Celular y Bioquímica de Parásitos, Dirección de Salud, Fundación Instituto de Estudios Avanzados IDEA, Caracas, 1015-A, Venezuela
- Departamento de Biología Celular, Universidad Simón Bolívar, Apartado 89.000, Caracas, 1081‑A, Venezuela
| |
Collapse
|
10
|
Allosteric pluripotency: challenges and opportunities. Biochem J 2022; 479:825-838. [PMID: 35403669 DOI: 10.1042/bcj20210528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Allosteric pluripotency arises when the functional response of an allosteric receptor to an allosteric stimulus depends on additional allosteric modulators. Here, we discuss allosteric pluripotency as observed in the prototypical Protein Kinase A (PKA) as well as in other signaling systems, from typical multidomain signaling proteins to bacterial enzymes. We identify key drivers of pluripotent allostery and illustrate how hypothesizing allosteric pluripotency may solve apparent discrepancies currently present in the literature regarding the dual nature of known allosteric modulators. We also outline the implications of allosteric pluripotency for cellular signaling and allosteric drug design, and analyze the challenges and opportunities opened by the pluripotent nature of allostery.
Collapse
|
11
|
Khamina M, Martinez Pomier K, Akimoto M, VanSchouwen B, Melacini G. Non-Canonical Allostery in Cyclic Nucleotide Dependent Kinases. J Mol Biol 2022; 434:167584. [DOI: 10.1016/j.jmb.2022.167584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/28/2022]
|
12
|
Martinez Pomier K, Akimoto M, Byun JA, Khamina M, Melacini G. Allosteric Regulation of Cyclic Nucleotide Dependent Protein Kinases. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kinases include a wide variety of valuable drug targets, but full therapeutic exploitation requires a high degree of selectivity. A promising avenue to engineer the desired kinase selectivity relies on allosteric sites. Here we provide a focused minireview of recent progress in allosteric modulation of cyclic nucleotide-dependent kinases, including protein kinases A and G. We show how apparently diverse emerging concepts such as allosteric pluripotency, allosteric non-additive binding and uncompetitive allosteric inhibition are all manifestations of complex conformational ensembles. Such ensembles include not only the typical apo-inactive and effector-bound-active states, but also mixed intermediates that feature attributes of the former states within a single molecule. We also discuss how allosteric responses are amplified by aggregation processes, thus establishing a novel interface between the signaling and amyloid fields. Finally, we critically evaluate the challenges and opportunities for clinical translation opened by these emerging allosteric concepts.
Collapse
Affiliation(s)
| | | | - Jung Ah Byun
- McMaster University, 3710, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
13
|
McNicholl ET, Das R, SilDas S, Byun JA, Akimoto M, Jafari N, Melacini G. Backbone resonance assignment of the cAMP-binding domains of the protein kinase A regulatory subunit Iα. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:379-382. [PMID: 34118011 DOI: 10.1007/s12104-021-10033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Protein kinase A (PKA) is the main receptor for the universal cAMP second messenger. PKA is a tetramer with two catalytic (C) and two regulatory (R) subunits, each including two tandem cAMP-binding domains, i.e. CBD-A and -B. Activation of the complex occurs with cAMP binding first to CBD-B, followed by a second molecule of cAMP binding to CBD-A, which causes the release of the active C-subunit. Unlike previous constructs for eukaryotic cAMP-binding domains (CBDs), the 29.5 kDa construct analyzed here [i.e. RIα (119-379)] spans the CBDs in full and provides insight into inter-domain communication. In this note we report the 1H, 13C, and 15 N backbone assignments of cAMP-bound RIα (119-379) CBDs (BMRB No. 50920).
Collapse
Affiliation(s)
- Eric Tyler McNicholl
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Rahul Das
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Soumita SilDas
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Jung Ah Byun
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Naeimeh Jafari
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology and Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4M1, Canada.
| |
Collapse
|
14
|
Taylor SS, Wu J, Bruystens JGH, Del Rio JC, Lu TW, Kornev AP, Ten Eyck LF. From structure to the dynamic regulation of a molecular switch: A journey over 3 decades. J Biol Chem 2021; 296:100746. [PMID: 33957122 PMCID: PMC8144671 DOI: 10.1016/j.jbc.2021.100746] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022] Open
Abstract
It is difficult to imagine where the signaling community would be today without the Protein Data Bank. This visionary resource, established in the 1970s, has been an essential partner for sharing information between academics and industry for over 3 decades. We describe here the history of our journey with the protein kinases using cAMP-dependent protein kinase as a prototype. We summarize what we have learned since the first structure, published in 1991, why our journey is still ongoing, and why it has been essential to share our structural information. For regulation of kinase activity, we focus on the cAMP-binding protein kinase regulatory subunits. By exploring full-length macromolecular complexes, we discovered not only allostery but also an essential motif originally attributed to crystal packing. Massive genomic data on disease mutations allows us to now revisit crystal packing as a treasure chest of possible protein:protein interfaces where the biological significance and disease relevance can be validated. It provides a new window into exploring dynamic intrinsically disordered regions that previously were deleted, ignored, or attributed to crystal packing. Merging of crystallography with cryo-electron microscopy, cryo-electron tomography, NMR, and millisecond molecular dynamics simulations is opening a new world for the signaling community where those structure coordinates, deposited in the Protein Data Bank, are just a starting point!
Collapse
Affiliation(s)
- Susan S Taylor
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA; Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, California, USA.
| | - Jian Wu
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA
| | - Jessica G H Bruystens
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA
| | - Jason C Del Rio
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA
| | - Tsan-Wen Lu
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California, USA
| | - Alexandr P Kornev
- Department of Pharmacology, University of California at San Diego, San Diego, California, USA
| | - Lynn F Ten Eyck
- Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, California, USA; San Diego Supercomputer Center, University of California at San Diego, San Diego, California, USA
| |
Collapse
|